nkululeko 0.90.0__py3-none-any.whl → 0.90.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/aug_train.py +6 -4
- nkululeko/augment.py +6 -4
- nkululeko/augmenting/augmenter.py +4 -4
- nkululeko/augmenting/randomsplicer.py +6 -6
- nkululeko/augmenting/randomsplicing.py +2 -3
- nkululeko/augmenting/resampler.py +9 -6
- nkululeko/autopredict/ap_age.py +4 -2
- nkululeko/autopredict/ap_arousal.py +4 -2
- nkululeko/autopredict/ap_dominance.py +3 -2
- nkululeko/autopredict/ap_gender.py +4 -2
- nkululeko/autopredict/ap_mos.py +5 -2
- nkululeko/autopredict/ap_pesq.py +5 -2
- nkululeko/autopredict/ap_sdr.py +5 -2
- nkululeko/autopredict/ap_snr.py +5 -2
- nkululeko/autopredict/ap_stoi.py +5 -2
- nkululeko/autopredict/ap_valence.py +4 -2
- nkululeko/autopredict/estimate_snr.py +10 -14
- nkululeko/cacheddataset.py +1 -1
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +11 -14
- nkululeko/data/dataset_csv.py +5 -3
- nkululeko/demo-ft.py +29 -0
- nkululeko/demo_feats.py +5 -4
- nkululeko/demo_predictor.py +3 -4
- nkululeko/ensemble.py +27 -28
- nkululeko/experiment.py +3 -5
- nkululeko/experiment_felix.py +728 -0
- nkululeko/explore.py +1 -0
- nkululeko/export.py +7 -5
- nkululeko/feat_extract/feats_agender.py +5 -4
- nkululeko/feat_extract/feats_agender_agender.py +7 -6
- nkululeko/feat_extract/feats_analyser.py +18 -16
- nkululeko/feat_extract/feats_ast.py +9 -8
- nkululeko/feat_extract/feats_auddim.py +3 -5
- nkululeko/feat_extract/feats_audmodel.py +2 -2
- nkululeko/feat_extract/feats_clap.py +9 -12
- nkululeko/feat_extract/feats_hubert.py +2 -3
- nkululeko/feat_extract/feats_import.py +5 -4
- nkululeko/feat_extract/feats_mld.py +3 -5
- nkululeko/feat_extract/feats_mos.py +4 -3
- nkululeko/feat_extract/feats_opensmile.py +4 -3
- nkululeko/feat_extract/feats_oxbow.py +5 -4
- nkululeko/feat_extract/feats_praat.py +4 -7
- nkululeko/feat_extract/feats_snr.py +3 -5
- nkululeko/feat_extract/feats_spectra.py +8 -9
- nkululeko/feat_extract/feats_spkrec.py +6 -11
- nkululeko/feat_extract/feats_squim.py +2 -4
- nkululeko/feat_extract/feats_trill.py +2 -5
- nkululeko/feat_extract/feats_wav2vec2.py +8 -4
- nkululeko/feat_extract/feats_wavlm.py +2 -3
- nkululeko/feat_extract/feats_whisper.py +4 -6
- nkululeko/feat_extract/featureset.py +4 -2
- nkululeko/feat_extract/feinberg_praat.py +1 -3
- nkululeko/feat_extract/transformer_feature_extractor.py +147 -0
- nkululeko/file_checker.py +3 -3
- nkululeko/filter_data.py +3 -1
- nkululeko/fixedsegment.py +83 -0
- nkululeko/models/model.py +3 -5
- nkululeko/models/model_bayes.py +1 -0
- nkululeko/models/model_cnn.py +4 -6
- nkululeko/models/model_gmm.py +13 -9
- nkululeko/models/model_knn.py +1 -0
- nkululeko/models/model_knn_reg.py +1 -0
- nkululeko/models/model_lin_reg.py +1 -0
- nkululeko/models/model_mlp.py +2 -3
- nkululeko/models/model_mlp_regression.py +1 -6
- nkululeko/models/model_svm.py +2 -2
- nkululeko/models/model_svr.py +1 -0
- nkululeko/models/model_tree.py +2 -3
- nkululeko/models/model_tree_reg.py +1 -0
- nkululeko/models/model_tuned.py +88 -41
- nkululeko/models/model_xgb.py +1 -0
- nkululeko/models/model_xgr.py +1 -0
- nkululeko/multidb.py +1 -0
- nkululeko/nkululeko.py +1 -1
- nkululeko/predict.py +4 -5
- nkululeko/reporting/defines.py +6 -8
- nkululeko/reporting/latex_writer.py +3 -3
- nkululeko/reporting/report.py +2 -2
- nkululeko/reporting/report_item.py +1 -0
- nkululeko/reporting/reporter.py +20 -19
- nkululeko/resample.py +8 -12
- nkululeko/resample_cli.py +99 -0
- nkululeko/runmanager.py +3 -1
- nkululeko/scaler.py +1 -1
- nkululeko/segment.py +6 -5
- nkululeko/segmenting/seg_inaspeechsegmenter.py +3 -3
- nkululeko/segmenting/seg_silero.py +4 -4
- nkululeko/syllable_nuclei.py +9 -22
- nkululeko/test_pretrain.py +6 -7
- nkululeko/utils/stats.py +0 -1
- nkululeko/utils/util.py +4 -5
- {nkululeko-0.90.0.dist-info → nkululeko-0.90.2.dist-info}/METADATA +11 -2
- nkululeko-0.90.2.dist-info/RECORD +119 -0
- {nkululeko-0.90.0.dist-info → nkululeko-0.90.2.dist-info}/WHEEL +1 -1
- nkululeko-0.90.0.dist-info/RECORD +0 -114
- {nkululeko-0.90.0.dist-info → nkululeko-0.90.2.dist-info}/LICENSE +0 -0
- {nkululeko-0.90.0.dist-info → nkululeko-0.90.2.dist-info}/top_level.txt +0 -0
nkululeko/segment.py
CHANGED
@@ -2,14 +2,16 @@
|
|
2
2
|
# segment data splits
|
3
3
|
|
4
4
|
import argparse
|
5
|
+
import configparser
|
5
6
|
import os
|
7
|
+
|
6
8
|
import pandas as pd
|
7
|
-
|
8
|
-
from nkululeko.experiment import Experiment
|
9
|
-
from nkululeko.utils.util import Util
|
10
|
-
from nkululeko.constants import VERSION
|
9
|
+
|
11
10
|
import nkululeko.glob_conf as glob_conf
|
11
|
+
from nkululeko.constants import VERSION
|
12
|
+
from nkululeko.experiment import Experiment
|
12
13
|
from nkululeko.reporting.report_item import ReportItem
|
14
|
+
from nkululeko.utils.util import Util
|
13
15
|
|
14
16
|
|
15
17
|
def main(src_dir):
|
@@ -75,7 +77,6 @@ def main(src_dir):
|
|
75
77
|
util.error(f"unkown segmenter: {segmenter}")
|
76
78
|
|
77
79
|
def calc_dur(x):
|
78
|
-
from datetime import datetime
|
79
80
|
|
80
81
|
starts = x[1]
|
81
82
|
ends = x[2]
|
@@ -1,11 +1,11 @@
|
|
1
|
+
import warnings
|
2
|
+
|
1
3
|
import audformat
|
2
4
|
import pandas as pd
|
5
|
+
from audformat import segmented_index
|
3
6
|
|
4
7
|
# segment the data
|
5
8
|
from inaSpeechSegmenter import Segmenter
|
6
|
-
from audformat.utils import to_filewise_index
|
7
|
-
from audformat import segmented_index
|
8
|
-
import warnings
|
9
9
|
|
10
10
|
|
11
11
|
class Ina_segmenter:
|
@@ -5,12 +5,12 @@ segment a dataset with the Silero segmenter
|
|
5
5
|
|
6
6
|
"""
|
7
7
|
|
8
|
-
import torch
|
9
|
-
import pandas as pd
|
10
|
-
from tqdm import tqdm
|
11
8
|
import audformat
|
12
|
-
|
9
|
+
import pandas as pd
|
10
|
+
import torch
|
13
11
|
from audformat import segmented_index
|
12
|
+
from tqdm import tqdm
|
13
|
+
|
14
14
|
from nkululeko.utils.util import Util
|
15
15
|
|
16
16
|
# from nkululeko.constants import SAMPLING_RATE
|
nkululeko/syllable_nuclei.py
CHANGED
@@ -62,12 +62,12 @@
|
|
62
62
|
|
63
63
|
|
64
64
|
import math
|
65
|
+
from glob import glob
|
66
|
+
|
65
67
|
import pandas as pd
|
66
68
|
import parselmouth
|
67
|
-
from tqdm import tqdm
|
68
|
-
|
69
|
-
from glob import glob
|
70
69
|
from parselmouth.praat import call
|
70
|
+
from tqdm import tqdm
|
71
71
|
|
72
72
|
|
73
73
|
def speech_rate(filename):
|
@@ -120,9 +120,7 @@ def speech_rate(filename):
|
|
120
120
|
# use total duration, not end time, to find out duration of intdur (intensity_duration)
|
121
121
|
# in order to allow nonzero starting times.
|
122
122
|
intensity_duration = call(sound_from_intensity_matrix, "Get total duration")
|
123
|
-
intensity_max = call(
|
124
|
-
sound_from_intensity_matrix, "Get maximum", 0, 0, "Parabolic"
|
125
|
-
)
|
123
|
+
intensity_max = call(sound_from_intensity_matrix, "Get maximum", 0, 0, "Parabolic")
|
126
124
|
point_process = call(
|
127
125
|
sound_from_intensity_matrix,
|
128
126
|
"To PointProcess (extrema)",
|
@@ -133,19 +131,14 @@ def speech_rate(filename):
|
|
133
131
|
)
|
134
132
|
# estimate peak positions (all peaks)
|
135
133
|
numpeaks = call(point_process, "Get number of points")
|
136
|
-
t = [
|
137
|
-
call(point_process, "Get time from index", i + 1)
|
138
|
-
for i in range(numpeaks)
|
139
|
-
]
|
134
|
+
t = [call(point_process, "Get time from index", i + 1) for i in range(numpeaks)]
|
140
135
|
|
141
136
|
# fill array with intensity values
|
142
137
|
timepeaks = []
|
143
138
|
peakcount = 0
|
144
139
|
intensities = []
|
145
140
|
for i in range(numpeaks):
|
146
|
-
value = call(
|
147
|
-
sound_from_intensity_matrix, "Get value at time", t[i], "Cubic"
|
148
|
-
)
|
141
|
+
value = call(sound_from_intensity_matrix, "Get value at time", t[i], "Cubic")
|
149
142
|
if value > threshold:
|
150
143
|
peakcount += 1
|
151
144
|
intensities.append(value)
|
@@ -161,22 +154,16 @@ def speech_rate(filename):
|
|
161
154
|
for p in range(peakcount - 1):
|
162
155
|
following = p + 1
|
163
156
|
followingtime = timepeaks[p + 1]
|
164
|
-
dip = call(
|
165
|
-
intensity, "Get minimum", currenttime, timepeaks[p + 1], "None"
|
166
|
-
)
|
157
|
+
dip = call(intensity, "Get minimum", currenttime, timepeaks[p + 1], "None")
|
167
158
|
diffint = abs(currentint - dip)
|
168
159
|
if diffint > mindip:
|
169
160
|
validpeakcount += 1
|
170
161
|
validtime.append(timepeaks[p])
|
171
162
|
currenttime = timepeaks[following]
|
172
|
-
currentint = call(
|
173
|
-
intensity, "Get value at time", timepeaks[following], "Cubic"
|
174
|
-
)
|
163
|
+
currentint = call(intensity, "Get value at time", timepeaks[following], "Cubic")
|
175
164
|
|
176
165
|
# Look for only voiced parts
|
177
|
-
pitch = sound.to_pitch_ac(
|
178
|
-
0.02, 30, 4, False, 0.03, 0.25, 0.01, 0.35, 0.25, 450
|
179
|
-
)
|
166
|
+
pitch = sound.to_pitch_ac(0.02, 30, 4, False, 0.03, 0.25, 0.01, 0.35, 0.25, 450)
|
180
167
|
voicedcount = 0
|
181
168
|
voicedpeak = []
|
182
169
|
|
nkululeko/test_pretrain.py
CHANGED
@@ -1,24 +1,23 @@
|
|
1
1
|
# test_pretrain.py
|
2
2
|
import argparse
|
3
3
|
import configparser
|
4
|
+
import json
|
4
5
|
import os.path
|
5
6
|
|
7
|
+
import audeer
|
8
|
+
import audiofile
|
9
|
+
import audmetric
|
6
10
|
import datasets
|
7
11
|
import numpy as np
|
8
12
|
import pandas as pd
|
9
13
|
import torch
|
10
14
|
import transformers
|
11
15
|
|
12
|
-
import audeer
|
13
|
-
import audiofile
|
14
|
-
import audmetric
|
15
|
-
|
16
|
-
from nkululeko.constants import VERSION
|
17
16
|
import nkululeko.experiment as exp
|
18
|
-
import nkululeko.models.finetune_model as fm
|
19
17
|
import nkululeko.glob_conf as glob_conf
|
18
|
+
import nkululeko.models.finetune_model as fm
|
19
|
+
from nkululeko.constants import VERSION
|
20
20
|
from nkululeko.utils.util import Util
|
21
|
-
import json
|
22
21
|
|
23
22
|
|
24
23
|
def doit(config_file):
|
nkululeko/utils/stats.py
CHANGED
nkululeko/utils/util.py
CHANGED
@@ -6,11 +6,10 @@ import os.path
|
|
6
6
|
import pickle
|
7
7
|
import sys
|
8
8
|
|
9
|
-
import numpy as np
|
10
|
-
import pandas as pd
|
11
|
-
|
12
9
|
import audeer
|
13
10
|
import audformat
|
11
|
+
import numpy as np
|
12
|
+
import pandas as pd
|
14
13
|
|
15
14
|
|
16
15
|
class Util:
|
@@ -156,10 +155,10 @@ class Util:
|
|
156
155
|
return f"{store}/{self.get_exp_name()}.pkl"
|
157
156
|
|
158
157
|
def get_pred_name(self):
|
159
|
-
|
158
|
+
results_dir = self.get_path("res_dir")
|
160
159
|
target = self.get_target_name()
|
161
160
|
pred_name = self.get_model_description()
|
162
|
-
return f"{
|
161
|
+
return f"{results_dir}/pred_{target}_{pred_name}.csv"
|
163
162
|
|
164
163
|
def is_categorical(self, pd_series):
|
165
164
|
"""Check if a dataframe column is categorical."""
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.90.
|
3
|
+
Version: 0.90.2
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -275,7 +275,7 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
|
|
275
275
|
|
276
276
|
|
277
277
|
### <a name="helloworld">Hello World example</a>
|
278
|
-
* NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/
|
278
|
+
* NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/1Up7t5Nn7VwDPCCEpTg2U7cpZ_PdoEgj-?usp=sharing), and here is the same [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
|
279
279
|
* [I made a video to show you how to do this on Windows](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
|
280
280
|
* Set up Python on your computer, version >= 3.8
|
281
281
|
* Open a terminal/commandline/console window
|
@@ -356,6 +356,15 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
356
356
|
Changelog
|
357
357
|
=========
|
358
358
|
|
359
|
+
Version 0.90.2
|
360
|
+
--------------
|
361
|
+
* added probability output to finetuning classification models
|
362
|
+
* switched path to prob. output from "store" to "results"
|
363
|
+
|
364
|
+
Version 0.90.1
|
365
|
+
--------------
|
366
|
+
* Add balancing for finetune and update data README
|
367
|
+
|
359
368
|
Version 0.90.0
|
360
369
|
--------------
|
361
370
|
* augmentation can now be done without target
|
@@ -0,0 +1,119 @@
|
|
1
|
+
nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
2
|
+
nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
|
3
|
+
nkululeko/augment.py,sha256=sIXRg19Uz8dWKgQv2LBGH7jbd2pgcUTh0PIQ_62B0kA,3135
|
4
|
+
nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
|
5
|
+
nkululeko/constants.py,sha256=RbyLuq3HuWP1QWBrcWXo-YcwlYf2qDk6H1ihR4_KqbY,41
|
6
|
+
nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
|
7
|
+
nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
|
8
|
+
nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
|
9
|
+
nkululeko/demo_predictor.py,sha256=lDF-xOxRdEAclOmbepAYg-BQXQdGkHfq2n74PTIoop8,4872
|
10
|
+
nkululeko/ensemble.py,sha256=QONr-1VwMr2D0I7wjWxwGjtYzWf4v9DoI3C-fFnar7E,12862
|
11
|
+
nkululeko/experiment.py,sha256=octx5S4Y8-gAD0dXCRb6DFZwsXTYgzk06RBA3LX2SN0,31388
|
12
|
+
nkululeko/experiment_felix.py,sha256=IBXtyXkQJP7IuFjZ4tCP3SAQ0g_Oqe3Pyzxz8DOeT-A,30134
|
13
|
+
nkululeko/explore.py,sha256=lrMrbM2WFJDcfaD_uJFbxpK-cGX2ZVy2QRfWMLRiXjw,3941
|
14
|
+
nkululeko/export.py,sha256=aqHnZPRv3dk69keY8HB5WJrhFl649X1PVbv_GlYmfH8,4634
|
15
|
+
nkululeko/feature_extractor.py,sha256=UnspIWz3XrNhKnBBhWZkH2bHvD-sROtrQVqB1JvkUyw,4088
|
16
|
+
nkululeko/file_checker.py,sha256=xJY0Q6w47pnmgJVK5rcAKPYBrCpV7eBT4_3YBzTx-H8,3454
|
17
|
+
nkululeko/filter_data.py,sha256=5AYDtqs_GWGr4V5CbbYQkVVgCD3kq2dpKu8rF3V87NI,7224
|
18
|
+
nkululeko/fixedsegment.py,sha256=Tb92QiuiyMsOO3WRWwuGjZGibS8hbHHCrcWAXGk7g04,2868
|
19
|
+
nkululeko/glob_conf.py,sha256=KL9YJQTHvTztxo1vr25qRRgaPnx4NTg0XrdbovKGMmw,525
|
20
|
+
nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,11199
|
21
|
+
nkululeko/multidb.py,sha256=mDh2Zj4zDbM-wZxib-r8LaiGqfAbh7oihgWBODj76kU,6753
|
22
|
+
nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
|
23
|
+
nkululeko/nkululeko.py,sha256=n4KidI4sN3LwNyZoz-q2bLBjNn8lxYDya35qws55_ys,1968
|
24
|
+
nkululeko/plots.py,sha256=p9YyN-xAtdGBKjcA305V0KOagAzG8VG6D_Ceoa9rae4,22964
|
25
|
+
nkululeko/predict.py,sha256=ObFOxIgQ8JVYZLk2h0VFt8h7lYLMy8fXLUxU6eiePZc,2381
|
26
|
+
nkululeko/resample.py,sha256=y2l7k1jKheO-ntBZio9bRFWLKGTihVFUV0fb8U69T0o,4185
|
27
|
+
nkululeko/resample_cli.py,sha256=EJnN5t13qC4e0JVO3Rah3uJd4JRE3HM8GkoKyXsE49s,3211
|
28
|
+
nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
|
29
|
+
nkululeko/scaler.py,sha256=7VOZ4sREMoQtahfETt9RyuR29Fb7PCwxlYVjBbdCVFc,4101
|
30
|
+
nkululeko/segment.py,sha256=PPB8oSs_MLdEYoWh6_q3gm4mIUqPnCeGrB7FbX2AsBs,4799
|
31
|
+
nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
|
32
|
+
nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
|
33
|
+
nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
|
34
|
+
nkululeko/test_pretrain.py,sha256=jZxwnKrUKo04j2I92RiaCpbf7su-bbqGhMFS_2M7n-s,8464
|
35
|
+
nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
36
|
+
nkululeko/augmenting/augmenter.py,sha256=TUUznEz0pe9DSMC9r7LoBckuvsJTprvypeV5-8zLn20,2846
|
37
|
+
nkululeko/augmenting/randomsplicer.py,sha256=TKPqp8np5dvyJIAjOTvtlanatFQ9OwKxZ02QoCwZ2Jw,2802
|
38
|
+
nkululeko/augmenting/randomsplicing.py,sha256=RUwYukqDUbRqs_hD2wYPL6g2nLFhjCuPVbJ6qx3VzU8,1751
|
39
|
+
nkululeko/augmenting/resampler.py,sha256=gcjyyTD6QtJK6s_xoOQpsu5adpn0uSJwHxJTHMskfOM,3541
|
40
|
+
nkululeko/autopredict/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
41
|
+
nkululeko/autopredict/ap_age.py,sha256=SaD8-WWBLjb4x2jxIsU-_uvlYxcE0YhxUOnh9PAYTiU,1097
|
42
|
+
nkululeko/autopredict/ap_arousal.py,sha256=unKN9VefJ_eesUqy1YTMSvYs1kBMQP1HBZI6cY0En6c,1026
|
43
|
+
nkululeko/autopredict/ap_dominance.py,sha256=Ltq5x0ralxU1758_e-nNKvzexiPUM66xLAm3Wo2B07c,1040
|
44
|
+
nkululeko/autopredict/ap_gender.py,sha256=b6oTqHKVwOnYh4YlKbuMflssS4HJqs_c1ayusauY_I4,1010
|
45
|
+
nkululeko/autopredict/ap_mos.py,sha256=e4hmgb0Yf1_AbC5P0CqXJIvufjhbTrqmI5goARxrY0Y,1107
|
46
|
+
nkululeko/autopredict/ap_pesq.py,sha256=mRt3Loucaoy4vJxwfuxUt0fP88bMGvkmrLCEpKEXWp0,1140
|
47
|
+
nkululeko/autopredict/ap_sdr.py,sha256=VQ2UkxOO3ipqYNNjFwKgEaGCk8IzLI5lX_2tZFLIvTY,1188
|
48
|
+
nkululeko/autopredict/ap_snr.py,sha256=AiTU8-7CMEeowmYkMO19lw1HCb1yTXC6KeulNf8gOqw,1110
|
49
|
+
nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwpcnA,1187
|
50
|
+
nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
|
51
|
+
nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
|
52
|
+
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
53
|
+
nkululeko/data/dataset.py,sha256=Hz2IOsdcESG-P3aP7r4d1xj_gIP6fyGCYOwukoQ7SM8,29321
|
54
|
+
nkululeko/data/dataset_csv.py,sha256=rPiOIy9Da0wne05kdpGHMpKMAgHy4a1dnB6At9jJuAM,4590
|
55
|
+
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
56
|
+
nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
|
57
|
+
nkululeko/feat_extract/feats_agender_agender.py,sha256=_YQv1qw--3uQfnyTQDCwlmPRnrhdMhgXbYK2yQtseW0,3464
|
58
|
+
nkululeko/feat_extract/feats_analyser.py,sha256=luTV2-yw7rk0aQPI88vvtW1GLV8cGypp7LJW1v_YBrw,13450
|
59
|
+
nkululeko/feat_extract/feats_ast.py,sha256=w62xEoLiFtU-rj6SXkqXAktmoFaXcAcAWpUyEjp8JWo,4652
|
60
|
+
nkululeko/feat_extract/feats_auddim.py,sha256=CGLp_aYhudfwoU5522vjrvjPxfZcyw593A8xLjYefV8,3134
|
61
|
+
nkululeko/feat_extract/feats_audmodel.py,sha256=OsZyB1rdcG0Fai2gAwBlbuubmWor1_-P4IDkZLqgPKE,3161
|
62
|
+
nkululeko/feat_extract/feats_clap.py,sha256=1tttpfm2SJmQgYm2u8eUVpDiDOpWdKqFChpY3ZZokNs,3395
|
63
|
+
nkululeko/feat_extract/feats_hubert.py,sha256=F3vrPCkx8EimJjFWYCZ7Yg9uo1G3NjYt4UKrGIUev8k,5172
|
64
|
+
nkululeko/feat_extract/feats_import.py,sha256=skqXq5oLJLyQbY1jlsg3VDoUt93yI1OLwbtcc44AQo4,1627
|
65
|
+
nkululeko/feat_extract/feats_mld.py,sha256=5aRoYiGDm5ApoFntxAMQYPjEelXHHRBHZcAJR9dxaeI,1945
|
66
|
+
nkululeko/feat_extract/feats_mos.py,sha256=3UXCKe86F49yHpZMQnLfDWXx9XdmlXHOy8efoa3WaOk,4138
|
67
|
+
nkululeko/feat_extract/feats_opensmile.py,sha256=BLj5sUaBPz7vLPfNlt9LdQurSypmViqgSpPK-6aXGhQ,4029
|
68
|
+
nkululeko/feat_extract/feats_oxbow.py,sha256=TRoEJx5EKZiqoPoPRibHc0vkBMoZcKlGoGNq4NbyHZw,4895
|
69
|
+
nkululeko/feat_extract/feats_praat.py,sha256=jZ-XXbP3iy25QQIzA4Hrv0HxsYvJNPavoCW2FyJNKMg,3064
|
70
|
+
nkululeko/feat_extract/feats_snr.py,sha256=5uEm10d89TQPf0s-CuVpQ3ftc0bLEeuB8aGuufsjAbs,2762
|
71
|
+
nkululeko/feat_extract/feats_spectra.py,sha256=6WhFUpB0WTutg7OFMlAw9lSwVU5OBYCDcPRxaiH-Qn8,3621
|
72
|
+
nkululeko/feat_extract/feats_spkrec.py,sha256=o_6bdU4lIkj64S5Kdjf1iyuo1VASeYxE4XdxV94a8gE,4732
|
73
|
+
nkululeko/feat_extract/feats_squim.py,sha256=yJifsp9kj9iJjW_UAKr3LlvVhX5rv7el4bepn0wN2a8,4578
|
74
|
+
nkululeko/feat_extract/feats_trill.py,sha256=TUCrh5xbfnHD2gzb9mlkMSV4aK6YXazMqsh5xJ5yzUI,3188
|
75
|
+
nkululeko/feat_extract/feats_wav2vec2.py,sha256=lINWb2rBLXuMzNKV8gKsTke8wuXIF1X4jOu-GMB3aPg,5272
|
76
|
+
nkululeko/feat_extract/feats_wavlm.py,sha256=kTuxFnymBMYP3t9yAQJjRQ5ul4AiS0O8NXq3z6B9AYs,4731
|
77
|
+
nkululeko/feat_extract/feats_whisper.py,sha256=n3ESZtva7wshs8E8diBlQYa9xCH_P0UY1DncSrxz-FY,4508
|
78
|
+
nkululeko/feat_extract/featureset.py,sha256=clcBv9rzBRW-bfw7JC_FYTjU5uUS-c0UE1XtQLYYRiE,1615
|
79
|
+
nkululeko/feat_extract/feinberg_praat.py,sha256=bgzWtQkKbgcygrzwAxDXosui1rcc38qhWuJq9GLr0z8,21308
|
80
|
+
nkululeko/feat_extract/transformer_feature_extractor.py,sha256=LaXuW-AJZ931ttLis0J5h9N3RtiiE51BnkxJR-bubfY,5837
|
81
|
+
nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
82
|
+
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
83
|
+
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
84
|
+
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
85
|
+
nkululeko/models/model.py,sha256=gfLpPBEuKYbIBayz23-6gNbvzunqBkCDzgZhAB1ypbM,12940
|
86
|
+
nkululeko/models/model_bayes.py,sha256=tQUXEsXoS6WnfapQjP78S_gxNBssTOqE78A2iG8SfLU,407
|
87
|
+
nkululeko/models/model_cnn.py,sha256=lu6ZSGqJBL69PdrgwwgzjGmu_DaBaiATkz6oVqQpKhc,10498
|
88
|
+
nkululeko/models/model_gmm.py,sha256=mhHFNtTzHuJvqYSA0h5YhvjA--KhnN6MTU_S0G3-d1c,1332
|
89
|
+
nkululeko/models/model_knn.py,sha256=ByQlHIU_fNtSCGCvsrMEoLVJ9q2hUC4edtpp5rVS1B8,600
|
90
|
+
nkululeko/models/model_knn_reg.py,sha256=kaVP1xGNgktUGuQARi7uoJ0hmdPGHDpv2ugDesYN7RU,611
|
91
|
+
nkululeko/models/model_lin_reg.py,sha256=xqvf-06LhBkjHRdyXFqcYD8ozYPoAsZfGqfNEtuFQLc,423
|
92
|
+
nkululeko/models/model_mlp.py,sha256=lnKd8BP7r3cWbcw48UJhge62_vDb2Gqivi8G33aKscg,10477
|
93
|
+
nkululeko/models/model_mlp_regression.py,sha256=ErwMWj5PPbLnFS9SzAuub-woy_sLCHuaiam5P9gDDGY,10103
|
94
|
+
nkululeko/models/model_svm.py,sha256=zP8ykLhCZTYvwSqw06XHuzq9qMBtsiYpxjUpWDAnMyA,995
|
95
|
+
nkululeko/models/model_svr.py,sha256=FEwYRdgqwgGhZdkpRnT7Ef12lklWi6GZL28PyV99xWs,726
|
96
|
+
nkululeko/models/model_tree.py,sha256=6L3PD3aIiiQz1RPWS6z3Edx4f0gnR7AOfBKOJzf0BNU,433
|
97
|
+
nkululeko/models/model_tree_reg.py,sha256=IMaQpNImoRqP8Biw1CsJevxpV_PVpKblsKtYlMW5d_U,429
|
98
|
+
nkululeko/models/model_tuned.py,sha256=VuRyNqw3XTpQ2eHsWOJN8X-V98AN8Wqiq7UgwT5BQRU,23763
|
99
|
+
nkululeko/models/model_xgb.py,sha256=ytBaSHZH8r7VvRYdmrBrQnzRM6V4HyCJ8O-v20J8G_g,448
|
100
|
+
nkululeko/models/model_xgr.py,sha256=H01FJCRgmX2unvambMs5TTCS9sI6VDB9ip9G6rVGt2c,419
|
101
|
+
nkululeko/reporting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
102
|
+
nkululeko/reporting/defines.py,sha256=0vh-Tlx4fAPpk1o6mP_4x3EkIoqzYMr38IZnj-JM5z4,641
|
103
|
+
nkululeko/reporting/latex_writer.py,sha256=NGwSIfd4nfslDkNUOSZSdqY_VDLA8634thyhe-vj1bY,1824
|
104
|
+
nkululeko/reporting/report.py,sha256=bYN8B66gg3IWHAyfd6uIVjpYKy3rOI6aEwgfXU0LSAY,1006
|
105
|
+
nkululeko/reporting/report_item.py,sha256=AqKD40AlZpRuHLbggn5PkH6ctGJwh9rGNBNgOvgUODg,534
|
106
|
+
nkululeko/reporting/reporter.py,sha256=4OlYZAParkfJKO_aAyxqVpLc21zxZ-jDhtJKIMeUssI,20151
|
107
|
+
nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
|
108
|
+
nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
109
|
+
nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=b3t0zdpJYofKWMyKRMtMMX91xeR-k8d5pbnNaQHcsOE,1902
|
110
|
+
nkululeko/segmenting/seg_silero.py,sha256=CnhjKGTW5OXf-bmw4YsSJeN2yUwkY5m3xnulM_PYCW0,3256
|
111
|
+
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
112
|
+
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
113
|
+
nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
|
114
|
+
nkululeko/utils/util.py,sha256=XFZdhCc_LM4EmoZ5tKKaBCQLXclcNmvHwhfT_CXB98c,16723
|
115
|
+
nkululeko-0.90.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
116
|
+
nkululeko-0.90.2.dist-info/METADATA,sha256=rJnGf71UEIyv0OBiNxrfu0l1e6o83v8q_UlIlmhtE_0,41113
|
117
|
+
nkululeko-0.90.2.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
118
|
+
nkululeko-0.90.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
119
|
+
nkululeko-0.90.2.dist-info/RECORD,,
|
@@ -1,114 +0,0 @@
|
|
1
|
-
nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
2
|
-
nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
|
3
|
-
nkululeko/augment.py,sha256=xNeOR22sXHD5mxv0SEe6kvgEXX0RtiUL4BK-m-BDfcM,3133
|
4
|
-
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
5
|
-
nkululeko/constants.py,sha256=t11gtE4sZM7oZrRSZhmVhIKwQAI83AN0cEZRPXkw5cs,39
|
6
|
-
nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
|
7
|
-
nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
|
8
|
-
nkululeko/demo_predictor.py,sha256=zs1bjhpnKuNCPLJeiyDm19ME1NEDOQT3QNeyVKJq9Yc,4882
|
9
|
-
nkululeko/ensemble.py,sha256=MayHpngGH_FTvSxUsH3NdxJd6WBAosGRFQeQ7cMjIco,12922
|
10
|
-
nkululeko/experiment.py,sha256=BXUmJrJn17W-umYh4O0Jt6ZZzr2u_VDL7Lq7fPEEVMQ,31390
|
11
|
-
nkululeko/explore.py,sha256=AbTVDmuDIaLfALQGvDW1yndcw2ikaEVEZ_fJVuUS070,3940
|
12
|
-
nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
|
13
|
-
nkululeko/feature_extractor.py,sha256=UnspIWz3XrNhKnBBhWZkH2bHvD-sROtrQVqB1JvkUyw,4088
|
14
|
-
nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,3474
|
15
|
-
nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
|
16
|
-
nkululeko/glob_conf.py,sha256=KL9YJQTHvTztxo1vr25qRRgaPnx4NTg0XrdbovKGMmw,525
|
17
|
-
nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,11199
|
18
|
-
nkululeko/multidb.py,sha256=CCjmVsZyvydgOztFlaeBvOJH8nsvU-sPQdFAw8-q0U4,6752
|
19
|
-
nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
|
20
|
-
nkululeko/nkululeko.py,sha256=Kn3s2E3yyH8cJ7z6lkMxrnqtCxTu7-qfe9Zr_ONTD5g,1968
|
21
|
-
nkululeko/plots.py,sha256=p9YyN-xAtdGBKjcA305V0KOagAzG8VG6D_Ceoa9rae4,22964
|
22
|
-
nkululeko/predict.py,sha256=sF091sSSLnEWcISx9ZcULLie3tY5XeFsQJd6b3vrxFg,2409
|
23
|
-
nkululeko/resample.py,sha256=2d9eao_0sLrGZ_KSl8OVKsPor3BkFrlmMhrpB9WelIs,4267
|
24
|
-
nkululeko/runmanager.py,sha256=xvxL5a9d3jtGFqx0Z3nyyxowA368uNyP0ZitO8kxIIE,7581
|
25
|
-
nkululeko/scaler.py,sha256=4nkIqoajkIkuTPK0Z02ifMN_awl6fP_i-GBYdoGYgGM,4101
|
26
|
-
nkululeko/segment.py,sha256=YLKckX44tbvTb3LrdgYw9X4guzuF27sutl92z9DkpZU,4835
|
27
|
-
nkululeko/syllable_nuclei.py,sha256=Sky-C__MeUDaxqHnDl2TGLLYOYvsahD35TUjWGeG31k,10047
|
28
|
-
nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
|
29
|
-
nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
|
30
|
-
nkululeko/test_pretrain.py,sha256=ZWl-bR6nmeSmXkGAIE6zyfQEjN8Zg0rIxfaS-O6Zbas,8465
|
31
|
-
nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
32
|
-
nkululeko/augmenting/augmenter.py,sha256=XAt0dpmlnKxqyysqCgV3rcz-pRIvOz7rU7dmGDCVAzs,2905
|
33
|
-
nkululeko/augmenting/randomsplicer.py,sha256=jmn4uZc2O_-A_O-GXz7lh0rHR6-2sD9eNG0vwgtRd2w,2861
|
34
|
-
nkululeko/augmenting/randomsplicing.py,sha256=ldym9vZNsZIU5BAAaJVaOmAgmVHNs4a5i5K3bW-WAQU,1791
|
35
|
-
nkululeko/augmenting/resampler.py,sha256=nOBsiQpX6p4jXsP7x6wak78F3B5YYYRmC_iHX8iuOXs,3542
|
36
|
-
nkululeko/autopredict/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
37
|
-
nkululeko/autopredict/ap_age.py,sha256=2Wn5E-Jd49sTn40WqaMcYtUEl4zEq3OY75XmjOpdxsA,1095
|
38
|
-
nkululeko/autopredict/ap_arousal.py,sha256=ymt0diu4v1osw3VxJbSglsVKDAJYRzebQ2TTfFMKKxk,1024
|
39
|
-
nkululeko/autopredict/ap_dominance.py,sha256=CIMjbHpYfJBV_F2y0Hen5U7WastuArDOkBmXY437efs,1039
|
40
|
-
nkululeko/autopredict/ap_gender.py,sha256=gVCMYHpcVp56xWIeI4HA0MJLLINRgvzrKC_wladnbiE,1008
|
41
|
-
nkululeko/autopredict/ap_mos.py,sha256=tmFBIKO0lW19fciH9syLnOLI699I_WU0yn1axdo6iEw,1104
|
42
|
-
nkululeko/autopredict/ap_pesq.py,sha256=3Zvl47jyCLv7NXwbaDlOhltVcpskcHoU8CcjCJWGkMc,1137
|
43
|
-
nkululeko/autopredict/ap_sdr.py,sha256=qpgvJGl0NYMa8o7zHS4qU4dfY1Ey_R1p-0T8BnX3uNs,1185
|
44
|
-
nkululeko/autopredict/ap_snr.py,sha256=xHb7mmGfa4wF1r0GK7dIZ1d9m4cEz0LcpK0n3sLF9pQ,1107
|
45
|
-
nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvdLRA,1184
|
46
|
-
nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
|
47
|
-
nkululeko/autopredict/estimate_snr.py,sha256=S-bpS0xFkwWc4Ch75UrjbS8y538lQ0U3g_iLRFXureY,5048
|
48
|
-
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
49
|
-
nkululeko/data/dataset.py,sha256=QqU1YoBQk41g3MV8bc0iW1YN_gMHDizuG-cjmSq0d_o,29455
|
50
|
-
nkululeko/data/dataset_csv.py,sha256=UGEpi__eT2KFS6Fop6N4HkMrzO-u5VP71gt44kwZavo,4588
|
51
|
-
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
52
|
-
nkululeko/feat_extract/feats_agender.py,sha256=tMK3_qs8adylNNSR0CS1RjU9RxmpumLqmuyzmc2ZYjA,3184
|
53
|
-
nkululeko/feat_extract/feats_agender_agender.py,sha256=19NoRT0KJ8WoZ3EabTYexXymD7bDy58-H20jYmdqjD0,3498
|
54
|
-
nkululeko/feat_extract/feats_analyser.py,sha256=rSsN6kcDUv64DaTl2DvReXF3_g7CtSwiPKgMzbJPqVI,13516
|
55
|
-
nkululeko/feat_extract/feats_ast.py,sha256=ycJn5eSVOxcEpmeHVk0FPB8q5XiTC8VSKz61L9n0Wa4,4638
|
56
|
-
nkululeko/feat_extract/feats_auddim.py,sha256=ulP_o4SGeQDFTs8YYCGKgccARAo6-wcjPK6-hhGjmn8,3155
|
57
|
-
nkululeko/feat_extract/feats_audmodel.py,sha256=aRGTBDKdYaTT_9xDaFZqpuyPhzxSNN_3b1PJDUHtYW4,3180
|
58
|
-
nkululeko/feat_extract/feats_clap.py,sha256=nR6eEIRdsMHcfmD1bNtt5WfDvkxKjvEbukSSrXHm-HU,3489
|
59
|
-
nkululeko/feat_extract/feats_hubert.py,sha256=cLoUzSLjSYBkQnftjacSL7ES3O7Ysh_KrPYvZtLX_TU,5196
|
60
|
-
nkululeko/feat_extract/feats_import.py,sha256=WiU5lCkJsmFNTDyPV0qIh8mJssa6bpgP7AYw_ClKfWM,1674
|
61
|
-
nkululeko/feat_extract/feats_mld.py,sha256=Vvu7GZOkn7Vda8eIOXqHjg78zegkFe3vTUaCXyVM0eA,2021
|
62
|
-
nkululeko/feat_extract/feats_mos.py,sha256=KXNt7QYEfxkvr6UyVhig2aWQBaIvovlrR4gPuP03gmo,4174
|
63
|
-
nkululeko/feat_extract/feats_opensmile.py,sha256=oP5ZWuddPN3_Sa59uyVJisCBd6e2By-IZZ9gVo7NtpE,4038
|
64
|
-
nkululeko/feat_extract/feats_oxbow.py,sha256=djPH5k_pBzTV7yaY0eD4qVmYAnKoDu3_Cbaypx_V4vM,4932
|
65
|
-
nkululeko/feat_extract/feats_praat.py,sha256=kZrS6srzH7WoWEd2prp1Dxw6g9JklFQGTNq5zzPpHzg,3105
|
66
|
-
nkululeko/feat_extract/feats_snr.py,sha256=9dqZ-4RpK98iJEssM3ttozNd18LWlZYM_QVXvp5xDcs,2829
|
67
|
-
nkululeko/feat_extract/feats_spectra.py,sha256=5Pex8awIQC3cjQRHSu4NQFmg4quamG0RL3V3Yd0pJHs,3670
|
68
|
-
nkululeko/feat_extract/feats_spkrec.py,sha256=j_-h2NfLa3qes6vOFrNiIfPc5HmAxDpMpMlw5QqSBAM,4813
|
69
|
-
nkululeko/feat_extract/feats_squim.py,sha256=Y31YmDmscuG0YozvxyBZIutO3id8t7IZJWCfKucw-6M,4617
|
70
|
-
nkululeko/feat_extract/feats_trill.py,sha256=K2ahhdpwpjgg3WZS1POg3UMP2U44i8cLZZvn5Rq7fUI,3228
|
71
|
-
nkululeko/feat_extract/feats_wav2vec2.py,sha256=XyxD4NcrF4VFWSeHkXCKWdEOdr8VMzgVUz8N4mwhdyo,5248
|
72
|
-
nkululeko/feat_extract/feats_wavlm.py,sha256=O9cfc39VF5aPJRRATKb37pHT4W11i2cu5O1mY9LOjIA,4755
|
73
|
-
nkululeko/feat_extract/feats_whisper.py,sha256=0N7Vj65OVi2PNoB_NrDjWT5lP6xZNKxFOZZIoxkJvcA,4533
|
74
|
-
nkululeko/feat_extract/featureset.py,sha256=WV4Lm2VXNZlEDOUaS2e3KyId-LP8bOX0jnhWnRtJqfY,1613
|
75
|
-
nkululeko/feat_extract/feinberg_praat.py,sha256=_8MwVikn0vjcyv1ygjScfjIJijOr_IN-o2ZQW1VVZtg,21310
|
76
|
-
nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
77
|
-
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
78
|
-
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
79
|
-
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
80
|
-
nkululeko/models/model.py,sha256=LpoJOj1LEFrxpK8WQOfusPBeQfBUnPtAANOKBJoQ8Iw,13010
|
81
|
-
nkululeko/models/model_bayes.py,sha256=WJFZ8wFKwWATz6MhmjeZIi1Pal1viU549WL_PjXDSy8,406
|
82
|
-
nkululeko/models/model_cnn.py,sha256=-VTKi9aiI5ubn7-kTQCFkgh1CpPOYEiiHvlvP_zsgAQ,10573
|
83
|
-
nkululeko/models/model_gmm.py,sha256=m1ONBql-T0La8Cv0awB7lPUG-kgbygoWmbuqzDzmj-Y,1337
|
84
|
-
nkululeko/models/model_knn.py,sha256=KlnrJfwiVnmXZrAaYGFrKA2f5sznvTzSJQ8-5etOP0k,599
|
85
|
-
nkululeko/models/model_knn_reg.py,sha256=j7YFfVm6xOR2d9yBYdQiwwqYfqkX0JynX_qLCvkr1fk,610
|
86
|
-
nkululeko/models/model_lin_reg.py,sha256=0D7mSnSwK82lNWDMwHYRyq3FmGa6y-DHDGg4qUe85q4,422
|
87
|
-
nkululeko/models/model_mlp.py,sha256=CaR0PCRBcdCo_hhC5r9Q6IbVIApvtoRVrUdZsgzbx1M,10516
|
88
|
-
nkululeko/models/model_mlp_regression.py,sha256=YMHMWRlWL6iL8HdYe6rTAoAW6GwHBx3PDvysCZYj5tQ,10186
|
89
|
-
nkululeko/models/model_svm.py,sha256=AzWksBRbIdpUuMbDnAh_YAXebewR5POj9AkB9VC40pI,1010
|
90
|
-
nkululeko/models/model_svr.py,sha256=_YZeksqB3eBENGlg3g9RwYFlk9rQQ-XCeNBKLlGGVoE,725
|
91
|
-
nkululeko/models/model_tree.py,sha256=KScDTGgkOePTZEcereB7bxQ47wIKhYI-xhTKCU4cKDk,454
|
92
|
-
nkululeko/models/model_tree_reg.py,sha256=IgQcPTE-304HQLYSKPF8Z4ot_Ur9dH01fZjS0nXke_M,428
|
93
|
-
nkululeko/models/model_tuned.py,sha256=vmNBkqvEH-4nnhY1REXDA9kA4vpZJzeRmGJFq7E3bLM,21340
|
94
|
-
nkululeko/models/model_xgb.py,sha256=Thgx5ESdIok4v72mKh4plxpo4smGcKALWNCJTDScY0M,447
|
95
|
-
nkululeko/models/model_xgr.py,sha256=aGBtNGLWjOE_2rICGYGFxmT8DtnHYsIl1lIpMtghHsY,418
|
96
|
-
nkululeko/reporting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
97
|
-
nkululeko/reporting/defines.py,sha256=IsY1YgKRMaABpylVKjBJgJ5bNCEbGCVA_E6pivraqSU,648
|
98
|
-
nkululeko/reporting/latex_writer.py,sha256=qiCRSmB4KOD_za4oHu5x-PhwjZohzfo8wecMOwlXZwc,1886
|
99
|
-
nkululeko/reporting/report.py,sha256=W0rcigDdjBvxZQ3pZja_gvToILYvaZ1BFtnN2qFRfYI,1060
|
100
|
-
nkululeko/reporting/report_item.py,sha256=siWeGNgo4bAE46YBMNcsdf3jTMTy76BO9Fi6DTvDig4,533
|
101
|
-
nkululeko/reporting/reporter.py,sha256=oodLaNZXqPpfoRqVxTldYcx68oN35OGgy-vvbAuY-yI,20039
|
102
|
-
nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
|
103
|
-
nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
104
|
-
nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=pmLHuXsaqvcdYxB4PSW9l1mbQWZZBJFhi_CGabqydas,1947
|
105
|
-
nkululeko/segmenting/seg_silero.py,sha256=lLytS38KzARS17omwv8VBw-zz60RVSXGSvZ5EvWlcWQ,3301
|
106
|
-
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
107
|
-
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
108
|
-
nkululeko/utils/stats.py,sha256=eC9dMO-by6CDnGLHDBQu-2B4-BudZNJ0nnWGhKYdUMA,2968
|
109
|
-
nkululeko/utils/util.py,sha256=363Lgmcg6fPKCGbroX0DDyW_zcYNx-Ayqv67qdpfYcw,16710
|
110
|
-
nkululeko-0.90.0.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
111
|
-
nkululeko-0.90.0.dist-info/METADATA,sha256=BiguFg1WzW9crNTqgr2qbtmaOL_PgeLP3M1Azn4Lehk,40900
|
112
|
-
nkululeko-0.90.0.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
|
113
|
-
nkululeko-0.90.0.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
114
|
-
nkululeko-0.90.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|