nkululeko 0.91.1__py3-none-any.whl → 0.91.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.91.1"
1
+ VERSION="0.91.2"
2
2
  SAMPLING_RATE = 16000
@@ -216,7 +216,6 @@ def doit(config_file):
216
216
  )
217
217
 
218
218
  class Trainer(transformers.Trainer):
219
-
220
219
  def compute_loss(
221
220
  self,
222
221
  model,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.91.1
3
+ Version: 0.91.2
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -200,7 +200,7 @@ All of them take *--config <my_config.ini>* as an argument.
200
200
 
201
201
  * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
202
202
  * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
203
- * *configurations*: which experiments to combine
203
+ * *--config*: which experiments (INI files) to combine
204
204
  * *--method* (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
205
205
  * *--threshold*: uncertainty threshold (1.0 means no threshold)
206
206
  * *--weights*: weights for performance_weighted method (could be from previous UAR, ACC)
@@ -261,7 +261,7 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
261
261
  * [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
262
262
  * [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
263
263
  * [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
264
- * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
264
+ * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
265
265
  * [Inspect your data with Spotlight](http://blog.syntheticspeech.de/2023/10/31/nkululeko-inspect-your-data-with-spotlight/)
266
266
  * [Automatically stratify your split sets](http://blog.syntheticspeech.de/2023/11/07/nkululeko-automatically-stratify-your-split-sets/)
267
267
  * [re-name data column names](http://blog.syntheticspeech.de/2023/11/16/nkululeko-re-name-data-column-names/)
@@ -355,6 +355,11 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.91.2
359
+ --------------
360
+ * making lint work by excluding constants from check
361
+
362
+ Version 0.91.1
358
363
  --------------
359
364
  * minor refactoring in ensemble module
360
365
 
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=iYlIApfoK9ylYhWWe4mizk150FEYR7mV6iaGEZJ9NNU,39
5
+ nkululeko/constants.py,sha256=uB9Bp3V0Q5JBYBkSXvHN9Z7MCTQaEmZXsP4G1ESHYCg,39
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -29,7 +29,7 @@ nkululeko/segment.py,sha256=S8TZt728CADXBEVw7GTWQq42vdXkRxmL738C8V_iy3k,4324
29
29
  nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
30
30
  nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
31
31
  nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
32
- nkululeko/test_pretrain.py,sha256=jZxwnKrUKo04j2I92RiaCpbf7su-bbqGhMFS_2M7n-s,8464
32
+ nkululeko/test_pretrain.py,sha256=6FZeETlWzg9Cq_sn3BFKhfH91jW26nAIDm1bJkInNNA,8463
33
33
  nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
34
  nkululeko/augmenting/augmenter.py,sha256=TUUznEz0pe9DSMC9r7LoBckuvsJTprvypeV5-8zLn20,2846
35
35
  nkululeko/augmenting/randomsplicer.py,sha256=TKPqp8np5dvyJIAjOTvtlanatFQ9OwKxZ02QoCwZ2Jw,2802
@@ -110,9 +110,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
110
110
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
111
111
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
112
112
  nkululeko/utils/util.py,sha256=XFZdhCc_LM4EmoZ5tKKaBCQLXclcNmvHwhfT_CXB98c,16723
113
- nkululeko-0.91.1.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
114
- nkululeko-0.91.1.dist-info/METADATA,sha256=F-icPu_THEFHxMm-uAV5MALbVMLrXcO3ZuoPeo6bPwk,41417
115
- nkululeko-0.91.1.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
116
- nkululeko-0.91.1.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
117
- nkululeko-0.91.1.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
118
- nkululeko-0.91.1.dist-info/RECORD,,
113
+ nkululeko-0.91.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
114
+ nkululeko-0.91.2.dist-info/METADATA,sha256=KTs604ciAG68x_oi-YibN8652zDtfmvhBEJnxm148rU,41521
115
+ nkululeko-0.91.2.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
116
+ nkululeko-0.91.2.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
117
+ nkululeko-0.91.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
118
+ nkululeko-0.91.2.dist-info/RECORD,,