nkululeko 0.93.3__py3-none-any.whl → 0.93.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.93.3"
1
+ VERSION="0.93.5"
2
2
  SAMPLING_RATE = 16000
nkululeko/data/dataset.py CHANGED
@@ -4,12 +4,13 @@ import os
4
4
  import os.path
5
5
  from random import sample
6
6
 
7
- import audformat
8
7
  import numpy as np
9
8
  import pandas as pd
10
9
 
11
- import nkululeko.glob_conf as glob_conf
10
+ import audformat
11
+
12
12
  from nkululeko.filter_data import DataFilter
13
+ import nkululeko.glob_conf as glob_conf
13
14
  from nkululeko.plots import Plots
14
15
  from nkululeko.reporting.report_item import ReportItem
15
16
  from nkululeko.utils.util import Util
@@ -32,6 +33,9 @@ class Dataset:
32
33
  self.target = self.util.config_val("DATA", "target", "none")
33
34
  self.plot = Plots()
34
35
  self.limit = int(self.util.config_val_data(self.name, "limit", 0))
36
+ self.target_tables_append = eval(
37
+ self.util.config_val_data(self.name, "target_tables_append", "False")
38
+ )
35
39
  self.start_fresh = eval(self.util.config_val("DATA", "no_reuse", "False"))
36
40
  self.is_labeled, self.got_speaker, self.got_gender, self.got_age = (
37
41
  False,
@@ -321,7 +325,12 @@ class Dataset:
321
325
  for column in source_df.columns:
322
326
  if column not in [self.target, "age", "speaker", "gender"]:
323
327
  df_local[column] = source_df[column]
324
- df = pd.concat([df, df_local])
328
+ # ensure segmented index
329
+ df_local = self.util.make_segmented_index(df_local)
330
+ if self.target_tables_append:
331
+ df = pd.concat([df, df_local], axis=0)
332
+ else:
333
+ df = pd.concat([df, df_local], axis=1)
325
334
  return df, is_labeled, got_speaker, got_gender, got_age
326
335
 
327
336
  def split(self):
nkululeko/plots.py CHANGED
@@ -23,6 +23,7 @@ class Plots:
23
23
  self.util = Util("plots")
24
24
  self.format = self.util.config_val("PLOT", "format", "png")
25
25
  self.target = self.util.config_val("DATA", "target", "emotion")
26
+ self.with_ccc = eval(self.util.config_val("PLOT", "ccc", "False"))
26
27
 
27
28
  def plot_distributions_speaker(self, df):
28
29
  df_speakers = pd.DataFrame()
@@ -254,9 +255,11 @@ class Plots:
254
255
  # trunc to three digits
255
256
  pearson = int(pearson[0] * 1000) / 1000
256
257
  pearson_string = f"PCC: {pearson}"
257
- ccc_val = ccc(df[cont1], df[cont2])
258
- ccc_val = int(ccc_val * 1000) / 1000
259
- ccc_string = f"CCC: {ccc_val}"
258
+ ccc_string = ""
259
+ if self.with_ccc:
260
+ ccc_val = ccc(df[cont1], df[cont2])
261
+ ccc_val = int(ccc_val * 1000) / 1000
262
+ ccc_string = f"CCC: {ccc_val}"
260
263
  ax = sns.lmplot(data=df, x=cont1, y=cont2, hue=cat)
261
264
  caption = f"{ylab} {df.shape[0]}. {pearson_string} {ccc_string}"
262
265
  ax.figure.suptitle(caption)
@@ -275,9 +278,11 @@ class Plots:
275
278
  # trunc to three digits
276
279
  pearson = int(pearson[0] * 1000) / 1000
277
280
  pearson_string = f"PCC: {pearson}"
278
- ccc_val = ccc(df[col1], df[col2])
279
- ccc_val = int(ccc_val * 1000) / 1000
280
- ccc_string = f"CCC: {ccc_val}"
281
+ ccc_string = ""
282
+ if self.with_ccc:
283
+ ccc_val = ccc(df[col1], df[col2])
284
+ ccc_val = int(ccc_val * 1000) / 1000
285
+ ccc_string = f"CCC: {ccc_val}"
281
286
  ax = sns.lmplot(data=df, x=col1, y=col2)
282
287
  caption = f"{ylab} {df.shape[0]}. {pearson_string} {ccc_string}"
283
288
  ax.figure.suptitle(caption)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.3
3
+ Version: 0.93.5
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -355,6 +355,14 @@ If you use it, please mention the Nkululeko paper:
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.93.5
359
+ --------------
360
+ * fixed bug in dataset loading
361
+
362
+ Version 0.93.4
363
+ --------------
364
+ * ccc in plots now configurable
365
+
358
366
  Version 0.93.3
359
367
  --------------
360
368
  * bugfix in plot
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=xkELXQg1phRJClie00O45xP9PEuZrgYAjtasyw7ugh4,39
5
+ nkululeko/constants.py,sha256=C8IWm94GcdzMn6m8oSMid5_Ge80ZE0G3kHVztYte-Zg,39
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -20,7 +20,7 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
20
20
  nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
21
21
  nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
22
22
  nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
23
- nkululeko/plots.py,sha256=Qt81dEo0yW6Cms8prLv-qRerlSDaATYTPwjCxQpurdM,25076
23
+ nkululeko/plots.py,sha256=emn2NpZyOGlC8pw0NdAGRbUkPzZzbOKFO50HZ7vJG40,25275
24
24
  nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
25
25
  nkululeko/resample.py,sha256=akSAjJ3qn-O5NAyLJHVHdsK7MUZPGaZUvM2TwMSmj2M,5194
26
26
  nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
@@ -49,7 +49,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwp
49
49
  nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
50
50
  nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
51
51
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
- nkululeko/data/dataset.py,sha256=Hz2IOsdcESG-P3aP7r4d1xj_gIP6fyGCYOwukoQ7SM8,29321
52
+ nkululeko/data/dataset.py,sha256=BiSKTnEOy6izgL2KOGNPfyq10MfGEWRqud1ksBdFaVU,29684
53
53
  nkululeko/data/dataset_csv.py,sha256=p2b4eS5R2Q5zdOIc56NRRU2PTFXSRt0qrdHGafHkWKo,4830
54
54
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
55
  nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
115
- nkululeko-0.93.3.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.93.3.dist-info/METADATA,sha256=7yXY_U3k5TXa_ief57WrmWiLS7ov_FtviWCCH9LUoBg,42147
117
- nkululeko-0.93.3.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
118
- nkululeko-0.93.3.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.93.3.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.93.3.dist-info/RECORD,,
115
+ nkululeko-0.93.5.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.93.5.dist-info/METADATA,sha256=M_KF6W0eH4I4Iou871Dj9AKEAdfLacQyigFpVJeqz2w,42272
117
+ nkululeko-0.93.5.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
118
+ nkululeko-0.93.5.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.93.5.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.93.5.dist-info/RECORD,,