nkululeko 0.93.2__py3-none-any.whl → 0.93.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.93.2"
1
+ VERSION="0.93.4"
2
2
  SAMPLING_RATE = 16000
nkululeko/plots.py CHANGED
@@ -23,6 +23,7 @@ class Plots:
23
23
  self.util = Util("plots")
24
24
  self.format = self.util.config_val("PLOT", "format", "png")
25
25
  self.target = self.util.config_val("DATA", "target", "emotion")
26
+ self.with_ccc = eval(self.util.config_val("PLOT", "ccc", "False"))
26
27
 
27
28
  def plot_distributions_speaker(self, df):
28
29
  df_speakers = pd.DataFrame()
@@ -254,9 +255,11 @@ class Plots:
254
255
  # trunc to three digits
255
256
  pearson = int(pearson[0] * 1000) / 1000
256
257
  pearson_string = f"PCC: {pearson}"
257
- ccc_val = ccc(df[cont1], df[cont2])
258
- ccc_val = int(ccc_val * 1000) / 1000
259
- ccc_string = f"CCC: {ccc_val}"
258
+ ccc_string = ""
259
+ if self.with_ccc:
260
+ ccc_val = ccc(df[cont1], df[cont2])
261
+ ccc_val = int(ccc_val * 1000) / 1000
262
+ ccc_string = f"CCC: {ccc_val}"
260
263
  ax = sns.lmplot(data=df, x=cont1, y=cont2, hue=cat)
261
264
  caption = f"{ylab} {df.shape[0]}. {pearson_string} {ccc_string}"
262
265
  ax.figure.suptitle(caption)
@@ -275,9 +278,11 @@ class Plots:
275
278
  # trunc to three digits
276
279
  pearson = int(pearson[0] * 1000) / 1000
277
280
  pearson_string = f"PCC: {pearson}"
278
- ccc_val = ccc(df[cont1], df[cont2])
279
- ccc_val = int(ccc_val * 1000) / 1000
280
- ccc_string = f"CCC: {ccc_val}"
281
+ ccc_string = ""
282
+ if self.with_ccc:
283
+ ccc_val = ccc(df[col1], df[col2])
284
+ ccc_val = int(ccc_val * 1000) / 1000
285
+ ccc_string = f"CCC: {ccc_val}"
281
286
  ax = sns.lmplot(data=df, x=col1, y=col2)
282
287
  caption = f"{ylab} {df.shape[0]}. {pearson_string} {ccc_string}"
283
288
  ax.figure.suptitle(caption)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.2
3
+ Version: 0.93.4
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -355,6 +355,14 @@ If you use it, please mention the Nkululeko paper:
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.93.4
359
+ --------------
360
+ * ccc in plots now configurable
361
+
362
+ Version 0.93.3
363
+ --------------
364
+ * bugfix in plot
365
+
358
366
  Version 0.93.2
359
367
  --------------
360
368
  * changed class_label in plots to actual target
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=BbVRqe9PVLlKhJNVX9kRT-tO_jL8AU7O9uhFeSzq9sw,39
5
+ nkululeko/constants.py,sha256=IgnX0Wy81d5r7fZn_FKbdv78UmFITOMd-J_szX4AMKc,39
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -20,7 +20,7 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
20
20
  nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
21
21
  nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
22
22
  nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
23
- nkululeko/plots.py,sha256=5V64_dPusl6t4p2yO6mAa253ydB1T8qtDx2eERKfGqI,25078
23
+ nkululeko/plots.py,sha256=emn2NpZyOGlC8pw0NdAGRbUkPzZzbOKFO50HZ7vJG40,25275
24
24
  nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
25
25
  nkululeko/resample.py,sha256=akSAjJ3qn-O5NAyLJHVHdsK7MUZPGaZUvM2TwMSmj2M,5194
26
26
  nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
115
- nkululeko-0.93.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.93.2.dist-info/METADATA,sha256=Dyhm_lOM-nr_GSqThzGnOLscolalOux9O4j6Dwoqa_c,42097
117
- nkululeko-0.93.2.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
118
- nkululeko-0.93.2.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.93.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.93.2.dist-info/RECORD,,
115
+ nkululeko-0.93.4.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.93.4.dist-info/METADATA,sha256=0xLv3PmFcHyVfO0DqDtELse_fMHnx1vZUqrR1lWVZgM,42210
117
+ nkululeko-0.93.4.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
118
+ nkululeko-0.93.4.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.93.4.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.93.4.dist-info/RECORD,,