nkululeko 0.92.0__py3-none-any.whl → 0.92.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.92.0"
1
+ VERSION="0.92.1"
2
2
  SAMPLING_RATE = 16000
nkululeko/plots.py CHANGED
@@ -4,14 +4,14 @@ import ast
4
4
  import matplotlib.pyplot as plt
5
5
  import numpy as np
6
6
  import pandas as pd
7
- import seaborn as sns
8
7
  from scipy import stats
8
+ import seaborn as sns
9
9
  from sklearn.manifold import TSNE
10
10
 
11
11
  import nkululeko.glob_conf as glob_conf
12
- import nkululeko.utils.stats as su
13
12
  from nkululeko.reporting.defines import Header
14
13
  from nkululeko.reporting.report_item import ReportItem
14
+ import nkululeko.utils.stats as su
15
15
  from nkululeko.utils.util import Util
16
16
 
17
17
 
@@ -30,8 +30,6 @@ class Plots:
30
30
  df_speaker["samplenum"] = df_speaker.shape[0]
31
31
  df_speakers = pd.concat([df_speakers, df_speaker.head(1)])
32
32
  # plot the distribution of samples per speaker
33
- # one up because of the runs
34
- fig_dir = self.util.get_path("fig_dir") + "../"
35
33
  self.util.debug("plotting samples per speaker")
36
34
  if "gender" in df_speakers:
37
35
  filename = "samples_value_counts"
@@ -319,6 +317,31 @@ class Plots:
319
317
  img_path = f"{fig_dir}{filename}_{sample_selection}.{self.format}"
320
318
  plt.savefig(img_path)
321
319
  plt.close(fig)
320
+ self.util.debug(f"plotted durations to {img_path}")
321
+ glob_conf.report.add_item(
322
+ ReportItem(
323
+ Header.HEADER_EXPLORE,
324
+ caption,
325
+ title,
326
+ img_path,
327
+ )
328
+ )
329
+
330
+ def plot_speakers(self, df, sample_selection):
331
+ filename = "speakers"
332
+ caption = "speakers"
333
+ # one up because of the runs
334
+ fig_dir = self.util.get_path("fig_dir") + "../"
335
+ sns.set_style("whitegrid") # Set style for chart
336
+ ax = df["speaker"].value_counts().plot(kind="pie")
337
+ title = f"Speaker distr. for {sample_selection} {df.shape[0]}."
338
+ ax.set_title(title)
339
+ fig = ax.figure
340
+ # plt.tight_layout()
341
+ img_path = f"{fig_dir}{filename}_{sample_selection}.{self.format}"
342
+ plt.savefig(img_path)
343
+ plt.close(fig)
344
+ self.util.debug(f"plotted speakers to {img_path}")
322
345
  glob_conf.report.add_item(
323
346
  ReportItem(
324
347
  Header.HEADER_EXPLORE,
nkululeko/segment.py CHANGED
@@ -63,7 +63,7 @@ def main():
63
63
  # segment
64
64
  segmented_file = util.config_val("SEGMENT", "result", "segmented.csv")
65
65
 
66
- segmenter = util.config_val("SEGMENT", "method", "silero")
66
+ method = util.config_val("SEGMENT", "method", "silero")
67
67
  sample_selection = util.config_val("SEGMENT", "sample_selection", "all")
68
68
  if sample_selection == "all":
69
69
  df = pd.concat([expr.df_train, expr.df_test])
@@ -76,19 +76,19 @@ def main():
76
76
  f"unknown segmentation selection specifier {sample_selection},"
77
77
  " should be [all | train | test]"
78
78
  )
79
- util.debug(f"segmenting {sample_selection}: {df.shape[0]} samples with {segmenter}")
80
- if segmenter == "silero":
79
+ util.debug(f"segmenting {sample_selection}: {df.shape[0]} samples with {method}")
80
+ if method == "silero":
81
81
  from nkululeko.segmenting.seg_silero import Silero_segmenter
82
82
 
83
83
  segmenter = Silero_segmenter()
84
84
  df_seg = segmenter.segment_dataframe(df)
85
- elif segmenter == "pyannote":
85
+ elif method == "pyannote":
86
86
  from nkululeko.segmenting.seg_pyannote import Pyannote_segmenter
87
87
 
88
88
  segmenter = Pyannote_segmenter(config)
89
89
  df_seg = segmenter.segment_dataframe(df)
90
90
  else:
91
- util.error(f"unknown segmenter: {segmenter}")
91
+ util.error(f"unknown segmenter: {method}")
92
92
 
93
93
  def calc_dur(x):
94
94
  starts = x[1]
@@ -110,6 +110,9 @@ def main():
110
110
  plots.plot_durations(
111
111
  df_seg, "segmented_durations", sample_selection, caption="Segmented durations"
112
112
  )
113
+ if method == "pyannote":
114
+ plots.plot_speakers(df_seg, sample_selection)
115
+
113
116
  print("")
114
117
  # remove encoded labels
115
118
  target = util.config_val("DATA", "target", None)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.92.0
3
+ Version: 0.92.1
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -355,6 +355,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.92.1
359
+ --------------
360
+ * added a speaker plot to pyannote results
361
+
358
362
  Version 0.92.0
359
363
  --------------
360
364
  * added first version of automatic speaker prediction/segmentation
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=trIGnE99KWCznIwZEph-SDuz9A8bzck2v0Md4VgZzMY,39
5
+ nkululeko/constants.py,sha256=XCM_WklnS2apgRW6vmIdjyrrkWT4PRKQCPhILJsDKKM,39
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -20,12 +20,12 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
20
20
  nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
21
21
  nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
22
22
  nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
23
- nkululeko/plots.py,sha256=sR061gOsyvuh8UBYS52FINSal4CYNQgvq3B4WOSimDw,23092
23
+ nkululeko/plots.py,sha256=UvAsppf9cFVifx2u0V4dgbejsp7UDeqPGKTHwa02dis,23916
24
24
  nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
25
25
  nkululeko/resample.py,sha256=akSAjJ3qn-O5NAyLJHVHdsK7MUZPGaZUvM2TwMSmj2M,5194
26
26
  nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
27
27
  nkululeko/scaler.py,sha256=7VOZ4sREMoQtahfETt9RyuR29Fb7PCwxlYVjBbdCVFc,4101
28
- nkululeko/segment.py,sha256=CEKfvKrvq-XbciluOkgGLLe7DQO9PLSFGw8rMsFpDVQ,4476
28
+ nkululeko/segment.py,sha256=oAyXVnFt_fRc6fbrIQE1fOo2tiMF6GAY3oB_admKtT8,4545
29
29
  nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
30
30
  nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
31
31
  nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=XFZdhCc_LM4EmoZ5tKKaBCQLXclcNmvHwhfT_CXB98c,16723
115
- nkululeko-0.92.0.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.92.0.dist-info/METADATA,sha256=-So3jBO4lGif0bmb4KgDxFV4p-EyR7u1eejB8mEhotA,41682
117
- nkululeko-0.92.0.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
118
- nkululeko-0.92.0.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.92.0.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.92.0.dist-info/RECORD,,
115
+ nkululeko-0.92.1.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.92.1.dist-info/METADATA,sha256=faUT2RL5nLgqu-1TRgmKLc3tEZKEO4hXG0NUWTxwiGo,41757
117
+ nkululeko-0.92.1.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
118
+ nkululeko-0.92.1.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.92.1.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.92.1.dist-info/RECORD,,