nkululeko 0.93.12__py3-none-any.whl → 0.93.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,1491 +0,0 @@
1
- Metadata-Version: 2.2
2
- Name: nkululeko
3
- Version: 0.93.12
4
- Summary: Machine learning audio prediction experiments based on templates
5
- Home-page: https://github.com/felixbur/nkululeko
6
- Author: Felix Burkhardt
7
- Author-email: fxburk@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- Classifier: Development Status :: 3 - Alpha
12
- Classifier: Topic :: Scientific/Engineering
13
- Requires-Python: >=3.9
14
- Description-Content-Type: text/markdown
15
- License-File: LICENSE
16
- Requires-Dist: audeer
17
- Requires-Dist: audformat
18
- Requires-Dist: audinterface
19
- Requires-Dist: audiofile
20
- Requires-Dist: audiomentations
21
- Requires-Dist: audmetric
22
- Requires-Dist: audonnx
23
- Requires-Dist: confidence_intervals
24
- Requires-Dist: datasets
25
- Requires-Dist: imageio
26
- Requires-Dist: matplotlib
27
- Requires-Dist: numpy
28
- Requires-Dist: opensmile
29
- Requires-Dist: pandas
30
- Requires-Dist: praat-parselmouth
31
- Requires-Dist: scikit_learn
32
- Requires-Dist: scipy
33
- Requires-Dist: seaborn
34
- Requires-Dist: sounddevice
35
- Requires-Dist: torch
36
- Requires-Dist: torchvision
37
- Requires-Dist: transformers
38
- Requires-Dist: umap-learn
39
- Requires-Dist: xgboost
40
- Requires-Dist: pylatex
41
-
42
-
43
- - [Overview](#overview)
44
- - [Confusion matrix](#confusion-matrix)
45
- - [Epoch progression](#epoch-progression)
46
- - [Feature importance](#feature-importance)
47
- - [Feature distribution](#feature-distribution)
48
- - [t-SNE plots](#t-sne-plots)
49
- - [Data distribution](#data-distribution)
50
- - [Bias checking](#bias-checking)
51
- - [Uncertainty](#uncertainty)
52
- - [Documentation](#documentation)
53
- - [Installation](#installation)
54
- - [Usage](#usage)
55
- - [ini-file values](#ini-file-values)
56
- - [Hello World example](#hello-world-example)
57
- - [Features](#features)
58
- - [License](#license)
59
- - [Contributing](#contributing)
60
- - [Citing](#citing)
61
-
62
-
63
- ## Overview
64
- A project to detect speaker characteristics by machine learning experiments with a high-level interface.
65
-
66
- The idea is to have a framework (based on e.g. sklearn and torch) that can be used to rapidly and automatically analyse audio data and explore machine learning models based on that data.
67
-
68
- * NEW with nkululeko: [Ensemble learning](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/)
69
- * NEW: [Finetune transformer-models](http://blog.syntheticspeech.de/2024/05/29/nkululeko-how-to-finetune-a-transformer-model/)
70
- * The latest features can be seen in [the ini-file](./ini_file.md) options that are used to control Nkululeko
71
- * Below is a [Hello World example](#helloworld) that should set you up fastly, also on [Google Colab](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
72
- * [Here's a blog post on how to set up nkululeko on your computer.](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
73
- * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-2v3q3yfzk-XfNGoqLfp3ts9KfCZpfTyg). Please click the link if interested in contributing.
74
- * [Here's a slide presentation about nkululeko](docs/nkululeko.pdf)
75
- * [Here's a video presentation about nkululeko](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
76
- * [Here's the 2022 LREC article on nkululeko](http://felix.syntheticspeech.de/publications/Nkululeko_LREC.pdf)
77
-
78
- Here are some examples of typical output:
79
-
80
- ### Confusion matrix
81
- Per default, Nkululeko displays results as a confusion matrix using binning with regression.
82
-
83
- <img src="meta/images/conf_mat.png" width="500px"/>
84
-
85
- ### Epoch progression
86
- The point when overfitting starts can sometimes be seen by looking at the results per epoch:
87
-
88
- <img src="meta/images/epoch_progression.png" width="500px"/>
89
-
90
- ### Feature importance
91
- Using the *explore* interface, Nkululeko analyses the importance of acoustic features:
92
-
93
- <img src="meta/images/feat_importance.png" width="500px"/>
94
-
95
- ### Feature distribution
96
- And can show the distribution of specific features per category:
97
-
98
- <img src="meta/images/feat_dist.png" width="500px"/>
99
-
100
- ### t-SNE plots
101
- A t-SNE plot can give you an estimate of whether your acoustic features are useful at all:
102
-
103
- <img src="meta/images/tsne.png" width="500px"/>
104
-
105
- ### Data distribution
106
- Sometimes, you only want to take a look at your data:
107
-
108
- <img src="meta/images/data_plot.png" width="500px"/>
109
-
110
- ### Bias checking
111
- In some cases, you might wonder if there's bias in your data. You can try to detect this with automatically estimated speech properties by visualizing the correlation of target labels and predicted labels.
112
-
113
- <img src="meta/images/emotion-pesq.png" width="500px"/>
114
-
115
- ### Uncertainty
116
- Nkululeko estimates the uncertainty of model decisions (only for classifiers) with entropy over the class probabilities or logits per sample.
117
-
118
- <img src="meta/images/uncertainty.png" width="500px"/>
119
-
120
-
121
-
122
- ## Documentation
123
- The documentation, along with extensions of installation, usage, INI file format, and examples, can be found [nkululeko.readthedocs.io](https://nkululeko.readthedocs.io).
124
-
125
- ## Installation
126
-
127
- Create and activate a virtual Python environment and simply run
128
- ```
129
- pip install nkululeko
130
- ```
131
- We excluded some packages from the automatic installation because they might depend on your computer and some of them are only needed in special cases. So if the error
132
- ```
133
- module x not found
134
- ```
135
- appears, please try
136
- ```
137
- pip install x
138
- ```
139
- For many packages, you will need the missing torch package.
140
- If you don't have a GPU (which is probably true if you don't know what that is), please use
141
- ```
142
- pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
143
- ```
144
- else, you can use the default:
145
- ```
146
- pip install torch torchvision torchaudio
147
- ```
148
-
149
- Some functionalities require extra packages to be installed, which we didn't include automatically:
150
- * the SQUIM model needs a special torch version:
151
- ```
152
- pip uninstall -y torch torchvision torchaudio
153
- pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
154
- ```
155
- * the spotlight adapter needs spotlight:
156
- ```
157
- pip install renumics-spotlight sliceguard
158
- ```
159
-
160
-
161
- Some examples for *ini*-files (which you use to control nkululeko) are in the [tests folder](https://github.com/felixbur/nkululeko/tree/main/tests).
162
-
163
-
164
- ## Usage
165
-
166
- ### [ini-file values](./ini_file.md)
167
-
168
- Nkululeko works by specifiying
169
-
170
-
171
- Basically, you specify your experiment in an ["ini" file](./ini_file.md) (e.g. *experiment.ini*) and then call one of the Nkululeko interfaces to run the experiment like this:
172
- * ```python -m nkululeko.nkululeko --config experiment.ini```
173
-
174
- A basic configuration looks like this:
175
- ```
176
- [EXP]
177
- root = ./
178
- name = exp_emodb
179
- [DATA]
180
- databases = ['emodb']
181
- emodb = ./emodb/
182
- emodb.split_strategy = speaker_split
183
- target = emotion
184
- labels = ['anger', 'boredom', 'disgust', 'fear']
185
- [FEATS]
186
- type = ['praat']
187
- [MODEL]
188
- type = svm
189
- [EXPL]
190
- model = tree
191
- plot_tree = True
192
- ```
193
- Read the [Hello World example](#hello-world-example) for initial usage with Emo-DB dataset.
194
-
195
- Here is an overview of the interfaces/modules:
196
-
197
- All of them take *--config <my_config.ini>* as an argument.
198
-
199
- * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
200
- * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
201
- * *--config*: which experiments (INI files) to combine
202
- * *--method* (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
203
- * *--threshold*: uncertainty threshold (1.0 means no threshold)
204
- * *--weights*: weights for performance_weighted method (could be from previous UAR, ACC)
205
- * *--outfile* (optional): name of CSV file for output (default: ensemble_result.csv)
206
- * *--no_labels* (optional): indicate that no ground truth is given
207
- * **nkululeko.multidb**: do [multiple experiments](http://blog.syntheticspeech.de/2024/01/02/nkululeko-compare-several-databases/), comparing several databases cross and in itself
208
- * **nkululeko.demo**: [demo the current best model](http://blog.syntheticspeech.de/2022/01/24/nkululeko-try-out-demo-a-trained-model/) on the command line
209
- * *--list* (optional) list of input files
210
- * *--file* (optional) name of input file
211
- * *--folder* (optional) parent folder for input files
212
- * *--outfile* (optional) name of CSV file for output
213
- * **nkululeko.test**: predict a [given data set](http://blog.syntheticspeech.de/2022/09/01/nkululeko-how-to-evaluate-a-test-set-with-a-given-best-model/) with the current best model
214
- * **nkululeko.explore**: perform [data exploration](http://blog.syntheticspeech.de/2023/05/11/nkululeko-how-to-visualize-your-data-distribution/)
215
- * **nkululeko.augment**: [augment](http://blog.syntheticspeech.de/2023/03/13/nkululeko-how-to-augment-the-training-set/) the current training data
216
- * **nkululeko.aug_train**: augment the current training data [and do a training](http://blog.syntheticspeech.de/2023/03/13/nkululeko-how-to-augment-the-training-set/) including this data
217
- * **nkululeko.predict**: [predict features](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/) like SNR, MOS, arousal/valence, age/gender, with DNN models
218
- * **nkululeko.segment**: [segment a database](http://blog.syntheticspeech.de/2023/07/14/nkululeko-segmenting-a-database/) based on VAD (voice activity detection)
219
- * **nkululeko.resample**: check on all [sampling rates and change](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/) to 16kHz
220
- * **nkululeko.nkuluflag**: a convenient module to specify configuration parameters on the command line. Usage:
221
-
222
- ```bash
223
- $ python -m nkululeko.nkuluflag.py [-h] [--config CONFIG] [--data [DATA ...]] [--label [LABEL ...]] [--tuning_params [TUNING_PARAMS ...]] [--layers [LAYERS ...]] [--model MODEL] [--feat FEAT] [--set SET] [--with_os WITH_OS] [--target TARGET] [--epochs EPOCHS] [--runs RUNS] [--learning_rate LEARNING_RATE] [--drop DROP]
224
- ```
225
-
226
- There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
227
- * [Introduction](http://blog.syntheticspeech.de/2021/08/04/machine-learning-experiment-framework/)
228
- * [Nkulueko FAQ](http://blog.syntheticspeech.de/2022/07/07/nkululeko-faq/)
229
- * [How to set up your first nkululeko project](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
230
- * [Setting up a base nkululeko experiment](http://blog.syntheticspeech.de/2021/10/05/setting-up-a-base-nkululeko-experiment/)
231
- * [How to import a database](http://blog.syntheticspeech.de/2022/01/27/nkululeko-how-to-import-a-database/)
232
- * [Comparing classifiers and features](http://blog.syntheticspeech.de/2021/10/05/nkululeko-comparing-classifiers-and-features/)
233
- * [Use Praat features](http://blog.syntheticspeech.de/2022/06/27/how-to-use-selected-features-from-praat-with-nkululeko/)
234
- * [Combine feature sets](http://blog.syntheticspeech.de/2022/06/30/how-to-combine-feature-sets-with-nkululeko/)
235
- * [Classifying continuous variables](http://blog.syntheticspeech.de/2022/01/26/nkululeko-classifying-continuous-variables/)
236
- * [Try out / demo a trained model](http://blog.syntheticspeech.de/2022/01/24/nkululeko-try-out-demo-a-trained-model/)
237
- * [Perform cross-database experiments](http://blog.syntheticspeech.de/2021/10/05/nkululeko-perform-cross-database-experiments/)
238
- * [Meta parameter optimization](http://blog.syntheticspeech.de/2021/09/03/perform-optimization-with-nkululeko/)
239
- * [How to set up wav2vec embedding](http://blog.syntheticspeech.de/2021/12/03/how-to-set-up-wav2vec-embedding-for-nkululeko/)
240
- * [How to soft-label a database](http://blog.syntheticspeech.de/2022/01/24/how-to-soft-label-a-database-with-nkululeko/)
241
- * [Re-generate the progressing confusion matrix animation wit a different framerate](demos/plot_faster_anim.py)
242
- * [How to limit/filter a dataset](http://blog.syntheticspeech.de/2022/02/22/how-to-limit-a-dataset-with-nkululeko/)
243
- * [Specifying database disk location](http://blog.syntheticspeech.de/2022/02/21/specifying-database-disk-location-with-nkululeko/)
244
- * [Add dropout with MLP models](http://blog.syntheticspeech.de/2022/02/25/adding-dropout-to-mlp-models-with-nkululeko/)
245
- * [Do cross-validation](http://blog.syntheticspeech.de/2022/03/23/how-to-do-cross-validation-with-nkululeko/)
246
- * [Combine predictions per speaker](http://blog.syntheticspeech.de/2022/03/24/how-to-combine-predictions-per-speaker-with-nkululeko/)
247
- * [Run multiple experiments in one go](http://blog.syntheticspeech.de/2022/03/28/how-to-run-multiple-experiments-in-one-go-with-nkululeko/)
248
- * [Compare several MLP layer layouts with each other](http://blog.syntheticspeech.de/2022/04/11/how-to-compare-several-mlp-layer-layouts-with-each-other/)
249
- * [Import features from outside the software](http://blog.syntheticspeech.de/2022/10/18/how-to-import-features-from-outside-the-nkululeko-software/)
250
- * [Export acoustic features](http://blog.syntheticspeech.de/2024/05/30/nkululeko-export-acoustic-features/)
251
- * [Explore feature importance](http://blog.syntheticspeech.de/2023/02/20/nkululeko-show-feature-importance/)
252
- * [Plot distributions for feature values](http://blog.syntheticspeech.de/2023/02/16/nkululeko-how-to-plot-distributions-of-feature-values/)
253
- * [Show feature importance](http://blog.syntheticspeech.de/2023/02/20/nkululeko-show-feature-importance/)
254
- * [Augment the training set](http://blog.syntheticspeech.de/2023/03/13/nkululeko-how-to-augment-the-training-set/)
255
- * [Visualize clusters of acoustic features](http://blog.syntheticspeech.de/2023/04/20/nkululeko-visualize-clusters-of-your-acoustic-features/)
256
- * [Visualize your data distribution](http://blog.syntheticspeech.de/2023/05/11/nkululeko-how-to-visualize-your-data-distribution/)
257
- * [Check your dataset](http://blog.syntheticspeech.de/2023/07/11/nkululeko-check-your-dataset/)
258
- * [Segmenting a database](http://blog.syntheticspeech.de/2023/07/14/nkululeko-segmenting-a-database/)
259
- * [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
260
- * [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
261
- * [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
262
- * [Automatic generation of a latex/pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
263
- * [Inspect your data with Spotlight](http://blog.syntheticspeech.de/2023/10/31/nkululeko-inspect-your-data-with-spotlight/)
264
- * [Automatically stratify your split sets](http://blog.syntheticspeech.de/2023/11/07/nkululeko-automatically-stratify-your-split-sets/)
265
- * [re-name data column names](http://blog.syntheticspeech.de/2023/11/16/nkululeko-re-name-data-column-names/)
266
- * [Oversample the training set](http://blog.syntheticspeech.de/2023/11/16/nkululeko-oversample-the-training-set/)
267
- * [Compare several databases](http://blog.syntheticspeech.de/2024/01/02/nkululeko-compare-several-databases/)
268
- * [Tweak the target variable for database comparison](http://blog.syntheticspeech.de/2024/03/13/nkululeko-how-to-tweak-the-target-variable-for-database-comparison/)
269
- * [How to run multiple experiments in one go](http://blog.syntheticspeech.de/2022/03/28/how-to-run-multiple-experiments-in-one-go-with-nkululeko/)
270
- * [How to finetune a transformer-model](http://blog.syntheticspeech.de/2024/05/29/nkululeko-how-to-finetune-a-transformer-model/)
271
- * [Ensemble (combine) classifiers with late-fusion](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/)
272
-
273
-
274
- ### <a name="helloworld">Hello World example</a>
275
- * NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/1Up7t5Nn7VwDPCCEpTg2U7cpZ_PdoEgj-?usp=sharing), and here is the same [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
276
- * [I made a video to show you how to do this on Windows](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
277
- * Set up Python on your computer, version >= 3.8
278
- * Open a terminal/command line/console window
279
- * Test python by typing ```python```, python should start with version >3 (NOT 2!). You can leave the Python Interpreter by typing *exit()*
280
- * Create a folder on your computer for this example, let's call it `nkulu_work`
281
- * Get a copy of the [Berlin emodb in audformat](https://zenodo.org/records/7447302/files/emodb.zip?download=1) and unpack inside the folder you just created (`nkulu_work`)
282
- * Make sure the folder is called "emodb" and does contain the database files directly (not box-in-a-box)
283
- * Also, in the `nkulu_work` folder:
284
- * Create a Python environment
285
- * ```python -m venv venv```
286
- * Then, activate it:
287
- * under Linux / mac
288
- * ```source venv/bin/activate```
289
- * under Windows
290
- * ```venv\Scripts\activate.bat```
291
- * if that worked, you should see a ```(venv)``` in front of your prompt
292
- * Install the required packages in your environment
293
- * ```pip install nkululeko```
294
- * Repeat until all error messages vanish (or fix them, or try to ignore them)...
295
- * Now you should have two folders in your *nkulu_work* folder:
296
- * *emodb* and *venv*
297
- * Download a copy of the file [exp_emodb.ini](meta/demos/exp_emodb.ini) to the current working directory (```nkulu_work```)
298
- * Run the demo
299
- * ```python -m nkululeko.nkululeko --config exp_emodb.ini```
300
- * Find the results in the newly created folder exp_emodb
301
- * Inspect ```exp_emodb/images/run_0/emodb_xgb_os_0_000_cnf.png```
302
- * This is the main result of your experiment: a confusion matrix for the emodb emotional categories
303
- * Inspect and play around with the [demo configuration file](meta/demos/exp_emodb.ini) that defined your experiment, then re-run.
304
- * There are many ways to experiment with different classifiers and acoustic feature sets, [all described here](https://github.com/felixbur/nkululeko/blob/main/ini_file.md)
305
-
306
- ### Features
307
- The framework is targeted at the speech domain and supports experiments where different classifiers are combined with different feature extractors.
308
-
309
- * Classifiers: Naive Bayes, KNN, Tree, XGBoost, SVM, MLP
310
- * Feature extractors: Praat, Opensmile, openXBOW BoAW, TRILL embeddings, Wav2vec2 embeddings, audModel embeddings, ...
311
- * Feature scaling
312
- * Label encoding
313
- * Binning (continuous to categorical)
314
- * Online demo interface for trained models
315
-
316
- Here's a rough UML-like sketch of the framework (and [here's the real one done with pyreverse](meta/images/classes.png)).
317
- ![sketch](meta/images/class_diagram.png)
318
-
319
- Currently, the following linear classifiers are implemented (integrated from sklearn):
320
- * SVM, SVR, XGB, XGR, Tree, Tree_regressor, KNN, KNN_regressor, NaiveBayes, GMM
321
- and the following ANNs (artificial neural networks)
322
- * MLP (multi-layer perceptron), CNN (convolutional neural network)
323
-
324
- Here's [an animation that shows the progress of classification done with nkululeko](https://youtu.be/6Y0M382GjvM)
325
-
326
-
327
- ## License
328
- Nkululeko can be used under the [MIT license](https://choosealicense.com/licenses/mit/).
329
-
330
-
331
- ## Contributing
332
- Contributions are welcome and encouraged. To learn more about how to contribute to nkululeko, please refer to the [Contributing guidelines](./CONTRIBUTING.md).
333
-
334
- ## Citing
335
- If you use it, please mention the Nkululeko paper:
336
-
337
- > F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schuller: Nkululeko: A Tool For Rapid Speaker Characteristics Detection, Proc. Proc. LREC, 2022
338
-
339
-
340
- ```
341
- @inproceedings{Burkhardt:lrec2022,
342
- title = {Nkululeko: A Tool For Rapid Speaker Characteristics Detection},
343
- author = {Felix Burkhardt and Johannes Wagner and Hagen Wierstorf and Florian Eyben and Björn Schuller},
344
- isbn = {9791095546726},
345
- journal = {2022 Language Resources and Evaluation Conference, LREC 2022},
346
- keywords = {machine learning,speaker characteristics,tools},
347
- pages = {1925-1932},
348
- publisher = {European Language Resources Association (ELRA)},
349
- year = {2022},
350
- }
351
- ```
352
-
353
- Changelog
354
- =========
355
-
356
- Version 0.93.12
357
- ---------------
358
- * bugfix: map_continuous_to_cat crashed on empty data
359
-
360
- Version 0.93.11
361
- ---------------
362
- * bugfix: silero segmenter assigned file duration values
363
-
364
- Version 0.93.10
365
- ---------------
366
- * added nan check for imported features
367
- * added LOGO result output
368
-
369
- Version 0.93.9
370
- --------------
371
- * added manual seed to torch models
372
-
373
- Version 0.93.8
374
- --------------
375
- * fixed bugs in plot
376
- * added import_files_append=False
377
-
378
- Version 0.93.7
379
- --------------
380
- * added a safety to remove nan values after mapping
381
-
382
- Version 0.93.6
383
- --------------
384
- * added error message and hint for data.target_tables_append
385
-
386
- Version 0.93.5
387
- --------------
388
- * fixed bug in dataset loading
389
-
390
- Version 0.93.4
391
- --------------
392
- * ccc in plots now configurable
393
-
394
- Version 0.93.3
395
- --------------
396
- * bugfix in plot
397
-
398
- Version 0.93.2
399
- --------------
400
- * changed class_label in plots to actual target
401
-
402
- Version 0.93.1
403
- --------------
404
- * made explore module more robust
405
-
406
- Version 0.93.0
407
- --------------
408
- * integrated pyannote for speaker prediction for predict module
409
-
410
- Version 0.92.2
411
- --------------
412
- * added some output to automatic speaker id
413
-
414
- Version 0.92.1
415
- --------------
416
- * added a speaker plot to pyannote results
417
-
418
- Version 0.92.0
419
- --------------
420
- * added first version of automatic speaker prediction for segment module
421
-
422
- Version 0.91.3
423
- --------------
424
- * some additions for robustness
425
-
426
- Version 0.91.2
427
- --------------
428
- * making lint work by excluding constants from check
429
-
430
- Version 0.91.1
431
- --------------
432
- * minor refactoring in ensemble module
433
-
434
- Version 0.91.0
435
- --------------
436
- * fixed duration display in segmentation
437
- * added possibility to use original segmentations (without max. duration)
438
-
439
- Version 0.90.4
440
- --------------
441
- * added plot format for multidb
442
-
443
- Version 0.90.3
444
- --------------
445
- * refactorings and documentations
446
-
447
- Version 0.90.2
448
- --------------
449
- * added probability output to finetuning classification models
450
- * switched path to prob. output from "store" to "results"
451
-
452
- Version 0.90.1
453
- --------------
454
- * Add balancing for finetune and update data README
455
-
456
- Version 0.90.0
457
- --------------
458
- * augmentation can now be done without target
459
- * random splicing params configurable
460
- * made kde default for plot continous/categorical plots
461
-
462
- Version 0.89.2
463
- --------------
464
- * fix shap value calculation
465
-
466
- Version 0.89.1
467
- --------------
468
- * print and save result of feature importance
469
-
470
- Version 0.89.0
471
- --------------
472
- * added Roc plots and classification report on Debug
473
-
474
-
475
- Version 0.88.12
476
- ---------------
477
- * added n_jobs for sklearn processing
478
- * re_named num_workers n_jobs
479
-
480
- Version 0.88.11
481
- --------------
482
- * removed hack in Praat script
483
-
484
- Version 0.88.10
485
- --------------
486
- * SVM C val defaults to 1
487
- * fixed agender_agender naming bug
488
-
489
- Version 0.88.9
490
- --------------
491
- * added performance_weighted ensemble
492
-
493
- Version 0.88.8
494
- --------------
495
- * some cosmetics
496
-
497
- Version 0.88.7
498
- --------------
499
- * added use_splits for multidb
500
-
501
- Version 0.88.6
502
- --------------
503
- * added test speaker assign
504
-
505
- Version 0.88.5
506
- --------------
507
- * add a unique name to the uncertainty plot
508
- * fix error in speaker embedding (still need speechbrain < 1.0)
509
- * add get_target_name function in util
510
-
511
- Version 0.88.4
512
- --------------
513
- * added more ensemble methods, e.g. based on uncertainty
514
-
515
- Version 0.88.3
516
- --------------
517
- * fixed bug in false uncertainty estimation
518
- * changed demo live recording
519
-
520
- Version 0.88.2
521
- --------------
522
- * changed combine speaker results to show speakers not samples
523
-
524
- Version 0.88.1
525
- --------------
526
- * added obligatory scatter plot for regression
527
-
528
- Version 0.88.0
529
- --------------
530
- * added ensemble late fusion and AST features
531
-
532
- Version 0.87.0
533
- --------------
534
- * added class probability output and uncertainty analysis
535
-
536
- Version 0.86.8
537
- --------------
538
- * handle single feature sets as strings in the config
539
-
540
- Version 0.86.7
541
- --------------
542
- * handles now audformat tables where the target is in a file index
543
-
544
- Version 0.86.6
545
- --------------
546
- * now best (not last) result is shown at end
547
-
548
- Version 0.86.5
549
- --------------
550
- * fix audio path detection in data csv import
551
-
552
- Version 0.86.4
553
- --------------
554
- * add finetuning to the demo module
555
-
556
- Version 0.86.3
557
- --------------
558
- * bugfixed: nan in finetuned model and double saving
559
- * import features now get multiindex automatically
560
-
561
- Version 0.86.2
562
- --------------
563
- * plots epoch progression for finetuned models now
564
-
565
- Version 0.86.1
566
- --------------
567
- * functionality to push to hub
568
- * fixed bug that prevented wavlm finetuning
569
-
570
- Version 0.86.0
571
- --------------
572
- * added regression to finetuning
573
- * added other transformer models to finetuning
574
- * added output the train/dev features sets actually used by the model
575
-
576
- Version 0.85.2
577
- --------------
578
- * added data, and automatic task label detection
579
-
580
- Version 0.85.1
581
- --------------
582
- * fixed bug in model_finetuned that label_num was constant 2
583
-
584
- Version 0.85.0
585
- --------------
586
- * first version with finetuning wav2vec2 layers
587
-
588
- Version 0.84.1
589
- --------------
590
- * made resample independent of config file
591
-
592
- Version 0.84.0
593
- --------------
594
- * added SHAP analysis
595
- * started with finetuning
596
-
597
- Version 0.83.3
598
- --------------
599
- * fixed a naming error in trill features that prevented storage of experiment
600
-
601
- Version 0.83.2
602
- --------------
603
- * added default cuda if present and not stated
604
-
605
- Version 0.83.1
606
- --------------
607
- * add test module to nkuluflag
608
-
609
- Version 0.83.0
610
- --------------
611
- * test module now prints out reports
612
-
613
- Version 0.82.4
614
- --------------
615
- * fixed bug in wavlm
616
-
617
- Version 0.82.3
618
- --------------
619
- * fixed another audformat peculiarity to interprete time values as nanoseconds
620
-
621
- Version 0.82.2
622
- --------------
623
- * fixed audformat peculiarity that dataframes can have only one column
624
-
625
- Version 0.82.1
626
- --------------
627
- * Add more test for GC action
628
-
629
- Version 0.82.0
630
- --------------
631
- * added nkuluflag module
632
-
633
- Version 0.81.7
634
- --------------
635
- * bugfixes
636
- * added whisper feature extractor
637
-
638
- Version 0.81.6
639
- --------------
640
- * updated documentation
641
- * updated crema-d
642
- * updated tests
643
-
644
- Version 0.81.5
645
- --------------
646
- * added sex=gender for speaker mappings
647
-
648
- Version 0.81.4
649
- --------------
650
- * fixed bug in demo module
651
- * removed [MODEL] save
652
-
653
- Version 0.81.3
654
- --------------
655
- * added confidence intervals to result reporting
656
-
657
- Version 0.81.2
658
- --------------
659
- * added a parselmouth.Praat error if pitch out of range
660
- * changed file path for demo_predictor
661
-
662
- Version 0.81.1
663
- --------------
664
- * fixed bugs in demo module
665
- * made kernel for SVM/SVR configurable
666
-
667
- Version 0.81.0
668
- --------------
669
- * added test selection to test module
670
-
671
- Version 0.80.4
672
- --------------
673
- * added test-file folder to demo file lists
674
-
675
- Version 0.80.3
676
- --------------
677
- * made sounddevice use optional as Portaudio library causes difficulties
678
-
679
- Version 0.80.2
680
- --------------
681
- * fixed bug that caused clash with GPU/CPU use
682
-
683
- Version 0.80.1
684
- --------------
685
- * added support for string value in import_features
686
- + added support for multiple extra training databases when doing multi-db experiments
687
-
688
- Version 0.80.0
689
- --------------
690
- * fixed bug no feature import
691
- * add support for multiple import feature files
692
-
693
- Version 0.79.5
694
- --------------
695
- * fixed bug on demo without in- or output
696
- * fixed bug that demo with DL feature extractors did not work
697
-
698
- Version 0.79.4
699
- --------------
700
- * added functionality in demo for regression
701
-
702
- Version 0.79.3
703
- --------------
704
- * fixed bug that test module did not work
705
- * fixed bug that demo module did not work for ANNs
706
- * added csv output for demo mode and file lists
707
-
708
- Version 0.79.2
709
- --------------
710
- * fixed bug and report number of epochs for early stopping
711
-
712
- Version 0.79.1
713
- --------------
714
- * root directory does not have to end with /
715
-
716
- Version 0.79.0
717
- --------------
718
- * added extra_train for multidb experiment
719
-
720
- Version 0.78.2
721
- --------------
722
- * added transformer layer selection for wav2vec2
723
- * removed best_model and epoch progression for non-DL models
724
-
725
- Version 0.78.1
726
- --------------
727
- * added evaluation loss
728
-
729
- Version 0.78.0
730
- --------------
731
- * added 3-d scatter plots
732
- * removed epoch-plots if epoch_num=1
733
-
734
- Version 0.77.14
735
- --------------
736
- * fixed bug preventing bin scaling to work
737
-
738
- Version 0.77.13
739
- --------------
740
- * added bins scaler
741
-
742
- Version 0.77.12
743
- --------------
744
- * fixed bug with scatter plots for numeric targets
745
- * made type of numeric target distributions selectable, default "hist"
746
-
747
- Version 0.77.11
748
- --------------
749
- * added simple target distribution plots
750
-
751
- Version 0.77.10
752
- --------------
753
- * show the best and not the last result for multidb
754
-
755
- Version 0.77.9
756
- --------------
757
- * added results text for multidb
758
-
759
- Version 0.77.8
760
- --------------
761
- * added caption to multidb heatmap
762
- * renamed datasets to databases in multidb
763
-
764
- Version 0.77.7
765
- --------------
766
- * added multidb module
767
-
768
- Version 0.77.6
769
- --------------
770
- * added functions to call modules with config file path directly
771
-
772
- Version 0.77.5
773
- --------------
774
- * fixed augmentation bug for python version 10
775
-
776
- Version 0.77.4
777
- --------------
778
- * made traditional augmentations (audiomentation module) configurable
779
-
780
- Version 0.77.3
781
- --------------
782
- * added augment and train interface
783
-
784
- Version 0.77.2
785
- --------------
786
- * added models for features importance computation
787
-
788
- Version 0.77.1
789
- --------------
790
- * added permutation algorithm to compute feature importance
791
- * shifted util.py to utils
792
-
793
- Version 0.77.0
794
- --------------
795
- * added more latex report output
796
- * got splitutils from a package
797
-
798
- Version 0.76.0
799
- --------------
800
- * added possibility to aggregate feature importance models
801
-
802
- Version 0.75.0
803
- --------------
804
- * added max val for reversing
805
- * added xgb for feature importance
806
-
807
- Version 0.74.6
808
- --------------
809
- * added standard Wav2vec2 model
810
-
811
- Version 0.74.5
812
- --------------
813
- * added praat feature extractor for one sample
814
-
815
- Version 0.74.4
816
- --------------
817
- * fixed bug combining augmentations
818
-
819
- Version 0.74.3
820
- --------------
821
- * audiomentations interface changed
822
-
823
- Version 0.74.2
824
- --------------
825
- * combined augmentation methods
826
-
827
- Version 0.74.1
828
- --------------
829
- * fixed various bugs with augmentation
830
-
831
- Version 0.74.0
832
- --------------
833
- * added patience (early stopping)
834
- * added MAE loss and measure
835
-
836
- Version 0.73.0
837
- --------------
838
- * added reverse and scale arguments to target variable
839
- * also, the data store can now be csv
840
-
841
- Version 0.72.0
842
- --------------
843
- * worked over explore value counts section
844
- * added bin_reals for all columns
845
-
846
- Version 0.71.4
847
- --------------
848
- * automatic epoch reset if not ANN
849
- * scatter plots now show a regression line
850
-
851
- Version 0.71.3
852
- --------------
853
- * enabled scatter plots for all variables
854
-
855
- Version 0.71.2
856
- --------------
857
- * enabled scatter plots for continuous labels
858
-
859
- Version 0.71.1
860
- --------------
861
- * made a wav2vec default
862
- * renamed praat features, ommiting spaces
863
- * fixed plot distribution bugs
864
- * added feature plots for continuous targets
865
-
866
- Version 0.71.0
867
- --------------
868
- * added explore visuals.
869
- * all columns from databases should now be usable
870
-
871
- Version 0.70.0
872
- --------------
873
- * added imb_learn balancing of training set
874
-
875
- Version 0.69.0
876
- --------------
877
- * added CNN model and melspec extractor
878
-
879
- Version 0.68.4
880
- --------------
881
- * bugfix: got_gender was uncorrectly set
882
-
883
- Version 0.68.3
884
- --------------
885
- * Feinberg Praat scripts ignore error and log filename
886
-
887
- Version 0.68.2
888
- --------------
889
- * column names in datasets are now configurable
890
-
891
- Version 0.68.1
892
- --------------
893
- * added error message on file to praat extraction
894
-
895
- Version 0.68.0
896
- --------------
897
- * added stratification framework for split balancing
898
-
899
- Version 0.67.0
900
- --------------
901
- * added first version of spotlight integration
902
-
903
- Version 0.66.13
904
- ---------------
905
- * small changes related to github worker
906
-
907
- Version 0.66.12
908
- ---------------
909
- * fixed bug that prevented Praat features to be selected
910
-
911
- Version 0.66.11
912
- ---------------
913
- * removed torch from automatic install. depends on cpu/gpu machine
914
-
915
- Version 0.66.10
916
- ---------------
917
- * Removed print statements from feats_wav2vec2
918
-
919
- Version 0.66.9
920
- --------------
921
- * Version that should install without requiring opensmile which seems not to be supported by all Apple processors (arm CPU (Apple M1))
922
-
923
- Version 0.66.8
924
- --------------
925
- * forgot __init__.py in reporting module
926
-
927
- Version 0.66.7
928
- --------------
929
- * minor changes to experiment class
930
-
931
- Version 0.66.6
932
- --------------
933
- * minor cosmetics
934
-
935
- Version 0.66.5
936
- --------------
937
- * Latex report now with images
938
-
939
- Version 0.66.4
940
- --------------
941
- * Pypi version mixup
942
-
943
- Version 0.66.3
944
- --------------
945
- * made path to PDF output relative to experiment root
946
-
947
- Version 0.66.2
948
- --------------
949
- * enabled data-pacthes with quotes
950
- * enabled missing category labels
951
- * used tqdm for progress display
952
-
953
- Version 0.66.1
954
- --------------
955
- * start on the latex report framework
956
-
957
- Version 0.66.0
958
- --------------
959
- * added speechbrain speakerID embeddings
960
-
961
- Version 0.65.9
962
- --------------
963
- * added a filter that ensures that the labels have the same size as the features
964
-
965
- Version 0.65.8
966
- --------------
967
- * changed default behaviour of resampler to "keep original files"
968
-
969
- Version 0.65.7
970
- --------------
971
- * more databases and force wav while resampling
972
-
973
- Version 0.65.6
974
- --------------
975
- * minor catch for seaborn in plots
976
-
977
- Version 0.65.5
978
- --------------
979
- * added fill_na in plot effect size
980
-
981
- Version 0.65.4
982
- --------------
983
- * added datasets to distribution
984
- * changes in wav2vec2
985
-
986
- Version 0.65.3
987
- --------------
988
- * various bugfixes
989
-
990
- Version 0.65.2
991
- --------------
992
- * fixed bug in dataset.csv that prevented correct paths for relative files
993
- * fixed bug in export module concerning new file directory
994
-
995
- Version 0.65.1
996
- --------------
997
- * small enhancements with transformer features
998
-
999
- Version 0.65.0
1000
- --------------
1001
- * introduced export module
1002
-
1003
- Version 0.64.4
1004
- --------------
1005
- * added num_speakers for reloaded data
1006
- * re-formatted all with black
1007
-
1008
- Version 0.64.3
1009
- --------------
1010
- * added number of speakers shown after data load
1011
-
1012
- Version 0.64.2
1013
- --------------
1014
- * added __init__.py for submodules
1015
-
1016
- Version 0.64.1
1017
- --------------
1018
- * fix error on csv
1019
-
1020
- Version 0.64.0
1021
- --------------
1022
- * added bin_reals
1023
- * added statistics for effect size and correlation to plots
1024
-
1025
- Version 0.63.4
1026
- --------------
1027
- * fixed bug in split selection
1028
-
1029
- Version 0.63.3
1030
- --------------
1031
- * Introduced data.audio_path
1032
-
1033
-
1034
- Version 0.63.2
1035
- --------------
1036
- * re-introduced min and max_length for silero segmenatation
1037
-
1038
- Version 0.63.1
1039
- --------------
1040
- * fixed bug in resample
1041
-
1042
- Version 0.63.0
1043
- --------------
1044
- * added wavlm model
1045
- * added error on filename for models
1046
-
1047
- Version 0.62.1
1048
- --------------
1049
- * added min and max_length for silero segmenatation
1050
-
1051
- Version 0.62.0
1052
- --------------
1053
- * fixed segment silero bug
1054
- * added all Wav2vec2 models
1055
- * added resampler module
1056
- * added error on file for embeddings
1057
-
1058
- Version 0.61.0
1059
- --------------
1060
- * added HUBERT embeddings
1061
-
1062
- Version 0.60.0
1063
- --------------
1064
- * some bugfixes
1065
- * new package structure
1066
- * fixed wav2vec2 bugs
1067
- * removed "cross_data" strategy
1068
-
1069
-
1070
- Version 0.59.1
1071
- --------------
1072
- * bugfix, after fresh install, it seems some libraries have changed
1073
- * added no_warnings
1074
- * changed print() to util.debug()
1075
- * added progress to opensmile extract
1076
-
1077
- Version 0.59.0
1078
- --------------
1079
- * introduced SQUIM features
1080
- * added SDR predict
1081
- * added STOI predict
1082
-
1083
- Version 0.58.0
1084
- --------------
1085
- * added dominance predict
1086
- * added MOS predict
1087
- * added PESQ predict
1088
-
1089
- Version 0.57.0
1090
- --------------
1091
- * renamed autopredict predict
1092
- * added arousal autopredict
1093
- * added valence autopredict
1094
-
1095
-
1096
- Version 0.56.0
1097
- --------------
1098
- * added autopredict module
1099
- * added snr as feature extractor
1100
- * added gender autopredict
1101
- * added age autopredict
1102
- * added snr autopredict
1103
-
1104
- Version 0.55.1
1105
- --------------
1106
- * changed error message in plot class
1107
-
1108
- Version 0.55.0
1109
- --------------
1110
- * added segmentation module
1111
-
1112
- Version 0.54.0
1113
- --------------
1114
- * added audeering public age and gender model embeddings and age and gender predictions
1115
-
1116
- Version 0.53.0
1117
- --------------
1118
- * added file checks: size in bytes and voice activity detection with silero
1119
-
1120
- Version 0.52.1
1121
- --------------
1122
- * bugfix: min/max duration_of_sample was not working
1123
-
1124
- Version 0.52.0
1125
- --------------
1126
- * added flexible value distribution plots
1127
-
1128
- Version 0.51.0
1129
- --------------
1130
- * added datafilter
1131
-
1132
- Version 0.50.1
1133
- --------------
1134
- * added caller information for debug and error messages in Util
1135
-
1136
- Version 0.50.0
1137
- --------------
1138
- * removed loso and added pre-selected logo (leave-one-group-out), aka folds
1139
-
1140
- Version 0.49.1
1141
- --------------
1142
- * bugfix: samples selection for augmentation didn't work
1143
-
1144
- Version 0.49.0
1145
- --------------
1146
- * added random-splicing
1147
-
1148
- Version 0.48.1
1149
- --------------
1150
- * bugfix: database object was not loaded when dataframe was reused
1151
-
1152
- Version 0.48.0
1153
- --------------
1154
- * enabled specific feature selection for praat and opensmile features
1155
-
1156
- Version 0.47.1
1157
- --------------
1158
- * enabled feature storage format csv for opensmile features
1159
-
1160
- Version 0.47.0
1161
- --------------
1162
- * added praat speech rate features
1163
-
1164
- Version 0.46.0
1165
- --------------
1166
- * added warnings for non-existent parameters
1167
- * added sample selection for scatter plotting
1168
-
1169
- Version 0.45.4
1170
- --------------
1171
- * added version attribute to setup.cfg
1172
-
1173
- Version 0.45.4
1174
- --------------
1175
- * added __version__ attribute
1176
-
1177
-
1178
- Version 0.44.1
1179
- --------------
1180
- * bugfixing: feature importance: https://github.com/felixbur/nkululeko/issues/23
1181
- * bugfixing: loading csv database with filewise index https://github.com/felixbur/nkululeko/issues/24
1182
-
1183
- Version 0.45.2
1184
- --------------
1185
- * bugfix: sample_selection in EXPL was required wrongly
1186
-
1187
- Version 0.45.2
1188
- --------------
1189
- * added sample_selection for sample distribution plots
1190
-
1191
- Version 0.45.1
1192
- --------------
1193
- * fixed dataframe.append bug
1194
-
1195
- Version 0.45.0
1196
- --------------
1197
- * added auddim as features
1198
- * added FEATS store_format
1199
- * added device use to feat_audmodel
1200
-
1201
- Version 0.44.1
1202
- --------------
1203
- * bugfixes
1204
-
1205
- Version 0.44.0
1206
- --------------
1207
- * added scatter functions: tsne, pca, umap
1208
-
1209
- Version 0.43.7
1210
- --------------
1211
- * added clap features
1212
-
1213
- Version 0.43.6
1214
- --------------
1215
- * small bugs
1216
-
1217
-
1218
- Version 0.43.5
1219
- --------------
1220
- * because of difficulties with numba and audiomentations importing audiomentations only when augmenting
1221
-
1222
- Version 0.43.4
1223
- --------------
1224
- * added error when experiment type and predictor don't match
1225
-
1226
- Version 0.43.3
1227
- --------------
1228
- * fixed further bugs and added augmentation to the test runs
1229
-
1230
- Version 0.43.2
1231
- --------------
1232
- * fixed a bug when running continuous variable as classification problem
1233
-
1234
- Version 0.43.1
1235
- --------------
1236
- * fixed test_runs
1237
-
1238
- Version 0.43.0
1239
- --------------
1240
- * added augmentation module based on audiomentation
1241
-
1242
- Version 0.42.0
1243
- --------------
1244
- * age labels should now be detected in databases
1245
-
1246
- Version 0.41.0
1247
- --------------
1248
- * added feature tree plot
1249
-
1250
- Version 0.40.1
1251
- --------------
1252
- * fixed a bug: additional test database was not label encoded
1253
-
1254
- Version 0.40.0
1255
- --------------
1256
- * added EXPL section and first functionality
1257
- * added test module (for test databases)
1258
-
1259
- Version 0.39.0
1260
- --------------
1261
- * added feature distribution plots
1262
- * added plot format
1263
-
1264
- Version 0.38.3
1265
- --------------
1266
- * added demo mode with list argument
1267
-
1268
- Version 0.38.2
1269
- --------------
1270
- * fixed a bug concerned with "no_reuse" evaluation
1271
-
1272
- Version 0.38.1
1273
- --------------
1274
- * demo mode with file argument
1275
-
1276
- Version 0.38.0
1277
- --------------
1278
- * fixed demo mode
1279
-
1280
- Version 0.37.2
1281
- --------------
1282
- * mainly replaced pd.append with pd.concat
1283
-
1284
-
1285
- Version 0.37.1
1286
- --------------
1287
- * fixed bug preventing praat feature extraction to work
1288
-
1289
- Version 0.37.0
1290
- --------------
1291
- * fixed bug cvs import not detecting multiindex
1292
-
1293
- Version 0.36.3
1294
- --------------
1295
- * published as a pypi module
1296
-
1297
- Version 0.36.0
1298
- --------------
1299
- * added entry nkululeko.py script
1300
-
1301
-
1302
- Version 0.35.0
1303
- --------------
1304
- * fixed bug that prevented scaling (normalization)
1305
-
1306
- Version 0.34.2
1307
- --------------
1308
- * smaller bug fixed concerning the loss_string
1309
-
1310
- Version 0.34.1
1311
- --------------
1312
- * smaller bug fixes and tried Soft_f1 loss
1313
-
1314
-
1315
- Version 0.34.0
1316
- --------------
1317
- * smaller bug fixes and debug ouputs
1318
-
1319
- Version 0.33.0
1320
- --------------
1321
- * added GMM as a model type
1322
-
1323
- Version 0.32.0
1324
- --------------
1325
- * added audmodel embeddings as features
1326
-
1327
- Version 0.31.0
1328
- --------------
1329
- * added models: tree and tree_reg
1330
-
1331
- Version 0.30.0
1332
- --------------
1333
- * added models: bayes, knn and knn_reg
1334
-
1335
- Version 0.29.2
1336
- --------------
1337
- * fixed hello world example
1338
-
1339
-
1340
- Version 0.29.1
1341
- --------------
1342
- * bug fix for 0.29
1343
-
1344
-
1345
- Version 0.29.0
1346
- --------------
1347
- * added a new FeatureExtractor class to import external data
1348
-
1349
- Version 0.28.2
1350
- --------------
1351
- * removed some Pandas warnings
1352
- * added no_reuse function to database.load()
1353
-
1354
- Version 0.28.1
1355
- --------------
1356
- * with database.value_counts show only the data that is actually used
1357
-
1358
-
1359
- Version 0.28.0
1360
- --------------
1361
- * made "label_data" configuration automatic and added "label_result"
1362
-
1363
-
1364
- Version 0.27.0
1365
- --------------
1366
- * added "label_data" configuration to label data with trained model (so now there can be train, dev and test set)
1367
-
1368
- Version 0.26.1
1369
- --------------
1370
- * Fixed some bugs caused by the multitude of feature sets
1371
- * Added possibilty to distinguish between absolut or relative pathes in csv datasets
1372
-
1373
- Version 0.26.0
1374
- --------------
1375
- * added the rename_speakers funcionality to prevent identical speaker names in datasets
1376
-
1377
- Version 0.25.1
1378
- --------------
1379
- * fixed bug that no features were chosen if not selected
1380
-
1381
- Version 0.25.0
1382
- --------------
1383
- * made selectable features universal for feature sets
1384
-
1385
- Version 0.24.0
1386
- --------------
1387
- * added multiple feature sets (will simply be concatenated)
1388
-
1389
- Version 0.23.0
1390
- --------------
1391
- * added selectable features for Praat interface
1392
-
1393
- Version 0.22.0
1394
- --------------
1395
- * added David R. Feinberg's Praat features, praise also to parselmouth
1396
-
1397
- Version 0.21.0
1398
- --------------
1399
-
1400
- * Revoked 0.20.0
1401
- * Added support for only_test = True, to enable later testing of trained models with new test data
1402
-
1403
- Version 0.20.0
1404
- --------------
1405
-
1406
- * implemented reuse of trained and saved models
1407
-
1408
- Version 0.19.0
1409
- --------------
1410
-
1411
- * added "max_duration_of_sample" for datasets
1412
-
1413
-
1414
- Version 0.18.6
1415
- --------------
1416
-
1417
- * added support for learning and dropout rate as argument
1418
-
1419
-
1420
- Version 0.18.5
1421
- --------------
1422
-
1423
- * added support for epoch number as argument
1424
-
1425
- Version 0.18.4
1426
- --------------
1427
-
1428
- * added support for ANN layers as arguments
1429
-
1430
- Version 0.18.3
1431
- --------------
1432
-
1433
- * added reuse of test and train file sets
1434
- * added parameter to scale continous target values: target_divide_by
1435
-
1436
-
1437
- Version 0.18.2
1438
- --------------
1439
-
1440
- * added preference of local dataset specs to global ones
1441
-
1442
- Version 0.18.1
1443
- --------------
1444
-
1445
- * added regression value display for confusion matrices
1446
-
1447
- Version 0.18.0
1448
- --------------
1449
-
1450
- * added leave one speaker group out
1451
-
1452
- Version 0.17.2
1453
- --------------
1454
-
1455
- * fixed scaler, added robust
1456
-
1457
-
1458
-
1459
- Version 0.17.0
1460
- --------------
1461
-
1462
- * Added minimum duration for test samples
1463
-
1464
-
1465
- Version 0.16.4
1466
- --------------
1467
-
1468
- * Added possibility to combine predictions per speaker (with mean or mode function)
1469
-
1470
- Version 0.16.3
1471
- --------------
1472
-
1473
- * Added minimal sample length for databases
1474
-
1475
-
1476
- Version 0.16.2
1477
- --------------
1478
-
1479
- * Added k-fold-cross-validation for linear classifiers
1480
-
1481
- Version 0.16.1
1482
- --------------
1483
-
1484
- * Added leave-one-speaker-out for linear classifiers
1485
-
1486
-
1487
- Version 0.16.0
1488
- --------------
1489
-
1490
- * Added random sample splits
1491
-