nkululeko 0.93.14__py3-none-any.whl → 0.93.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.93.14"
1
+ VERSION="0.93.15"
2
2
  SAMPLING_RATE = 16000
nkululeko/modelrunner.py CHANGED
@@ -68,7 +68,7 @@ class Modelrunner:
68
68
  report.plot_confmatrix(plot_name, epoch)
69
69
  else:
70
70
  # for all epochs
71
- for epoch in range(epoch_num):
71
+ for epoch_index, epoch in enumerate(range(epoch_num)):
72
72
  if only_test:
73
73
  self.model.load(self.run, epoch)
74
74
  self.util.debug(f"reusing model: {self.model.store_path}")
@@ -119,13 +119,13 @@ class Modelrunner:
119
119
  )
120
120
  break
121
121
  # After training, report the best performance and epoch
122
- best_report = reports[self.best_epoch]
122
+ last_report = reports[-1]
123
123
  # self.util.debug(f"Best score at epoch: {self.best_epoch}, UAR: {self.best_performance}") # move to reporter below
124
124
 
125
125
  if not plot_epochs:
126
126
  # Do at least one confusion matrix plot
127
- self.util.debug(f"plotting confusion matrix to {plot_name}")
128
- best_report.plot_confmatrix(plot_name, self.best_epoch)
127
+ self.util.debug(f"plotting last confusion matrix to {plot_name}")
128
+ last_report.plot_confmatrix(plot_name, epoch_index)
129
129
  return reports, epoch
130
130
 
131
131
  def _select_model(self, model_type):
@@ -4,8 +4,8 @@ from collections import OrderedDict
4
4
 
5
5
  import numpy as np
6
6
  import pandas as pd
7
- import torch
8
7
  from sklearn.metrics import recall_score
8
+ import torch
9
9
 
10
10
  import nkululeko.glob_conf as glob_conf
11
11
  from nkululeko.losses.loss_softf1loss import SoftF1Loss
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: nkululeko
3
- Version: 0.93.14
3
+ Version: 0.93.15
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=o5ER1luWQ6hCEUmTnLGYzK-uGjv9VCnzzDYq2KIxo0o,40
5
+ nkululeko/constants.py,sha256=66ewyVO87OYNVG6_B0zotZhLHPR1MXfKn6QBlVG7Gk4,40
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -16,7 +16,7 @@ nkululeko/file_checker.py,sha256=xJY0Q6w47pnmgJVK5rcAKPYBrCpV7eBT4_3YBzTx-H8,345
16
16
  nkululeko/filter_data.py,sha256=5AYDtqs_GWGr4V5CbbYQkVVgCD3kq2dpKu8rF3V87NI,7224
17
17
  nkululeko/fixedsegment.py,sha256=Tb92QiuiyMsOO3WRWwuGjZGibS8hbHHCrcWAXGk7g04,2868
18
18
  nkululeko/glob_conf.py,sha256=KL9YJQTHvTztxo1vr25qRRgaPnx4NTg0XrdbovKGMmw,525
19
- nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,11199
19
+ nkululeko/modelrunner.py,sha256=GGJPg41PyJPmT160d3p6mcvWePTeSaW_eilHCKmOKbw,11211
20
20
  nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
21
21
  nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
22
22
  nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
@@ -88,7 +88,7 @@ nkululeko/models/model_gmm.py,sha256=mhHFNtTzHuJvqYSA0h5YhvjA--KhnN6MTU_S0G3-d1c
88
88
  nkululeko/models/model_knn.py,sha256=ByQlHIU_fNtSCGCvsrMEoLVJ9q2hUC4edtpp5rVS1B8,600
89
89
  nkululeko/models/model_knn_reg.py,sha256=kaVP1xGNgktUGuQARi7uoJ0hmdPGHDpv2ugDesYN7RU,611
90
90
  nkululeko/models/model_lin_reg.py,sha256=xqvf-06LhBkjHRdyXFqcYD8ozYPoAsZfGqfNEtuFQLc,423
91
- nkululeko/models/model_mlp.py,sha256=v-ntFqXbyotA8_wGwtDICQy18IAqtGNjwitZeVeKWLU,10671
91
+ nkululeko/models/model_mlp.py,sha256=ghHg9dF9kP_m6C5FHMobmUBYJ1bE_ct77axWQKN5TUw,10671
92
92
  nkululeko/models/model_mlp_regression.py,sha256=j8Y1nRHU9YJSQuBKpZb-JL-5seHGr6N5OX1biKj3Xa0,10297
93
93
  nkululeko/models/model_svm.py,sha256=zP8ykLhCZTYvwSqw06XHuzq9qMBtsiYpxjUpWDAnMyA,995
94
94
  nkululeko/models/model_svr.py,sha256=FEwYRdgqwgGhZdkpRnT7Ef12lklWi6GZL28PyV99xWs,726
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
113
113
  nkululeko/utils/stats.py,sha256=3Fyx8q8BSKYmiufT6OkRug9RATWmGrr9BaX_y8jziWo,3074
114
114
  nkululeko/utils/util.py,sha256=J_dmqkOVAW63Q7IFUBj0BgygKzMXA0nORxY62-o8z_g,17360
115
- nkululeko-0.93.14.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.93.14.dist-info/METADATA,sha256=2cqjRLPed00dMPGG8SDMHG9k0w1gx0bItfrYsGk4rR4,1148
117
- nkululeko-0.93.14.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
118
- nkululeko-0.93.14.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.93.14.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.93.14.dist-info/RECORD,,
115
+ nkululeko-0.93.15.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.93.15.dist-info/METADATA,sha256=93FF7d1WXuyQwSPTMO-wCwHEcxEn1YiVMbm4TSObyYU,1148
117
+ nkululeko-0.93.15.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
118
+ nkululeko-0.93.15.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.93.15.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.93.15.dist-info/RECORD,,