nkululeko 0.93.3__py3-none-any.whl → 0.93.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/plots.py +11 -6
- {nkululeko-0.93.3.dist-info → nkululeko-0.93.4.dist-info}/METADATA +5 -1
- {nkululeko-0.93.3.dist-info → nkululeko-0.93.4.dist-info}/RECORD +8 -8
- {nkululeko-0.93.3.dist-info → nkululeko-0.93.4.dist-info}/LICENSE +0 -0
- {nkululeko-0.93.3.dist-info → nkululeko-0.93.4.dist-info}/WHEEL +0 -0
- {nkululeko-0.93.3.dist-info → nkululeko-0.93.4.dist-info}/entry_points.txt +0 -0
- {nkululeko-0.93.3.dist-info → nkululeko-0.93.4.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.93.
|
1
|
+
VERSION="0.93.4"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/plots.py
CHANGED
@@ -23,6 +23,7 @@ class Plots:
|
|
23
23
|
self.util = Util("plots")
|
24
24
|
self.format = self.util.config_val("PLOT", "format", "png")
|
25
25
|
self.target = self.util.config_val("DATA", "target", "emotion")
|
26
|
+
self.with_ccc = eval(self.util.config_val("PLOT", "ccc", "False"))
|
26
27
|
|
27
28
|
def plot_distributions_speaker(self, df):
|
28
29
|
df_speakers = pd.DataFrame()
|
@@ -254,9 +255,11 @@ class Plots:
|
|
254
255
|
# trunc to three digits
|
255
256
|
pearson = int(pearson[0] * 1000) / 1000
|
256
257
|
pearson_string = f"PCC: {pearson}"
|
257
|
-
|
258
|
-
|
259
|
-
|
258
|
+
ccc_string = ""
|
259
|
+
if self.with_ccc:
|
260
|
+
ccc_val = ccc(df[cont1], df[cont2])
|
261
|
+
ccc_val = int(ccc_val * 1000) / 1000
|
262
|
+
ccc_string = f"CCC: {ccc_val}"
|
260
263
|
ax = sns.lmplot(data=df, x=cont1, y=cont2, hue=cat)
|
261
264
|
caption = f"{ylab} {df.shape[0]}. {pearson_string} {ccc_string}"
|
262
265
|
ax.figure.suptitle(caption)
|
@@ -275,9 +278,11 @@ class Plots:
|
|
275
278
|
# trunc to three digits
|
276
279
|
pearson = int(pearson[0] * 1000) / 1000
|
277
280
|
pearson_string = f"PCC: {pearson}"
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
+
ccc_string = ""
|
282
|
+
if self.with_ccc:
|
283
|
+
ccc_val = ccc(df[col1], df[col2])
|
284
|
+
ccc_val = int(ccc_val * 1000) / 1000
|
285
|
+
ccc_string = f"CCC: {ccc_val}"
|
281
286
|
ax = sns.lmplot(data=df, x=col1, y=col2)
|
282
287
|
caption = f"{ylab} {df.shape[0]}. {pearson_string} {ccc_string}"
|
283
288
|
ax.figure.suptitle(caption)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.93.
|
3
|
+
Version: 0.93.4
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -355,6 +355,10 @@ If you use it, please mention the Nkululeko paper:
|
|
355
355
|
Changelog
|
356
356
|
=========
|
357
357
|
|
358
|
+
Version 0.93.4
|
359
|
+
--------------
|
360
|
+
* ccc in plots now configurable
|
361
|
+
|
358
362
|
Version 0.93.3
|
359
363
|
--------------
|
360
364
|
* bugfix in plot
|
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
|
3
3
|
nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
|
4
4
|
nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=IgnX0Wy81d5r7fZn_FKbdv78UmFITOMd-J_szX4AMKc,39
|
6
6
|
nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
|
7
7
|
nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
|
8
8
|
nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
|
@@ -20,7 +20,7 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
|
|
20
20
|
nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
|
21
21
|
nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
|
22
22
|
nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
|
23
|
-
nkululeko/plots.py,sha256=
|
23
|
+
nkululeko/plots.py,sha256=emn2NpZyOGlC8pw0NdAGRbUkPzZzbOKFO50HZ7vJG40,25275
|
24
24
|
nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
|
25
25
|
nkululeko/resample.py,sha256=akSAjJ3qn-O5NAyLJHVHdsK7MUZPGaZUvM2TwMSmj2M,5194
|
26
26
|
nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
|
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
112
112
|
nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
|
113
113
|
nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
|
114
114
|
nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
|
115
|
-
nkululeko-0.93.
|
116
|
-
nkululeko-0.93.
|
117
|
-
nkululeko-0.93.
|
118
|
-
nkululeko-0.93.
|
119
|
-
nkululeko-0.93.
|
120
|
-
nkululeko-0.93.
|
115
|
+
nkululeko-0.93.4.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
116
|
+
nkululeko-0.93.4.dist-info/METADATA,sha256=0xLv3PmFcHyVfO0DqDtELse_fMHnx1vZUqrR1lWVZgM,42210
|
117
|
+
nkululeko-0.93.4.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
|
118
|
+
nkululeko-0.93.4.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
|
119
|
+
nkululeko-0.93.4.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
120
|
+
nkululeko-0.93.4.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|