nkululeko 0.93.1__py3-none-any.whl → 0.93.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/experiment.py +3 -1
- nkululeko/plots.py +30 -2
- nkululeko/utils/util.py +4 -1
- {nkululeko-0.93.1.dist-info → nkululeko-0.93.3.dist-info}/METADATA +9 -1
- {nkululeko-0.93.1.dist-info → nkululeko-0.93.3.dist-info}/RECORD +10 -10
- {nkululeko-0.93.1.dist-info → nkululeko-0.93.3.dist-info}/WHEEL +1 -1
- {nkululeko-0.93.1.dist-info → nkululeko-0.93.3.dist-info}/LICENSE +0 -0
- {nkululeko-0.93.1.dist-info → nkululeko-0.93.3.dist-info}/entry_points.txt +0 -0
- {nkululeko-0.93.1.dist-info → nkululeko-0.93.3.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.93.
|
1
|
+
VERSION="0.93.3"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/experiment.py
CHANGED
@@ -434,7 +434,9 @@ class Experiment:
|
|
434
434
|
f"unknown augmentation selection specifier {sample_selection},"
|
435
435
|
" should be [all | train | test]"
|
436
436
|
)
|
437
|
-
targets = self.util.config_val_list("PREDICT", "targets",
|
437
|
+
targets = self.util.config_val_list("PREDICT", "targets", None)
|
438
|
+
if targets is None:
|
439
|
+
self.util.error("no prediction target specified")
|
438
440
|
for target in targets:
|
439
441
|
if target == "speaker":
|
440
442
|
from nkululeko.autopredict.ap_sid import SIDPredictor
|
nkululeko/plots.py
CHANGED
@@ -8,6 +8,8 @@ from scipy import stats
|
|
8
8
|
import seaborn as sns
|
9
9
|
from sklearn.manifold import TSNE
|
10
10
|
|
11
|
+
from audmetric import concordance_cc as ccc
|
12
|
+
|
11
13
|
import nkululeko.glob_conf as glob_conf
|
12
14
|
from nkululeko.reporting.defines import Header
|
13
15
|
from nkululeko.reporting.report_item import ReportItem
|
@@ -239,28 +241,54 @@ class Plots:
|
|
239
241
|
|
240
242
|
def _plot2cont_cat(self, df, cont1, cont2, cat, ylab):
|
241
243
|
"""Plot relation of two continuous distributions with one categorical."""
|
244
|
+
if cont2 == "class_label":
|
245
|
+
df.rename(columns={cont2: self.target})
|
246
|
+
cont2 = self.target
|
247
|
+
if cont1 == "class_label":
|
248
|
+
df.rename(columns={cont1: self.target})
|
249
|
+
cont1 = self.target
|
250
|
+
if cat == "class_label":
|
251
|
+
df.rename(columns={cat: self.target})
|
252
|
+
cat = self.target
|
242
253
|
pearson = stats.pearsonr(df[cont1], df[cont2])
|
243
254
|
# trunc to three digits
|
244
255
|
pearson = int(pearson[0] * 1000) / 1000
|
245
256
|
pearson_string = f"PCC: {pearson}"
|
257
|
+
ccc_val = ccc(df[cont1], df[cont2])
|
258
|
+
ccc_val = int(ccc_val * 1000) / 1000
|
259
|
+
ccc_string = f"CCC: {ccc_val}"
|
246
260
|
ax = sns.lmplot(data=df, x=cont1, y=cont2, hue=cat)
|
247
|
-
caption = f"{ylab} {df.shape[0]}. {pearson_string}"
|
261
|
+
caption = f"{ylab} {df.shape[0]}. {pearson_string} {ccc_string}"
|
248
262
|
ax.figure.suptitle(caption)
|
249
263
|
return ax, caption
|
250
264
|
|
251
265
|
def _plot2cont(self, df, col1, col2, ylab):
|
252
266
|
"""Plot relation of two continuous distributions."""
|
267
|
+
# rename "class_label" to the original target
|
268
|
+
if col2 == "class_label":
|
269
|
+
df.rename(columns={col2: self.target})
|
270
|
+
col2 = self.target
|
271
|
+
if col1 == "class_label":
|
272
|
+
df.rename(columns={col1: self.target})
|
273
|
+
col1 = self.target
|
253
274
|
pearson = stats.pearsonr(df[col1], df[col2])
|
254
275
|
# trunc to three digits
|
255
276
|
pearson = int(pearson[0] * 1000) / 1000
|
256
277
|
pearson_string = f"PCC: {pearson}"
|
278
|
+
ccc_val = ccc(df[col1], df[col2])
|
279
|
+
ccc_val = int(ccc_val * 1000) / 1000
|
280
|
+
ccc_string = f"CCC: {ccc_val}"
|
257
281
|
ax = sns.lmplot(data=df, x=col1, y=col2)
|
258
|
-
caption = f"{ylab} {df.shape[0]}. {pearson_string}"
|
282
|
+
caption = f"{ylab} {df.shape[0]}. {pearson_string} {ccc_string}"
|
259
283
|
ax.figure.suptitle(caption)
|
260
284
|
return ax, caption
|
261
285
|
|
262
286
|
def plotcatcont(self, df, cat_col, cont_col, xlab, ylab):
|
263
287
|
"""Plot relation of categorical distribution with continuous."""
|
288
|
+
# rename "class_label" to the original target
|
289
|
+
if cat_col == "class_label":
|
290
|
+
df.rename(columns={cat_col: self.target})
|
291
|
+
cat_col = self.target
|
264
292
|
dist_type = self.util.config_val("EXPL", "dist_type", "kde")
|
265
293
|
cats, cat_str, es = su.get_effect_size(df, cat_col, cont_col)
|
266
294
|
model_type = self.util.get_model_type()
|
nkululeko/utils/util.py
CHANGED
@@ -226,7 +226,10 @@ class Util:
|
|
226
226
|
return self.config["DATA"]["target"]
|
227
227
|
|
228
228
|
def get_model_type(self):
|
229
|
-
|
229
|
+
try:
|
230
|
+
return self.config["MODEL"]["type"]
|
231
|
+
except KeyError:
|
232
|
+
return ""
|
230
233
|
|
231
234
|
def get_model_description(self):
|
232
235
|
mt = ""
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.93.
|
3
|
+
Version: 0.93.3
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -355,6 +355,14 @@ If you use it, please mention the Nkululeko paper:
|
|
355
355
|
Changelog
|
356
356
|
=========
|
357
357
|
|
358
|
+
Version 0.93.3
|
359
|
+
--------------
|
360
|
+
* bugfix in plot
|
361
|
+
|
362
|
+
Version 0.93.2
|
363
|
+
--------------
|
364
|
+
* changed class_label in plots to actual target
|
365
|
+
|
358
366
|
Version 0.93.1
|
359
367
|
--------------
|
360
368
|
* made explore module more robust
|
@@ -2,13 +2,13 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
|
3
3
|
nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
|
4
4
|
nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
|
5
|
-
nkululeko/constants.py,sha256
|
5
|
+
nkululeko/constants.py,sha256=xkELXQg1phRJClie00O45xP9PEuZrgYAjtasyw7ugh4,39
|
6
6
|
nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
|
7
7
|
nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
|
8
8
|
nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
|
9
9
|
nkululeko/demo_predictor.py,sha256=lDF-xOxRdEAclOmbepAYg-BQXQdGkHfq2n74PTIoop8,4872
|
10
10
|
nkululeko/ensemble.py,sha256=71V-rre61H3J4sh7lu-OTo4I2_g7mm_rQxwW1ARDHgY,12782
|
11
|
-
nkululeko/experiment.py,sha256=
|
11
|
+
nkululeko/experiment.py,sha256=0xe_mrGtO6q8HF6dZ7slXca7BvSoyIh6j61U9mtcS_o,31785
|
12
12
|
nkululeko/explore.py,sha256=FPM2CS-LKgcDV-LnjYlD6pEv7HuCQpH_C3KyyiOCdk4,3589
|
13
13
|
nkululeko/export.py,sha256=U-V4acxtuL6qKt6oAsVcM5TTeWogYUJ3GU-lA6rq6d4,4336
|
14
14
|
nkululeko/feature_extractor.py,sha256=UnspIWz3XrNhKnBBhWZkH2bHvD-sROtrQVqB1JvkUyw,4088
|
@@ -20,7 +20,7 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
|
|
20
20
|
nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
|
21
21
|
nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
|
22
22
|
nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
|
23
|
-
nkululeko/plots.py,sha256=
|
23
|
+
nkululeko/plots.py,sha256=Qt81dEo0yW6Cms8prLv-qRerlSDaATYTPwjCxQpurdM,25076
|
24
24
|
nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
|
25
25
|
nkululeko/resample.py,sha256=akSAjJ3qn-O5NAyLJHVHdsK7MUZPGaZUvM2TwMSmj2M,5194
|
26
26
|
nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
|
@@ -111,10 +111,10 @@ nkululeko/segmenting/seg_silero.py,sha256=ulodnvtRq5MLHDxy_RmAK4tJg6h1d-mPq-uCPF
|
|
111
111
|
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
112
112
|
nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
|
113
113
|
nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
|
114
|
-
nkululeko/utils/util.py,sha256=
|
115
|
-
nkululeko-0.93.
|
116
|
-
nkululeko-0.93.
|
117
|
-
nkululeko-0.93.
|
118
|
-
nkululeko-0.93.
|
119
|
-
nkululeko-0.93.
|
120
|
-
nkululeko-0.93.
|
114
|
+
nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
|
115
|
+
nkululeko-0.93.3.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
116
|
+
nkululeko-0.93.3.dist-info/METADATA,sha256=7yXY_U3k5TXa_ief57WrmWiLS7ov_FtviWCCH9LUoBg,42147
|
117
|
+
nkululeko-0.93.3.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
|
118
|
+
nkululeko-0.93.3.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
|
119
|
+
nkululeko-0.93.3.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
120
|
+
nkululeko-0.93.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|