nkululeko 0.93.14__py3-none-any.whl → 0.94.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/aug_train.py +13 -2
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +287 -36
- nkululeko/experiment.py +121 -17
- nkululeko/feat_extract/feats_opensmile copy.py +93 -0
- nkululeko/feat_extract/feats_opensmile.py +207 -60
- nkululeko/feat_extract/feats_trill.py +2 -2
- nkululeko/modelrunner.py +24 -11
- nkululeko/models/model_mlp.py +3 -1
- nkululeko/nkululeko.py +0 -1
- nkululeko/plots.py +11 -2
- nkululeko/reporting/reporter.py +25 -39
- nkululeko/runmanager.py +53 -33
- nkululeko/scaler.py +41 -24
- nkululeko/utils/util.py +1 -1
- {nkululeko-0.93.14.dist-info → nkululeko-0.94.0.dist-info}/METADATA +3 -2
- {nkululeko-0.93.14.dist-info → nkululeko-0.94.0.dist-info}/RECORD +21 -20
- {nkululeko-0.93.14.dist-info → nkululeko-0.94.0.dist-info}/WHEEL +1 -1
- {nkululeko-0.93.14.dist-info → nkululeko-0.94.0.dist-info}/entry_points.txt +0 -0
- {nkululeko-0.93.14.dist-info → nkululeko-0.94.0.dist-info/licenses}/LICENSE +0 -0
- {nkululeko-0.93.14.dist-info → nkululeko-0.94.0.dist-info}/top_level.txt +0 -0
nkululeko/runmanager.py
CHANGED
@@ -22,7 +22,8 @@ class Runmanager:
|
|
22
22
|
) # The dataframes
|
23
23
|
reports = []
|
24
24
|
|
25
|
-
def __init__(self, df_train, df_test, feats_train,
|
25
|
+
def __init__(self, df_train, df_test, feats_train,
|
26
|
+
feats_test, dev_x=None, dev_y=None):
|
26
27
|
"""Constructor setting up the dataframes.
|
27
28
|
|
28
29
|
Args:
|
@@ -38,11 +39,10 @@ class Runmanager:
|
|
38
39
|
feats_train,
|
39
40
|
feats_test,
|
40
41
|
)
|
42
|
+
self.df_dev, self.feats_dev = dev_x, dev_y
|
41
43
|
self.util = Util("runmanager")
|
42
44
|
self.target = glob_conf.config["DATA"]["target"]
|
43
|
-
|
44
|
-
# model_type = glob_conf.config['MODEL']['type']
|
45
|
-
# self._select_model(model_type)
|
45
|
+
self.split3 = eval(self.util.config_val("EXP", "traindevtest", "False"))
|
46
46
|
|
47
47
|
def do_runs(self):
|
48
48
|
"""Start the runs."""
|
@@ -55,14 +55,34 @@ class Runmanager:
|
|
55
55
|
)
|
56
56
|
# set the run index as global variable for reporting
|
57
57
|
self.util.set_config_val("EXP", "run", run)
|
58
|
-
self.
|
59
|
-
self.
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
58
|
+
if self.df_dev is not None:
|
59
|
+
self.modelrunner = Modelrunner(
|
60
|
+
self.df_train,
|
61
|
+
self.df_dev,
|
62
|
+
self.feats_train,
|
63
|
+
self.feats_dev,
|
64
|
+
run,
|
65
|
+
)
|
66
|
+
self.reports, last_epoch = self.modelrunner.do_epochs()
|
67
|
+
else:
|
68
|
+
self.modelrunner = Modelrunner(
|
69
|
+
self.df_train,
|
70
|
+
self.df_test,
|
71
|
+
self.feats_train,
|
72
|
+
self.feats_test,
|
73
|
+
run,
|
74
|
+
)
|
75
|
+
self.reports, last_epoch = self.modelrunner.do_epochs()
|
76
|
+
|
77
|
+
last_report = self.reports[-1]
|
78
|
+
plot_name_suggest = self.util.get_exp_name()
|
79
|
+
plot_name = (
|
80
|
+
self.util.config_val("PLOT", "name", plot_name_suggest)
|
81
|
+
+ f"_last_{last_report.run}_{last_report.epoch:03d}"
|
64
82
|
)
|
65
|
-
|
83
|
+
# finally, print out the numbers for this run
|
84
|
+
self.print_report(last_report, plot_name)
|
85
|
+
|
66
86
|
# wrap up the run
|
67
87
|
plot_anim_progression = self.util.config_val("PLOT", "anim_progression", 0)
|
68
88
|
if plot_anim_progression:
|
@@ -82,7 +102,6 @@ class Runmanager:
|
|
82
102
|
# possibly this value has not been set
|
83
103
|
epoch_num = 1
|
84
104
|
if epoch_num > 1 and plot_epoch_progression:
|
85
|
-
plot_name_suggest = self.util.get_exp_name()
|
86
105
|
plot_name = (
|
87
106
|
self.util.config_val("PLOT", "name", plot_name_suggest)
|
88
107
|
+ "_epoch_progression"
|
@@ -91,25 +110,24 @@ class Runmanager:
|
|
91
110
|
self.reports[-1].plot_epoch_progression(self.reports, plot_name)
|
92
111
|
# remember the best run
|
93
112
|
best_report = self.get_best_result(self.reports)
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
plot_name = (
|
99
|
-
self.util.config_val("PLOT", "name", plot_name_suggest)
|
100
|
-
+ f"_BEST_{best_report.run}_{best_report.epoch:03d}_BEST_cnf"
|
101
|
-
)
|
102
|
-
self.util.debug(
|
103
|
-
f"best result with run {best_report.run} and epoch"
|
104
|
-
f" {best_report.epoch}:"
|
105
|
-
f" {best_report.result.get_test_result()}"
|
106
|
-
)
|
107
|
-
self.print_model(best_report, plot_name)
|
113
|
+
plot_name = (
|
114
|
+
self.util.config_val("PLOT", "name", plot_name_suggest)
|
115
|
+
+ f"_BEST-dev_{best_report.run}_{best_report.epoch:03d}"
|
116
|
+
)
|
108
117
|
# finally, print out the numbers for this run
|
109
|
-
|
110
|
-
best_report.print_probabilities()
|
118
|
+
self.print_report(best_report, plot_name)
|
111
119
|
self.best_results.append(best_report)
|
112
120
|
self.last_epochs.append(last_epoch)
|
121
|
+
if self.split3:
|
122
|
+
best_model = self.get_best_model()
|
123
|
+
self.test_report = self.modelrunner.eval_specific_model(
|
124
|
+
best_model, self.df_test, self.feats_test)
|
125
|
+
self.test_report.epoch = best_report.epoch
|
126
|
+
plot_name = (
|
127
|
+
self.util.config_val("PLOT", "name", plot_name_suggest)
|
128
|
+
+ f"_test_{best_report.run}_{best_report.epoch:03d}"
|
129
|
+
)
|
130
|
+
self.print_report(self.test_report, plot_name)
|
113
131
|
|
114
132
|
def print_best_result_runs(self):
|
115
133
|
"""Print the best result for all runs."""
|
@@ -123,7 +141,7 @@ class Runmanager:
|
|
123
141
|
self.util.config_val("PLOT", "name", plot_name_suggest)
|
124
142
|
+ f"_BEST_{best_report.run}_{best_report.epoch:03d}_BEST_cnf"
|
125
143
|
)
|
126
|
-
self.
|
144
|
+
self.print_report(best_report, plot_name)
|
127
145
|
|
128
146
|
def print_given_result(self, run, epoch):
|
129
147
|
"""Print a result (confusion matrix) for a given epoch and run.
|
@@ -141,9 +159,9 @@ class Runmanager:
|
|
141
159
|
self.util.config_val("PLOT", "name", plot_name_suggest)
|
142
160
|
+ f"_extra_{run}_{epoch:03d}_cnf"
|
143
161
|
)
|
144
|
-
self.
|
162
|
+
self.print_report(report, plot_name)
|
145
163
|
|
146
|
-
def
|
164
|
+
def print_report(self, report, plot_name):
|
147
165
|
"""Print a confusion matrix for a special report.
|
148
166
|
|
149
167
|
Args:
|
@@ -153,8 +171,10 @@ class Runmanager:
|
|
153
171
|
# self.load_model(report)
|
154
172
|
# report = self.model.predict()
|
155
173
|
self.util.debug(f"plotting conf matrix to {plot_name}")
|
156
|
-
|
157
|
-
|
174
|
+
report.plot_confmatrix(plot_name, epoch = report.epoch)
|
175
|
+
report.print_results(report.epoch, file_name = plot_name)
|
176
|
+
report.print_probabilities(file_name=plot_name)
|
177
|
+
|
158
178
|
|
159
179
|
def load_model(self, report):
|
160
180
|
"""Load a model from disk for a specific run and epoch and evaluate it.
|
nkululeko/scaler.py
CHANGED
@@ -8,23 +8,20 @@ from nkululeko.utils.util import Util
|
|
8
8
|
|
9
9
|
|
10
10
|
class Scaler:
|
11
|
-
"""
|
12
|
-
class to normalize speech features
|
13
|
-
"""
|
11
|
+
"""Class to normalize speech features."""
|
14
12
|
|
15
13
|
def __init__(
|
16
|
-
self, train_data_df, test_data_df, train_feats, test_feats, scaler_type
|
14
|
+
self, train_data_df, test_data_df, train_feats, test_feats, scaler_type, dev_x = None, dev_y = None
|
17
15
|
):
|
18
|
-
"""
|
19
|
-
Initializer.
|
16
|
+
"""Constructor.
|
20
17
|
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
18
|
+
Parameters:
|
19
|
+
train_data_df (pd.DataFrame): The training dataframe with speakers.
|
20
|
+
only needed for speaker normalization
|
21
|
+
test_data_df (pd.DataFrame): The test dataframe with speakers
|
22
|
+
only needed for speaker normalization
|
23
|
+
train_feats (pd.DataFrame): The train features dataframe
|
24
|
+
test_feats (pd.DataFrame): The test features dataframe (can be None)
|
28
25
|
"""
|
29
26
|
self.util = Util("scaler")
|
30
27
|
if scaler_type == "standard":
|
@@ -42,14 +39,18 @@ class Scaler:
|
|
42
39
|
self.data_train = train_data_df
|
43
40
|
self.feats_test = test_feats
|
44
41
|
self.data_test = test_data_df
|
45
|
-
|
42
|
+
if dev_x is not None:
|
43
|
+
self.feats_dev = dev_y
|
44
|
+
self.data_dev = dev_x
|
45
|
+
else:
|
46
|
+
self.feats_dev = None
|
47
|
+
self.data_dev = None
|
46
48
|
def scale(self):
|
47
|
-
"""
|
48
|
-
Actually scales/normalizes.
|
49
|
+
"""Actually scales/normalizes.
|
49
50
|
|
50
|
-
|
51
|
-
|
52
|
-
|
51
|
+
Returns:
|
52
|
+
train_feats (pd.DataFrame): The scaled train features dataframe
|
53
|
+
test_feats (pd.DataFrame): The scaled test features dataframe (can be None)
|
53
54
|
"""
|
54
55
|
if self.scaler_type != "speaker":
|
55
56
|
self.util.debug("scaling features based on training set")
|
@@ -64,12 +65,17 @@ class Scaler:
|
|
64
65
|
self.feats_train = self.scale_df(self.feats_train)
|
65
66
|
if self.feats_test is not None:
|
66
67
|
self.feats_test = self.scale_df(self.feats_test)
|
68
|
+
if self.feats_dev is not None:
|
69
|
+
self.feats_dev = self.scale_df(self.feats_dev)
|
67
70
|
else:
|
68
71
|
self.bin_to_three()
|
69
|
-
|
72
|
+
if self.feats_dev is not None:
|
73
|
+
return self.feats_train, self.feats_dev, self.feats_test
|
74
|
+
else:
|
75
|
+
return self.feats_train, self.feats_test
|
70
76
|
|
71
77
|
def scale_df(self, df):
|
72
|
-
scaled_features = self.scaler.
|
78
|
+
scaled_features = self.scaler.transform(df.values)
|
73
79
|
df = pd.DataFrame(scaled_features, index=df.index, columns=df.columns)
|
74
80
|
return df
|
75
81
|
|
@@ -77,7 +83,11 @@ class Scaler:
|
|
77
83
|
self.feats_train = self.speaker_scale_df(self.data_train, self.feats_train)
|
78
84
|
if self.feats_test is not None:
|
79
85
|
self.feats_test = self.speaker_scale_df(self.data_test, self.feats_test)
|
80
|
-
|
86
|
+
if self.feats_dev is not None:
|
87
|
+
self.feats_dev = self.speaker_scale_df(self.data_dev, self.feats_dev)
|
88
|
+
return [self.feats_train, self.feats_dev, self.feats_test]
|
89
|
+
else:
|
90
|
+
return [self.feats_train, self.feats_test]
|
81
91
|
|
82
92
|
def speaker_scale_df(self, df, feats_df):
|
83
93
|
for speaker in df["speaker"].unique():
|
@@ -97,12 +107,19 @@ class Scaler:
|
|
97
107
|
feats_bin_test[c] = self._bin(self.feats_test[c].values, b1, b2).values
|
98
108
|
self.feats_train = feats_bin_train
|
99
109
|
self.feats_test = feats_bin_test
|
110
|
+
if self.feats_dev is not None:
|
111
|
+
feats_bin_dev = pd.DataFrame(index=self.feats_dev.index)
|
112
|
+
for c in self.feats_train.columns:
|
113
|
+
b1 = np.quantile(self.feats_train[c], 0.33)
|
114
|
+
b2 = np.quantile(self.feats_train[c], 0.66)
|
115
|
+
feats_bin_dev[c] = self._bin(self.feats_dev[c].values, b1, b2).values
|
116
|
+
self.feats_dev = feats_bin_dev
|
100
117
|
|
101
118
|
def _bin(self, series, b1, b2):
|
102
119
|
bins = [-1000000, b1, b2, 1000000]
|
103
120
|
labels = [0, 0.5, 1]
|
104
121
|
result = np.digitize(series, bins) - 1
|
105
122
|
result = pd.Series(result)
|
106
|
-
for
|
107
|
-
result = result.replace(
|
123
|
+
for index, lab in enumerate(labels):
|
124
|
+
result = result.replace(index, str(lab))
|
108
125
|
return result
|
nkululeko/utils/util.py
CHANGED
@@ -158,7 +158,7 @@ class Util:
|
|
158
158
|
results_dir = self.get_path("res_dir")
|
159
159
|
target = self.get_target_name()
|
160
160
|
pred_name = self.get_model_description()
|
161
|
-
return f"{results_dir}/pred_{target}_{pred_name}
|
161
|
+
return f"{results_dir}/pred_{target}_{pred_name}"
|
162
162
|
|
163
163
|
def print_results_to_store(self, name: str, contents: str) -> str:
|
164
164
|
"""Write contents to a result file.
|
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.94.0
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -37,3 +37,4 @@ Requires-Dist: transformers
|
|
37
37
|
Requires-Dist: umap-learn
|
38
38
|
Requires-Dist: xgboost
|
39
39
|
Requires-Dist: pylatex
|
40
|
+
Dynamic: license-file
|
@@ -1,14 +1,14 @@
|
|
1
1
|
nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
2
|
-
nkululeko/aug_train.py,sha256=
|
2
|
+
nkululeko/aug_train.py,sha256=wpiHCJ7zsW38kumg3ypwXZe2HQrhUblAnv7P2QeJnAc,3525
|
3
3
|
nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
|
4
4
|
nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=DRvpIz4j-jN2zlnm3kODLo5WQQDhDpq5rHADx1vRvAY,39
|
6
6
|
nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
|
7
7
|
nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
|
8
8
|
nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
|
9
9
|
nkululeko/demo_predictor.py,sha256=lDF-xOxRdEAclOmbepAYg-BQXQdGkHfq2n74PTIoop8,4872
|
10
10
|
nkululeko/ensemble.py,sha256=71V-rre61H3J4sh7lu-OTo4I2_g7mm_rQxwW1ARDHgY,12782
|
11
|
-
nkululeko/experiment.py,sha256=
|
11
|
+
nkululeko/experiment.py,sha256=ywswsCdSDUQLWIHn055wT1N40hFBSBUB3NnS5Hq6aMk,36210
|
12
12
|
nkululeko/explore.py,sha256=FPM2CS-LKgcDV-LnjYlD6pEv7HuCQpH_C3KyyiOCdk4,3589
|
13
13
|
nkululeko/export.py,sha256=U-V4acxtuL6qKt6oAsVcM5TTeWogYUJ3GU-lA6rq6d4,4336
|
14
14
|
nkululeko/feature_extractor.py,sha256=UnspIWz3XrNhKnBBhWZkH2bHvD-sROtrQVqB1JvkUyw,4088
|
@@ -16,15 +16,15 @@ nkululeko/file_checker.py,sha256=xJY0Q6w47pnmgJVK5rcAKPYBrCpV7eBT4_3YBzTx-H8,345
|
|
16
16
|
nkululeko/filter_data.py,sha256=5AYDtqs_GWGr4V5CbbYQkVVgCD3kq2dpKu8rF3V87NI,7224
|
17
17
|
nkululeko/fixedsegment.py,sha256=Tb92QiuiyMsOO3WRWwuGjZGibS8hbHHCrcWAXGk7g04,2868
|
18
18
|
nkululeko/glob_conf.py,sha256=KL9YJQTHvTztxo1vr25qRRgaPnx4NTg0XrdbovKGMmw,525
|
19
|
-
nkululeko/modelrunner.py,sha256=
|
19
|
+
nkululeko/modelrunner.py,sha256=NpDgXfKkn8dOrQzhUiEfGI56Qrb1sOtWTD31II4Zgbk,11550
|
20
20
|
nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
|
21
21
|
nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
|
22
|
-
nkululeko/nkululeko.py,sha256=
|
23
|
-
nkululeko/plots.py,sha256=
|
22
|
+
nkululeko/nkululeko.py,sha256=0RMce-dOyt7ldvo5pHGTL5R7H5NPPVklhMtRmWoZh1I,1952
|
23
|
+
nkululeko/plots.py,sha256=i9VIkviBWLgncfnyK44TUMzg2Xa0_UhfL0LnMF1vHTw,27022
|
24
24
|
nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
|
25
25
|
nkululeko/resample.py,sha256=rn3-M1A-iwVGibfQNGyeYNa7briD24lIN9Szq_1uTJo,5194
|
26
|
-
nkululeko/runmanager.py,sha256=
|
27
|
-
nkululeko/scaler.py,sha256=
|
26
|
+
nkululeko/runmanager.py,sha256=2jAUsWA5A13xTwEb4M3TmGLJsAUAZB2i4K41F6AAZYo,8478
|
27
|
+
nkululeko/scaler.py,sha256=D3x4waIfTqt1vGBKd__uJslyss1kSNd9BUtj4_4eG_8,5105
|
28
28
|
nkululeko/segment.py,sha256=7UrJEwdLmh9wDL5iBwpdJyJm9dwSxidHrHt-_D2qtxw,4949
|
29
29
|
nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
|
30
30
|
nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
|
@@ -49,7 +49,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwp
|
|
49
49
|
nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
|
50
50
|
nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
|
51
51
|
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
52
|
-
nkululeko/data/dataset.py,sha256=
|
52
|
+
nkululeko/data/dataset.py,sha256=JLbBYGniUrjwxs-HtbIyhqO3Cv-ELfpmlq7jzij4dBc,41759
|
53
53
|
nkululeko/data/dataset_csv.py,sha256=AIbtB6pGk5BSQGIgfokZ7tEGFjmuOq5w2XumRSimVWs,4833
|
54
54
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
55
55
|
nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
|
@@ -63,14 +63,15 @@ nkululeko/feat_extract/feats_hubert.py,sha256=F3vrPCkx8EimJjFWYCZ7Yg9uo1G3NjYt4U
|
|
63
63
|
nkululeko/feat_extract/feats_import.py,sha256=cPi4XRuRs71npB8YGXr7rYOvkeTU_oZEl3GrGncdiqY,2222
|
64
64
|
nkululeko/feat_extract/feats_mld.py,sha256=5aRoYiGDm5ApoFntxAMQYPjEelXHHRBHZcAJR9dxaeI,1945
|
65
65
|
nkululeko/feat_extract/feats_mos.py,sha256=3UXCKe86F49yHpZMQnLfDWXx9XdmlXHOy8efoa3WaOk,4138
|
66
|
-
nkululeko/feat_extract/feats_opensmile.py,sha256=BLj5sUaBPz7vLPfNlt9LdQurSypmViqgSpPK-6aXGhQ,4029
|
66
|
+
nkululeko/feat_extract/feats_opensmile copy.py,sha256=BLj5sUaBPz7vLPfNlt9LdQurSypmViqgSpPK-6aXGhQ,4029
|
67
|
+
nkululeko/feat_extract/feats_opensmile.py,sha256=HwbGs0EaPxZ7DznQZFem8RYgyQWz02oya77uVY7KhZE,9203
|
67
68
|
nkululeko/feat_extract/feats_oxbow.py,sha256=TRoEJx5EKZiqoPoPRibHc0vkBMoZcKlGoGNq4NbyHZw,4895
|
68
69
|
nkululeko/feat_extract/feats_praat.py,sha256=jZ-XXbP3iy25QQIzA4Hrv0HxsYvJNPavoCW2FyJNKMg,3064
|
69
70
|
nkululeko/feat_extract/feats_snr.py,sha256=5uEm10d89TQPf0s-CuVpQ3ftc0bLEeuB8aGuufsjAbs,2762
|
70
71
|
nkululeko/feat_extract/feats_spectra.py,sha256=6WhFUpB0WTutg7OFMlAw9lSwVU5OBYCDcPRxaiH-Qn8,3621
|
71
72
|
nkululeko/feat_extract/feats_spkrec.py,sha256=o_6bdU4lIkj64S5Kdjf1iyuo1VASeYxE4XdxV94a8gE,4732
|
72
73
|
nkululeko/feat_extract/feats_squim.py,sha256=yJifsp9kj9iJjW_UAKr3LlvVhX5rv7el4bepn0wN2a8,4578
|
73
|
-
nkululeko/feat_extract/feats_trill.py,sha256=
|
74
|
+
nkululeko/feat_extract/feats_trill.py,sha256=VpyRgygMDIcUHBr1LriloJ_wEtFpuXmw5BuuCX1djOY,3193
|
74
75
|
nkululeko/feat_extract/feats_wav2vec2.py,sha256=q1QzMD3KbhF2SOmxdwI7CiViRmhlFRyghxN_6SmUc0E,5297
|
75
76
|
nkululeko/feat_extract/feats_wavlm.py,sha256=O9cfc39VF5aPJRRATKb37pHT4W11i2cu5O1mY9LOjIA,4755
|
76
77
|
nkululeko/feat_extract/feats_whisper.py,sha256=n3ESZtva7wshs8E8diBlQYa9xCH_P0UY1DncSrxz-FY,4508
|
@@ -88,7 +89,7 @@ nkululeko/models/model_gmm.py,sha256=mhHFNtTzHuJvqYSA0h5YhvjA--KhnN6MTU_S0G3-d1c
|
|
88
89
|
nkululeko/models/model_knn.py,sha256=ByQlHIU_fNtSCGCvsrMEoLVJ9q2hUC4edtpp5rVS1B8,600
|
89
90
|
nkululeko/models/model_knn_reg.py,sha256=kaVP1xGNgktUGuQARi7uoJ0hmdPGHDpv2ugDesYN7RU,611
|
90
91
|
nkululeko/models/model_lin_reg.py,sha256=xqvf-06LhBkjHRdyXFqcYD8ozYPoAsZfGqfNEtuFQLc,423
|
91
|
-
nkululeko/models/model_mlp.py,sha256=
|
92
|
+
nkululeko/models/model_mlp.py,sha256=E1gtBAGkrt5gUWCqyk3Qm7m_S1-SeJ8P7AzgHjKQ4J4,10739
|
92
93
|
nkululeko/models/model_mlp_regression.py,sha256=j8Y1nRHU9YJSQuBKpZb-JL-5seHGr6N5OX1biKj3Xa0,10297
|
93
94
|
nkululeko/models/model_svm.py,sha256=zP8ykLhCZTYvwSqw06XHuzq9qMBtsiYpxjUpWDAnMyA,995
|
94
95
|
nkululeko/models/model_svr.py,sha256=FEwYRdgqwgGhZdkpRnT7Ef12lklWi6GZL28PyV99xWs,726
|
@@ -102,7 +103,7 @@ nkululeko/reporting/defines.py,sha256=0vh-Tlx4fAPpk1o6mP_4x3EkIoqzYMr38IZnj-JM5z
|
|
102
103
|
nkululeko/reporting/latex_writer.py,sha256=NGwSIfd4nfslDkNUOSZSdqY_VDLA8634thyhe-vj1bY,1824
|
103
104
|
nkululeko/reporting/report.py,sha256=bYN8B66gg3IWHAyfd6uIVjpYKy3rOI6aEwgfXU0LSAY,1006
|
104
105
|
nkululeko/reporting/report_item.py,sha256=AqKD40AlZpRuHLbggn5PkH6ctGJwh9rGNBNgOvgUODg,534
|
105
|
-
nkululeko/reporting/reporter.py,sha256=
|
106
|
+
nkululeko/reporting/reporter.py,sha256=VLLlu8KhploXtvYiaqYlY2lte32aA6Ep9knUGa56NkY,20138
|
106
107
|
nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
|
107
108
|
nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
108
109
|
nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=b3t0zdpJYofKWMyKRMtMMX91xeR-k8d5pbnNaQHcsOE,1902
|
@@ -111,10 +112,10 @@ nkululeko/segmenting/seg_silero.py,sha256=ulodnvtRq5MLHDxy_RmAK4tJg6h1d-mPq-uCPF
|
|
111
112
|
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
112
113
|
nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
|
113
114
|
nkululeko/utils/stats.py,sha256=3Fyx8q8BSKYmiufT6OkRug9RATWmGrr9BaX_y8jziWo,3074
|
114
|
-
nkululeko/utils/util.py,sha256=
|
115
|
-
nkululeko-0.
|
116
|
-
nkululeko-0.
|
117
|
-
nkululeko-0.
|
118
|
-
nkululeko-0.
|
119
|
-
nkululeko-0.
|
120
|
-
nkululeko-0.
|
115
|
+
nkululeko/utils/util.py,sha256=nZJtWqzFx3Zdp6Pve_ZAbb01yRTpIsgBXnoPy1VgtRE,17356
|
116
|
+
nkululeko-0.94.0.dist-info/licenses/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
117
|
+
nkululeko-0.94.0.dist-info/METADATA,sha256=3_HyNuaXzSYp4P6BMf1yWWd3JsT6SS2Yx3XodZtK1NA,1169
|
118
|
+
nkululeko-0.94.0.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
119
|
+
nkululeko-0.94.0.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
|
120
|
+
nkululeko-0.94.0.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
121
|
+
nkululeko-0.94.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|