nkululeko 0.93.4__py3-none-any.whl → 0.93.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +12 -3
- {nkululeko-0.93.4.dist-info → nkululeko-0.93.5.dist-info}/METADATA +5 -1
- {nkululeko-0.93.4.dist-info → nkululeko-0.93.5.dist-info}/RECORD +8 -8
- {nkululeko-0.93.4.dist-info → nkululeko-0.93.5.dist-info}/LICENSE +0 -0
- {nkululeko-0.93.4.dist-info → nkululeko-0.93.5.dist-info}/WHEEL +0 -0
- {nkululeko-0.93.4.dist-info → nkululeko-0.93.5.dist-info}/entry_points.txt +0 -0
- {nkululeko-0.93.4.dist-info → nkululeko-0.93.5.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.93.
|
1
|
+
VERSION="0.93.5"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -4,12 +4,13 @@ import os
|
|
4
4
|
import os.path
|
5
5
|
from random import sample
|
6
6
|
|
7
|
-
import audformat
|
8
7
|
import numpy as np
|
9
8
|
import pandas as pd
|
10
9
|
|
11
|
-
import
|
10
|
+
import audformat
|
11
|
+
|
12
12
|
from nkululeko.filter_data import DataFilter
|
13
|
+
import nkululeko.glob_conf as glob_conf
|
13
14
|
from nkululeko.plots import Plots
|
14
15
|
from nkululeko.reporting.report_item import ReportItem
|
15
16
|
from nkululeko.utils.util import Util
|
@@ -32,6 +33,9 @@ class Dataset:
|
|
32
33
|
self.target = self.util.config_val("DATA", "target", "none")
|
33
34
|
self.plot = Plots()
|
34
35
|
self.limit = int(self.util.config_val_data(self.name, "limit", 0))
|
36
|
+
self.target_tables_append = eval(
|
37
|
+
self.util.config_val_data(self.name, "target_tables_append", "False")
|
38
|
+
)
|
35
39
|
self.start_fresh = eval(self.util.config_val("DATA", "no_reuse", "False"))
|
36
40
|
self.is_labeled, self.got_speaker, self.got_gender, self.got_age = (
|
37
41
|
False,
|
@@ -321,7 +325,12 @@ class Dataset:
|
|
321
325
|
for column in source_df.columns:
|
322
326
|
if column not in [self.target, "age", "speaker", "gender"]:
|
323
327
|
df_local[column] = source_df[column]
|
324
|
-
|
328
|
+
# ensure segmented index
|
329
|
+
df_local = self.util.make_segmented_index(df_local)
|
330
|
+
if self.target_tables_append:
|
331
|
+
df = pd.concat([df, df_local], axis=0)
|
332
|
+
else:
|
333
|
+
df = pd.concat([df, df_local], axis=1)
|
325
334
|
return df, is_labeled, got_speaker, got_gender, got_age
|
326
335
|
|
327
336
|
def split(self):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.93.
|
3
|
+
Version: 0.93.5
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -355,6 +355,10 @@ If you use it, please mention the Nkululeko paper:
|
|
355
355
|
Changelog
|
356
356
|
=========
|
357
357
|
|
358
|
+
Version 0.93.5
|
359
|
+
--------------
|
360
|
+
* fixed bug in dataset loading
|
361
|
+
|
358
362
|
Version 0.93.4
|
359
363
|
--------------
|
360
364
|
* ccc in plots now configurable
|
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
|
3
3
|
nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
|
4
4
|
nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=C8IWm94GcdzMn6m8oSMid5_Ge80ZE0G3kHVztYte-Zg,39
|
6
6
|
nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
|
7
7
|
nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
|
8
8
|
nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
|
@@ -49,7 +49,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwp
|
|
49
49
|
nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
|
50
50
|
nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
|
51
51
|
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
52
|
-
nkululeko/data/dataset.py,sha256=
|
52
|
+
nkululeko/data/dataset.py,sha256=BiSKTnEOy6izgL2KOGNPfyq10MfGEWRqud1ksBdFaVU,29684
|
53
53
|
nkululeko/data/dataset_csv.py,sha256=p2b4eS5R2Q5zdOIc56NRRU2PTFXSRt0qrdHGafHkWKo,4830
|
54
54
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
55
55
|
nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
|
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
112
112
|
nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
|
113
113
|
nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
|
114
114
|
nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
|
115
|
-
nkululeko-0.93.
|
116
|
-
nkululeko-0.93.
|
117
|
-
nkululeko-0.93.
|
118
|
-
nkululeko-0.93.
|
119
|
-
nkululeko-0.93.
|
120
|
-
nkululeko-0.93.
|
115
|
+
nkululeko-0.93.5.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
116
|
+
nkululeko-0.93.5.dist-info/METADATA,sha256=M_KF6W0eH4I4Iou871Dj9AKEAdfLacQyigFpVJeqz2w,42272
|
117
|
+
nkululeko-0.93.5.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
|
118
|
+
nkululeko-0.93.5.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
|
119
|
+
nkululeko-0.93.5.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
120
|
+
nkululeko-0.93.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|