nkululeko 0.92.1__py3-none-any.whl → 0.92.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.92.1"
1
+ VERSION="0.92.2"
2
2
  SAMPLING_RATE = 16000
nkululeko/plots.py CHANGED
@@ -333,7 +333,7 @@ class Plots:
333
333
  # one up because of the runs
334
334
  fig_dir = self.util.get_path("fig_dir") + "../"
335
335
  sns.set_style("whitegrid") # Set style for chart
336
- ax = df["speaker"].value_counts().plot(kind="pie")
336
+ ax = df["speaker"].value_counts().plot(kind="pie", autopct="%1.1f%%")
337
337
  title = f"Speaker distr. for {sample_selection} {df.shape[0]}."
338
338
  ax.set_title(title)
339
339
  fig = ax.figure
nkululeko/segment.py CHANGED
@@ -23,6 +23,8 @@ import os
23
23
 
24
24
  import pandas as pd
25
25
 
26
+ import audformat
27
+
26
28
  from nkululeko.constants import VERSION
27
29
  from nkululeko.experiment import Experiment
28
30
  import nkululeko.glob_conf as glob_conf
@@ -76,19 +78,33 @@ def main():
76
78
  f"unknown segmentation selection specifier {sample_selection},"
77
79
  " should be [all | train | test]"
78
80
  )
79
- util.debug(f"segmenting {sample_selection}: {df.shape[0]} samples with {method}")
80
- if method == "silero":
81
- from nkululeko.segmenting.seg_silero import Silero_segmenter
82
-
83
- segmenter = Silero_segmenter()
84
- df_seg = segmenter.segment_dataframe(df)
85
- elif method == "pyannote":
86
- from nkululeko.segmenting.seg_pyannote import Pyannote_segmenter
87
-
88
- segmenter = Pyannote_segmenter(config)
89
- df_seg = segmenter.segment_dataframe(df)
81
+ result_file = f"{expr.data_dir}/{segmented_file}"
82
+ if os.path.exists(result_file):
83
+ util.debug(f"reusing existing result file: {result_file}")
84
+ df_seg = audformat.utils.read_csv(result_file)
90
85
  else:
91
- util.error(f"unknown segmenter: {method}")
86
+ util.debug(
87
+ f"segmenting {sample_selection}: {df.shape[0]} samples with {method}"
88
+ )
89
+ if method == "silero":
90
+ from nkululeko.segmenting.seg_silero import Silero_segmenter
91
+
92
+ segmenter = Silero_segmenter()
93
+ df_seg = segmenter.segment_dataframe(df)
94
+ elif method == "pyannote":
95
+ from nkululeko.segmenting.seg_pyannote import Pyannote_segmenter
96
+
97
+ segmenter = Pyannote_segmenter(config)
98
+ df_seg = segmenter.segment_dataframe(df)
99
+ else:
100
+ util.error(f"unknown segmenter: {method}")
101
+ # remove encoded labels
102
+ target = util.config_val("DATA", "target", None)
103
+ if "class_label" in df_seg.columns:
104
+ df_seg = df_seg.drop(columns=[target])
105
+ df_seg = df_seg.rename(columns={"class_label": target})
106
+ # save file
107
+ df_seg.to_csv(f"{expr.data_dir}/{segmented_file}")
92
108
 
93
109
  def calc_dur(x):
94
110
  starts = x[1]
@@ -100,6 +116,11 @@ def main():
100
116
  df_seg["duration"] = df_seg.index.to_series().map(lambda x: calc_dur(x))
101
117
  num_before = df.shape[0]
102
118
  num_after = df_seg.shape[0]
119
+ util.debug(
120
+ f"saved {segmented_file} to {expr.data_dir}, {num_after} samples (was"
121
+ f" {num_before})"
122
+ )
123
+
103
124
  # plot distributions
104
125
  from nkululeko.plots import Plots
105
126
 
@@ -111,20 +132,9 @@ def main():
111
132
  df_seg, "segmented_durations", sample_selection, caption="Segmented durations"
112
133
  )
113
134
  if method == "pyannote":
135
+ util.debug(df_seg[["speaker", "duration"]].groupby(["speaker"]).sum())
114
136
  plots.plot_speakers(df_seg, sample_selection)
115
137
 
116
- print("")
117
- # remove encoded labels
118
- target = util.config_val("DATA", "target", None)
119
- if "class_label" in df_seg.columns:
120
- df_seg = df_seg.drop(columns=[target])
121
- df_seg = df_seg.rename(columns={"class_label": target})
122
- # save file
123
- df_seg.to_csv(f"{expr.data_dir}/{segmented_file}")
124
- util.debug(
125
- f"saved {segmented_file} to {expr.data_dir}, {num_after} samples (was"
126
- f" {num_before})"
127
- )
128
138
  glob_conf.report.add_item(
129
139
  ReportItem(
130
140
  "Data",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.92.1
3
+ Version: 0.92.2
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -355,6 +355,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.92.2
359
+ --------------
360
+ * added some output to automatic speaker id
361
+
358
362
  Version 0.92.1
359
363
  --------------
360
364
  * added a speaker plot to pyannote results
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=XCM_WklnS2apgRW6vmIdjyrrkWT4PRKQCPhILJsDKKM,39
5
+ nkululeko/constants.py,sha256=HBBuhT6kpIHhRMiSBkU07cszGO7kO2A8qTYrN6zH9rw,39
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -20,12 +20,12 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
20
20
  nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
21
21
  nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
22
22
  nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
23
- nkululeko/plots.py,sha256=UvAsppf9cFVifx2u0V4dgbejsp7UDeqPGKTHwa02dis,23916
23
+ nkululeko/plots.py,sha256=dK3jVwsZufqXgHwAvDYt6uDg_KYk5cfxlP1Fo8kb9HA,23935
24
24
  nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
25
25
  nkululeko/resample.py,sha256=akSAjJ3qn-O5NAyLJHVHdsK7MUZPGaZUvM2TwMSmj2M,5194
26
26
  nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
27
27
  nkululeko/scaler.py,sha256=7VOZ4sREMoQtahfETt9RyuR29Fb7PCwxlYVjBbdCVFc,4101
28
- nkululeko/segment.py,sha256=oAyXVnFt_fRc6fbrIQE1fOo2tiMF6GAY3oB_admKtT8,4545
28
+ nkululeko/segment.py,sha256=DRjC6b7SeInYgwBcDPXpTXPvXPS-J8kFQO7H095bK80,4945
29
29
  nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
30
30
  nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
31
31
  nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=XFZdhCc_LM4EmoZ5tKKaBCQLXclcNmvHwhfT_CXB98c,16723
115
- nkululeko-0.92.1.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.92.1.dist-info/METADATA,sha256=faUT2RL5nLgqu-1TRgmKLc3tEZKEO4hXG0NUWTxwiGo,41757
117
- nkululeko-0.92.1.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
118
- nkululeko-0.92.1.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.92.1.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.92.1.dist-info/RECORD,,
115
+ nkululeko-0.92.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.92.2.dist-info/METADATA,sha256=pwdxFGECc-W2WdmnXxgJz6Jy3CbvwzeHASfu7WxFK7g,41832
117
+ nkululeko-0.92.2.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
118
+ nkululeko-0.92.2.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.92.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.92.2.dist-info/RECORD,,