nkululeko 0.91.0__py3-none-any.whl → 0.91.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.91.0"
1
+ VERSION="0.91.2"
2
2
  SAMPLING_RATE = 16000
nkululeko/ensemble.py CHANGED
@@ -1,3 +1,4 @@
1
+ #!/usr/bin/env python3
1
2
  """
2
3
  Ensemble predictions from multiple experiments.
3
4
 
@@ -16,9 +17,6 @@ Raises:
16
17
  AssertionError: If the number of config files is less than 2 for majority voting.
17
18
  """
18
19
 
19
- #!/usr/bin/env python
20
- # -*- coding: utf-8 -*-
21
-
22
20
 
23
21
  import configparser
24
22
  import time
@@ -300,10 +298,10 @@ def ensemble_predictions(
300
298
  return ensemble_preds
301
299
 
302
300
 
303
- def main(src_dir: Path) -> None:
301
+ def main():
304
302
  parser = ArgumentParser()
305
303
  parser.add_argument(
306
- "configs",
304
+ "--config",
307
305
  nargs="+",
308
306
  help="Paths to the configuration files of the experiments to ensemble. \
309
307
  Can be INI files for Nkululeko.nkululeko or CSV files from Nkululeko.demo.",
@@ -356,7 +354,7 @@ def main(src_dir: Path) -> None:
356
354
  start = time.time()
357
355
 
358
356
  ensemble_preds = ensemble_predictions(
359
- args.configs, args.method, args.threshold, args.weights, args.no_labels
357
+ args.config, args.method, args.threshold, args.weights, args.no_labels
360
358
  )
361
359
 
362
360
  # save to csv
@@ -368,5 +366,4 @@ def main(src_dir: Path) -> None:
368
366
 
369
367
 
370
368
  if __name__ == "__main__":
371
- cwd = Path(__file__).parent
372
- main(cwd)
369
+ main()
nkululeko/segment.py CHANGED
@@ -1,5 +1,22 @@
1
- # segment.py
2
- # segment data splits
1
+ """
2
+ Segments the samples in the dataset into chunks based on voice activity detection using SILERO VAD [1].
3
+
4
+ The segmentation results are saved to a file, and the distributions of the original and
5
+ segmented durations are plotted.
6
+
7
+ The module also handles configuration options, such as the segmentation method and sample
8
+ selection, and reports the segmentation results.
9
+
10
+ Usage:
11
+ python3 -m nkululeko.segment [--config CONFIG_FILE]
12
+
13
+ Example:
14
+ nkululeko.segment --config tests/exp_androids_segment.ini
15
+
16
+ References:
17
+ [1] https://github.com/snakers4/silero-vad
18
+
19
+ """
3
20
 
4
21
  import argparse
5
22
  import configparser
@@ -216,7 +216,6 @@ def doit(config_file):
216
216
  )
217
217
 
218
218
  class Trainer(transformers.Trainer):
219
-
220
219
  def compute_loss(
221
220
  self,
222
221
  model,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.91.0
3
+ Version: 0.91.2
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -10,7 +10,7 @@ Classifier: License :: OSI Approved :: MIT License
10
10
  Classifier: Operating System :: OS Independent
11
11
  Classifier: Development Status :: 3 - Alpha
12
12
  Classifier: Topic :: Scientific/Engineering
13
- Requires-Python: >=3.6
13
+ Requires-Python: >=3.9
14
14
  Description-Content-Type: text/markdown
15
15
  License-File: LICENSE
16
16
  Requires-Dist: audeer
@@ -23,7 +23,6 @@ Requires-Dist: audonnx
23
23
  Requires-Dist: confidence-intervals
24
24
  Requires-Dist: datasets
25
25
  Requires-Dist: imageio
26
- Requires-Dist: laion-clap
27
26
  Requires-Dist: matplotlib
28
27
  Requires-Dist: numpy
29
28
  Requires-Dist: opensmile
@@ -201,7 +200,7 @@ All of them take *--config <my_config.ini>* as an argument.
201
200
 
202
201
  * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
203
202
  * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
204
- * *configurations*: which experiments to combine
203
+ * *--config*: which experiments (INI files) to combine
205
204
  * *--method* (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
206
205
  * *--threshold*: uncertainty threshold (1.0 means no threshold)
207
206
  * *--weights*: weights for performance_weighted method (could be from previous UAR, ACC)
@@ -262,7 +261,7 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
262
261
  * [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
263
262
  * [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
264
263
  * [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
265
- * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
264
+ * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
266
265
  * [Inspect your data with Spotlight](http://blog.syntheticspeech.de/2023/10/31/nkululeko-inspect-your-data-with-spotlight/)
267
266
  * [Automatically stratify your split sets](http://blog.syntheticspeech.de/2023/11/07/nkululeko-automatically-stratify-your-split-sets/)
268
267
  * [re-name data column names](http://blog.syntheticspeech.de/2023/11/16/nkululeko-re-name-data-column-names/)
@@ -356,6 +355,14 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
356
355
  Changelog
357
356
  =========
358
357
 
358
+ Version 0.91.2
359
+ --------------
360
+ * making lint work by excluding constants from check
361
+
362
+ Version 0.91.1
363
+ --------------
364
+ * minor refactoring in ensemble module
365
+
359
366
  Version 0.91.0
360
367
  --------------
361
368
  * fixed duration display in segmentation
@@ -2,12 +2,12 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=-UMUKbVCG7HZtHGjf1N3s2BVchQTrro_MuNxqPUHr3Q,39
5
+ nkululeko/constants.py,sha256=uB9Bp3V0Q5JBYBkSXvHN9Z7MCTQaEmZXsP4G1ESHYCg,39
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
9
9
  nkululeko/demo_predictor.py,sha256=lDF-xOxRdEAclOmbepAYg-BQXQdGkHfq2n74PTIoop8,4872
10
- nkululeko/ensemble.py,sha256=QONr-1VwMr2D0I7wjWxwGjtYzWf4v9DoI3C-fFnar7E,12862
10
+ nkululeko/ensemble.py,sha256=71V-rre61H3J4sh7lu-OTo4I2_g7mm_rQxwW1ARDHgY,12782
11
11
  nkululeko/experiment.py,sha256=octx5S4Y8-gAD0dXCRb6DFZwsXTYgzk06RBA3LX2SN0,31388
12
12
  nkululeko/explore.py,sha256=Y5lPPychnI-7fyP8zvwVb9P09fvprbUPOofOppuABYQ,3658
13
13
  nkululeko/export.py,sha256=U-V4acxtuL6qKt6oAsVcM5TTeWogYUJ3GU-lA6rq6d4,4336
@@ -25,11 +25,11 @@ nkululeko/predict.py,sha256=b35YOqovGb5PLDz0nDuhJGykEAPq2Y45R9lzxJZMuMU,2083
25
25
  nkululeko/resample.py,sha256=akSAjJ3qn-O5NAyLJHVHdsK7MUZPGaZUvM2TwMSmj2M,5194
26
26
  nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
27
27
  nkululeko/scaler.py,sha256=7VOZ4sREMoQtahfETt9RyuR29Fb7PCwxlYVjBbdCVFc,4101
28
- nkululeko/segment.py,sha256=5yJ3QpdAfw-lecWNiEC94iHIyC2j8FV7hjP3OmrNrYs,3784
28
+ nkululeko/segment.py,sha256=S8TZt728CADXBEVw7GTWQq42vdXkRxmL738C8V_iy3k,4324
29
29
  nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
30
30
  nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
31
31
  nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
32
- nkululeko/test_pretrain.py,sha256=jZxwnKrUKo04j2I92RiaCpbf7su-bbqGhMFS_2M7n-s,8464
32
+ nkululeko/test_pretrain.py,sha256=6FZeETlWzg9Cq_sn3BFKhfH91jW26nAIDm1bJkInNNA,8463
33
33
  nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
34
  nkululeko/augmenting/augmenter.py,sha256=TUUznEz0pe9DSMC9r7LoBckuvsJTprvypeV5-8zLn20,2846
35
35
  nkululeko/augmenting/randomsplicer.py,sha256=TKPqp8np5dvyJIAjOTvtlanatFQ9OwKxZ02QoCwZ2Jw,2802
@@ -110,9 +110,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
110
110
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
111
111
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
112
112
  nkululeko/utils/util.py,sha256=XFZdhCc_LM4EmoZ5tKKaBCQLXclcNmvHwhfT_CXB98c,16723
113
- nkululeko-0.91.0.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
114
- nkululeko-0.91.0.dist-info/METADATA,sha256=Mm26CeymZjX8L2fOThZXWM6M-my4u45hQ4aFPfDdyzc,41388
115
- nkululeko-0.91.0.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
116
- nkululeko-0.91.0.dist-info/entry_points.txt,sha256=KpQhz4HKBvYLrNooqLIc83hub76axRbYUgWzYkH3GnU,397
117
- nkululeko-0.91.0.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
118
- nkululeko-0.91.0.dist-info/RECORD,,
113
+ nkululeko-0.91.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
114
+ nkululeko-0.91.2.dist-info/METADATA,sha256=KTs604ciAG68x_oi-YibN8652zDtfmvhBEJnxm148rU,41521
115
+ nkululeko-0.91.2.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
116
+ nkululeko-0.91.2.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
117
+ nkululeko-0.91.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
118
+ nkululeko-0.91.2.dist-info/RECORD,,
@@ -1,6 +1,7 @@
1
1
  [console_scripts]
2
2
  nkululeko.augment = nkululeko.augment:main
3
3
  nkululeko.demo = nkululeko.demo:main
4
+ nkululeko.ensemble = nkululeko.ensemble:main
4
5
  nkululeko.explore = nkululeko.explore:main
5
6
  nkululeko.export = nkululeko.export:main
6
7
  nkululeko.nkululeko = nkululeko.nkululeko:main