nkululeko 0.89.2__py3-none-any.whl → 0.90.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (99) hide show
  1. nkululeko/aug_train.py +6 -4
  2. nkululeko/augment.py +8 -6
  3. nkululeko/augmenting/augmenter.py +4 -4
  4. nkululeko/augmenting/randomsplicer.py +12 -9
  5. nkululeko/augmenting/randomsplicing.py +2 -3
  6. nkululeko/augmenting/resampler.py +9 -6
  7. nkululeko/autopredict/ap_age.py +4 -2
  8. nkululeko/autopredict/ap_arousal.py +4 -2
  9. nkululeko/autopredict/ap_dominance.py +3 -2
  10. nkululeko/autopredict/ap_gender.py +4 -2
  11. nkululeko/autopredict/ap_mos.py +5 -2
  12. nkululeko/autopredict/ap_pesq.py +5 -2
  13. nkululeko/autopredict/ap_sdr.py +5 -2
  14. nkululeko/autopredict/ap_snr.py +5 -2
  15. nkululeko/autopredict/ap_stoi.py +5 -2
  16. nkululeko/autopredict/ap_valence.py +4 -2
  17. nkululeko/autopredict/estimate_snr.py +10 -14
  18. nkululeko/cacheddataset.py +1 -1
  19. nkululeko/constants.py +1 -1
  20. nkululeko/data/dataset.py +19 -16
  21. nkululeko/data/dataset_csv.py +5 -3
  22. nkululeko/demo-ft.py +29 -0
  23. nkululeko/demo_feats.py +5 -4
  24. nkululeko/demo_predictor.py +3 -4
  25. nkululeko/ensemble.py +27 -28
  26. nkululeko/experiment.py +11 -7
  27. nkululeko/experiment_felix.py +728 -0
  28. nkululeko/explore.py +1 -0
  29. nkululeko/export.py +7 -5
  30. nkululeko/feat_extract/feats_agender.py +5 -4
  31. nkululeko/feat_extract/feats_agender_agender.py +7 -6
  32. nkululeko/feat_extract/feats_analyser.py +18 -16
  33. nkululeko/feat_extract/feats_ast.py +9 -8
  34. nkululeko/feat_extract/feats_auddim.py +3 -5
  35. nkululeko/feat_extract/feats_audmodel.py +2 -2
  36. nkululeko/feat_extract/feats_clap.py +9 -12
  37. nkululeko/feat_extract/feats_hubert.py +2 -3
  38. nkululeko/feat_extract/feats_import.py +5 -4
  39. nkululeko/feat_extract/feats_mld.py +3 -5
  40. nkululeko/feat_extract/feats_mos.py +4 -3
  41. nkululeko/feat_extract/feats_opensmile.py +4 -3
  42. nkululeko/feat_extract/feats_oxbow.py +5 -4
  43. nkululeko/feat_extract/feats_praat.py +4 -7
  44. nkululeko/feat_extract/feats_snr.py +3 -5
  45. nkululeko/feat_extract/feats_spectra.py +8 -9
  46. nkululeko/feat_extract/feats_spkrec.py +6 -11
  47. nkululeko/feat_extract/feats_squim.py +2 -4
  48. nkululeko/feat_extract/feats_trill.py +2 -5
  49. nkululeko/feat_extract/feats_wav2vec2.py +8 -4
  50. nkululeko/feat_extract/feats_wavlm.py +2 -3
  51. nkululeko/feat_extract/feats_whisper.py +4 -6
  52. nkululeko/feat_extract/featureset.py +4 -2
  53. nkululeko/feat_extract/feinberg_praat.py +1 -3
  54. nkululeko/feat_extract/transformer_feature_extractor.py +147 -0
  55. nkululeko/file_checker.py +3 -3
  56. nkululeko/filter_data.py +3 -1
  57. nkululeko/fixedsegment.py +83 -0
  58. nkululeko/models/model.py +3 -5
  59. nkululeko/models/model_bayes.py +1 -0
  60. nkululeko/models/model_cnn.py +4 -6
  61. nkululeko/models/model_gmm.py +13 -9
  62. nkululeko/models/model_knn.py +1 -0
  63. nkululeko/models/model_knn_reg.py +1 -0
  64. nkululeko/models/model_lin_reg.py +1 -0
  65. nkululeko/models/model_mlp.py +2 -3
  66. nkululeko/models/model_mlp_regression.py +1 -6
  67. nkululeko/models/model_svm.py +2 -2
  68. nkululeko/models/model_svr.py +1 -0
  69. nkululeko/models/model_tree.py +2 -3
  70. nkululeko/models/model_tree_reg.py +1 -0
  71. nkululeko/models/model_tuned.py +54 -33
  72. nkululeko/models/model_xgb.py +1 -0
  73. nkululeko/models/model_xgr.py +1 -0
  74. nkululeko/multidb.py +1 -0
  75. nkululeko/nkululeko.py +1 -1
  76. nkululeko/plots.py +1 -1
  77. nkululeko/predict.py +4 -5
  78. nkululeko/reporting/defines.py +6 -8
  79. nkululeko/reporting/latex_writer.py +3 -3
  80. nkululeko/reporting/report.py +2 -2
  81. nkululeko/reporting/report_item.py +1 -0
  82. nkululeko/reporting/reporter.py +20 -19
  83. nkululeko/resample.py +8 -12
  84. nkululeko/resample_cli.py +99 -0
  85. nkululeko/runmanager.py +3 -1
  86. nkululeko/scaler.py +1 -1
  87. nkululeko/segment.py +6 -5
  88. nkululeko/segmenting/seg_inaspeechsegmenter.py +3 -3
  89. nkululeko/segmenting/seg_silero.py +4 -4
  90. nkululeko/syllable_nuclei.py +9 -22
  91. nkululeko/test_pretrain.py +6 -7
  92. nkululeko/utils/stats.py +0 -1
  93. nkululeko/utils/util.py +2 -3
  94. {nkululeko-0.89.2.dist-info → nkululeko-0.90.1.dist-info}/METADATA +12 -2
  95. nkululeko-0.90.1.dist-info/RECORD +119 -0
  96. {nkululeko-0.89.2.dist-info → nkululeko-0.90.1.dist-info}/WHEEL +1 -1
  97. nkululeko-0.89.2.dist-info/RECORD +0 -114
  98. {nkululeko-0.89.2.dist-info → nkululeko-0.90.1.dist-info}/LICENSE +0 -0
  99. {nkululeko-0.89.2.dist-info → nkululeko-0.90.1.dist-info}/top_level.txt +0 -0
@@ -62,12 +62,12 @@
62
62
 
63
63
 
64
64
  import math
65
+ from glob import glob
66
+
65
67
  import pandas as pd
66
68
  import parselmouth
67
- from tqdm import tqdm
68
-
69
- from glob import glob
70
69
  from parselmouth.praat import call
70
+ from tqdm import tqdm
71
71
 
72
72
 
73
73
  def speech_rate(filename):
@@ -120,9 +120,7 @@ def speech_rate(filename):
120
120
  # use total duration, not end time, to find out duration of intdur (intensity_duration)
121
121
  # in order to allow nonzero starting times.
122
122
  intensity_duration = call(sound_from_intensity_matrix, "Get total duration")
123
- intensity_max = call(
124
- sound_from_intensity_matrix, "Get maximum", 0, 0, "Parabolic"
125
- )
123
+ intensity_max = call(sound_from_intensity_matrix, "Get maximum", 0, 0, "Parabolic")
126
124
  point_process = call(
127
125
  sound_from_intensity_matrix,
128
126
  "To PointProcess (extrema)",
@@ -133,19 +131,14 @@ def speech_rate(filename):
133
131
  )
134
132
  # estimate peak positions (all peaks)
135
133
  numpeaks = call(point_process, "Get number of points")
136
- t = [
137
- call(point_process, "Get time from index", i + 1)
138
- for i in range(numpeaks)
139
- ]
134
+ t = [call(point_process, "Get time from index", i + 1) for i in range(numpeaks)]
140
135
 
141
136
  # fill array with intensity values
142
137
  timepeaks = []
143
138
  peakcount = 0
144
139
  intensities = []
145
140
  for i in range(numpeaks):
146
- value = call(
147
- sound_from_intensity_matrix, "Get value at time", t[i], "Cubic"
148
- )
141
+ value = call(sound_from_intensity_matrix, "Get value at time", t[i], "Cubic")
149
142
  if value > threshold:
150
143
  peakcount += 1
151
144
  intensities.append(value)
@@ -161,22 +154,16 @@ def speech_rate(filename):
161
154
  for p in range(peakcount - 1):
162
155
  following = p + 1
163
156
  followingtime = timepeaks[p + 1]
164
- dip = call(
165
- intensity, "Get minimum", currenttime, timepeaks[p + 1], "None"
166
- )
157
+ dip = call(intensity, "Get minimum", currenttime, timepeaks[p + 1], "None")
167
158
  diffint = abs(currentint - dip)
168
159
  if diffint > mindip:
169
160
  validpeakcount += 1
170
161
  validtime.append(timepeaks[p])
171
162
  currenttime = timepeaks[following]
172
- currentint = call(
173
- intensity, "Get value at time", timepeaks[following], "Cubic"
174
- )
163
+ currentint = call(intensity, "Get value at time", timepeaks[following], "Cubic")
175
164
 
176
165
  # Look for only voiced parts
177
- pitch = sound.to_pitch_ac(
178
- 0.02, 30, 4, False, 0.03, 0.25, 0.01, 0.35, 0.25, 450
179
- )
166
+ pitch = sound.to_pitch_ac(0.02, 30, 4, False, 0.03, 0.25, 0.01, 0.35, 0.25, 450)
180
167
  voicedcount = 0
181
168
  voicedpeak = []
182
169
 
@@ -1,24 +1,23 @@
1
1
  # test_pretrain.py
2
2
  import argparse
3
3
  import configparser
4
+ import json
4
5
  import os.path
5
6
 
7
+ import audeer
8
+ import audiofile
9
+ import audmetric
6
10
  import datasets
7
11
  import numpy as np
8
12
  import pandas as pd
9
13
  import torch
10
14
  import transformers
11
15
 
12
- import audeer
13
- import audiofile
14
- import audmetric
15
-
16
- from nkululeko.constants import VERSION
17
16
  import nkululeko.experiment as exp
18
- import nkululeko.models.finetune_model as fm
19
17
  import nkululeko.glob_conf as glob_conf
18
+ import nkululeko.models.finetune_model as fm
19
+ from nkululeko.constants import VERSION
20
20
  from nkululeko.utils.util import Util
21
- import json
22
21
 
23
22
 
24
23
  def doit(config_file):
nkululeko/utils/stats.py CHANGED
@@ -2,7 +2,6 @@ import math
2
2
  from itertools import combinations
3
3
 
4
4
  import numpy as np
5
- import pandas as pd
6
5
 
7
6
 
8
7
  def check_na(a):
nkululeko/utils/util.py CHANGED
@@ -6,11 +6,10 @@ import os.path
6
6
  import pickle
7
7
  import sys
8
8
 
9
- import numpy as np
10
- import pandas as pd
11
-
12
9
  import audeer
13
10
  import audformat
11
+ import numpy as np
12
+ import pandas as pd
14
13
 
15
14
 
16
15
  class Util:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.89.2
3
+ Version: 0.90.1
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -275,7 +275,7 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
275
275
 
276
276
 
277
277
  ### <a name="helloworld">Hello World example</a>
278
- * NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and here is the same [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
278
+ * NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/1Up7t5Nn7VwDPCCEpTg2U7cpZ_PdoEgj-?usp=sharing), and here is the same [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
279
279
  * [I made a video to show you how to do this on Windows](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
280
280
  * Set up Python on your computer, version >= 3.8
281
281
  * Open a terminal/commandline/console window
@@ -356,6 +356,16 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
356
356
  Changelog
357
357
  =========
358
358
 
359
+ Version 0.90.1
360
+ --------------
361
+ * Add balancing for finetune and update data README
362
+
363
+ Version 0.90.0
364
+ --------------
365
+ * augmentation can now be done without target
366
+ * random splicing params configurable
367
+ * made kde default for plot continous/categorical plots
368
+
359
369
  Version 0.89.2
360
370
  --------------
361
371
  * fix shap value calculation
@@ -0,0 +1,119 @@
1
+ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
+ nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
+ nkululeko/augment.py,sha256=sIXRg19Uz8dWKgQv2LBGH7jbd2pgcUTh0PIQ_62B0kA,3135
4
+ nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
+ nkululeko/constants.py,sha256=TmPPFi_-OUMYF2mfBNMLxBQl0vwneI1opUPN0vK2XPY,41
6
+ nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
+ nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
8
+ nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
9
+ nkululeko/demo_predictor.py,sha256=lDF-xOxRdEAclOmbepAYg-BQXQdGkHfq2n74PTIoop8,4872
10
+ nkululeko/ensemble.py,sha256=QONr-1VwMr2D0I7wjWxwGjtYzWf4v9DoI3C-fFnar7E,12862
11
+ nkululeko/experiment.py,sha256=octx5S4Y8-gAD0dXCRb6DFZwsXTYgzk06RBA3LX2SN0,31388
12
+ nkululeko/experiment_felix.py,sha256=IBXtyXkQJP7IuFjZ4tCP3SAQ0g_Oqe3Pyzxz8DOeT-A,30134
13
+ nkululeko/explore.py,sha256=lrMrbM2WFJDcfaD_uJFbxpK-cGX2ZVy2QRfWMLRiXjw,3941
14
+ nkululeko/export.py,sha256=aqHnZPRv3dk69keY8HB5WJrhFl649X1PVbv_GlYmfH8,4634
15
+ nkululeko/feature_extractor.py,sha256=UnspIWz3XrNhKnBBhWZkH2bHvD-sROtrQVqB1JvkUyw,4088
16
+ nkululeko/file_checker.py,sha256=xJY0Q6w47pnmgJVK5rcAKPYBrCpV7eBT4_3YBzTx-H8,3454
17
+ nkululeko/filter_data.py,sha256=5AYDtqs_GWGr4V5CbbYQkVVgCD3kq2dpKu8rF3V87NI,7224
18
+ nkululeko/fixedsegment.py,sha256=Tb92QiuiyMsOO3WRWwuGjZGibS8hbHHCrcWAXGk7g04,2868
19
+ nkululeko/glob_conf.py,sha256=KL9YJQTHvTztxo1vr25qRRgaPnx4NTg0XrdbovKGMmw,525
20
+ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,11199
21
+ nkululeko/multidb.py,sha256=mDh2Zj4zDbM-wZxib-r8LaiGqfAbh7oihgWBODj76kU,6753
22
+ nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
23
+ nkululeko/nkululeko.py,sha256=n4KidI4sN3LwNyZoz-q2bLBjNn8lxYDya35qws55_ys,1968
24
+ nkululeko/plots.py,sha256=p9YyN-xAtdGBKjcA305V0KOagAzG8VG6D_Ceoa9rae4,22964
25
+ nkululeko/predict.py,sha256=ObFOxIgQ8JVYZLk2h0VFt8h7lYLMy8fXLUxU6eiePZc,2381
26
+ nkululeko/resample.py,sha256=y2l7k1jKheO-ntBZio9bRFWLKGTihVFUV0fb8U69T0o,4185
27
+ nkululeko/resample_cli.py,sha256=EJnN5t13qC4e0JVO3Rah3uJd4JRE3HM8GkoKyXsE49s,3211
28
+ nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
29
+ nkululeko/scaler.py,sha256=7VOZ4sREMoQtahfETt9RyuR29Fb7PCwxlYVjBbdCVFc,4101
30
+ nkululeko/segment.py,sha256=PPB8oSs_MLdEYoWh6_q3gm4mIUqPnCeGrB7FbX2AsBs,4799
31
+ nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
32
+ nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
33
+ nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
34
+ nkululeko/test_pretrain.py,sha256=jZxwnKrUKo04j2I92RiaCpbf7su-bbqGhMFS_2M7n-s,8464
35
+ nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
+ nkululeko/augmenting/augmenter.py,sha256=TUUznEz0pe9DSMC9r7LoBckuvsJTprvypeV5-8zLn20,2846
37
+ nkululeko/augmenting/randomsplicer.py,sha256=TKPqp8np5dvyJIAjOTvtlanatFQ9OwKxZ02QoCwZ2Jw,2802
38
+ nkululeko/augmenting/randomsplicing.py,sha256=RUwYukqDUbRqs_hD2wYPL6g2nLFhjCuPVbJ6qx3VzU8,1751
39
+ nkululeko/augmenting/resampler.py,sha256=gcjyyTD6QtJK6s_xoOQpsu5adpn0uSJwHxJTHMskfOM,3541
40
+ nkululeko/autopredict/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
+ nkululeko/autopredict/ap_age.py,sha256=SaD8-WWBLjb4x2jxIsU-_uvlYxcE0YhxUOnh9PAYTiU,1097
42
+ nkululeko/autopredict/ap_arousal.py,sha256=unKN9VefJ_eesUqy1YTMSvYs1kBMQP1HBZI6cY0En6c,1026
43
+ nkululeko/autopredict/ap_dominance.py,sha256=Ltq5x0ralxU1758_e-nNKvzexiPUM66xLAm3Wo2B07c,1040
44
+ nkululeko/autopredict/ap_gender.py,sha256=b6oTqHKVwOnYh4YlKbuMflssS4HJqs_c1ayusauY_I4,1010
45
+ nkululeko/autopredict/ap_mos.py,sha256=e4hmgb0Yf1_AbC5P0CqXJIvufjhbTrqmI5goARxrY0Y,1107
46
+ nkululeko/autopredict/ap_pesq.py,sha256=mRt3Loucaoy4vJxwfuxUt0fP88bMGvkmrLCEpKEXWp0,1140
47
+ nkululeko/autopredict/ap_sdr.py,sha256=VQ2UkxOO3ipqYNNjFwKgEaGCk8IzLI5lX_2tZFLIvTY,1188
48
+ nkululeko/autopredict/ap_snr.py,sha256=AiTU8-7CMEeowmYkMO19lw1HCb1yTXC6KeulNf8gOqw,1110
49
+ nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwpcnA,1187
50
+ nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
51
+ nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
52
+ nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
+ nkululeko/data/dataset.py,sha256=Hz2IOsdcESG-P3aP7r4d1xj_gIP6fyGCYOwukoQ7SM8,29321
54
+ nkululeko/data/dataset_csv.py,sha256=rPiOIy9Da0wne05kdpGHMpKMAgHy4a1dnB6At9jJuAM,4590
55
+ nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
+ nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
57
+ nkululeko/feat_extract/feats_agender_agender.py,sha256=_YQv1qw--3uQfnyTQDCwlmPRnrhdMhgXbYK2yQtseW0,3464
58
+ nkululeko/feat_extract/feats_analyser.py,sha256=luTV2-yw7rk0aQPI88vvtW1GLV8cGypp7LJW1v_YBrw,13450
59
+ nkululeko/feat_extract/feats_ast.py,sha256=w62xEoLiFtU-rj6SXkqXAktmoFaXcAcAWpUyEjp8JWo,4652
60
+ nkululeko/feat_extract/feats_auddim.py,sha256=CGLp_aYhudfwoU5522vjrvjPxfZcyw593A8xLjYefV8,3134
61
+ nkululeko/feat_extract/feats_audmodel.py,sha256=OsZyB1rdcG0Fai2gAwBlbuubmWor1_-P4IDkZLqgPKE,3161
62
+ nkululeko/feat_extract/feats_clap.py,sha256=1tttpfm2SJmQgYm2u8eUVpDiDOpWdKqFChpY3ZZokNs,3395
63
+ nkululeko/feat_extract/feats_hubert.py,sha256=F3vrPCkx8EimJjFWYCZ7Yg9uo1G3NjYt4UKrGIUev8k,5172
64
+ nkululeko/feat_extract/feats_import.py,sha256=skqXq5oLJLyQbY1jlsg3VDoUt93yI1OLwbtcc44AQo4,1627
65
+ nkululeko/feat_extract/feats_mld.py,sha256=5aRoYiGDm5ApoFntxAMQYPjEelXHHRBHZcAJR9dxaeI,1945
66
+ nkululeko/feat_extract/feats_mos.py,sha256=3UXCKe86F49yHpZMQnLfDWXx9XdmlXHOy8efoa3WaOk,4138
67
+ nkululeko/feat_extract/feats_opensmile.py,sha256=BLj5sUaBPz7vLPfNlt9LdQurSypmViqgSpPK-6aXGhQ,4029
68
+ nkululeko/feat_extract/feats_oxbow.py,sha256=TRoEJx5EKZiqoPoPRibHc0vkBMoZcKlGoGNq4NbyHZw,4895
69
+ nkululeko/feat_extract/feats_praat.py,sha256=jZ-XXbP3iy25QQIzA4Hrv0HxsYvJNPavoCW2FyJNKMg,3064
70
+ nkululeko/feat_extract/feats_snr.py,sha256=5uEm10d89TQPf0s-CuVpQ3ftc0bLEeuB8aGuufsjAbs,2762
71
+ nkululeko/feat_extract/feats_spectra.py,sha256=6WhFUpB0WTutg7OFMlAw9lSwVU5OBYCDcPRxaiH-Qn8,3621
72
+ nkululeko/feat_extract/feats_spkrec.py,sha256=o_6bdU4lIkj64S5Kdjf1iyuo1VASeYxE4XdxV94a8gE,4732
73
+ nkululeko/feat_extract/feats_squim.py,sha256=yJifsp9kj9iJjW_UAKr3LlvVhX5rv7el4bepn0wN2a8,4578
74
+ nkululeko/feat_extract/feats_trill.py,sha256=TUCrh5xbfnHD2gzb9mlkMSV4aK6YXazMqsh5xJ5yzUI,3188
75
+ nkululeko/feat_extract/feats_wav2vec2.py,sha256=lINWb2rBLXuMzNKV8gKsTke8wuXIF1X4jOu-GMB3aPg,5272
76
+ nkululeko/feat_extract/feats_wavlm.py,sha256=kTuxFnymBMYP3t9yAQJjRQ5ul4AiS0O8NXq3z6B9AYs,4731
77
+ nkululeko/feat_extract/feats_whisper.py,sha256=n3ESZtva7wshs8E8diBlQYa9xCH_P0UY1DncSrxz-FY,4508
78
+ nkululeko/feat_extract/featureset.py,sha256=clcBv9rzBRW-bfw7JC_FYTjU5uUS-c0UE1XtQLYYRiE,1615
79
+ nkululeko/feat_extract/feinberg_praat.py,sha256=bgzWtQkKbgcygrzwAxDXosui1rcc38qhWuJq9GLr0z8,21308
80
+ nkululeko/feat_extract/transformer_feature_extractor.py,sha256=LaXuW-AJZ931ttLis0J5h9N3RtiiE51BnkxJR-bubfY,5837
81
+ nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
+ nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
83
+ nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
84
+ nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
85
+ nkululeko/models/model.py,sha256=gfLpPBEuKYbIBayz23-6gNbvzunqBkCDzgZhAB1ypbM,12940
86
+ nkululeko/models/model_bayes.py,sha256=tQUXEsXoS6WnfapQjP78S_gxNBssTOqE78A2iG8SfLU,407
87
+ nkululeko/models/model_cnn.py,sha256=lu6ZSGqJBL69PdrgwwgzjGmu_DaBaiATkz6oVqQpKhc,10498
88
+ nkululeko/models/model_gmm.py,sha256=mhHFNtTzHuJvqYSA0h5YhvjA--KhnN6MTU_S0G3-d1c,1332
89
+ nkululeko/models/model_knn.py,sha256=ByQlHIU_fNtSCGCvsrMEoLVJ9q2hUC4edtpp5rVS1B8,600
90
+ nkululeko/models/model_knn_reg.py,sha256=kaVP1xGNgktUGuQARi7uoJ0hmdPGHDpv2ugDesYN7RU,611
91
+ nkululeko/models/model_lin_reg.py,sha256=xqvf-06LhBkjHRdyXFqcYD8ozYPoAsZfGqfNEtuFQLc,423
92
+ nkululeko/models/model_mlp.py,sha256=lnKd8BP7r3cWbcw48UJhge62_vDb2Gqivi8G33aKscg,10477
93
+ nkululeko/models/model_mlp_regression.py,sha256=ErwMWj5PPbLnFS9SzAuub-woy_sLCHuaiam5P9gDDGY,10103
94
+ nkululeko/models/model_svm.py,sha256=zP8ykLhCZTYvwSqw06XHuzq9qMBtsiYpxjUpWDAnMyA,995
95
+ nkululeko/models/model_svr.py,sha256=FEwYRdgqwgGhZdkpRnT7Ef12lklWi6GZL28PyV99xWs,726
96
+ nkululeko/models/model_tree.py,sha256=6L3PD3aIiiQz1RPWS6z3Edx4f0gnR7AOfBKOJzf0BNU,433
97
+ nkululeko/models/model_tree_reg.py,sha256=IMaQpNImoRqP8Biw1CsJevxpV_PVpKblsKtYlMW5d_U,429
98
+ nkululeko/models/model_tuned.py,sha256=k6c8dPKy2BeFMKABrNTMSwQuiKa9VrZ7oeJdfNYoYAo,22678
99
+ nkululeko/models/model_xgb.py,sha256=ytBaSHZH8r7VvRYdmrBrQnzRM6V4HyCJ8O-v20J8G_g,448
100
+ nkululeko/models/model_xgr.py,sha256=H01FJCRgmX2unvambMs5TTCS9sI6VDB9ip9G6rVGt2c,419
101
+ nkululeko/reporting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
102
+ nkululeko/reporting/defines.py,sha256=0vh-Tlx4fAPpk1o6mP_4x3EkIoqzYMr38IZnj-JM5z4,641
103
+ nkululeko/reporting/latex_writer.py,sha256=NGwSIfd4nfslDkNUOSZSdqY_VDLA8634thyhe-vj1bY,1824
104
+ nkululeko/reporting/report.py,sha256=bYN8B66gg3IWHAyfd6uIVjpYKy3rOI6aEwgfXU0LSAY,1006
105
+ nkululeko/reporting/report_item.py,sha256=AqKD40AlZpRuHLbggn5PkH6ctGJwh9rGNBNgOvgUODg,534
106
+ nkululeko/reporting/reporter.py,sha256=4OlYZAParkfJKO_aAyxqVpLc21zxZ-jDhtJKIMeUssI,20151
107
+ nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
108
+ nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
109
+ nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=b3t0zdpJYofKWMyKRMtMMX91xeR-k8d5pbnNaQHcsOE,1902
110
+ nkululeko/segmenting/seg_silero.py,sha256=CnhjKGTW5OXf-bmw4YsSJeN2yUwkY5m3xnulM_PYCW0,3256
111
+ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
+ nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
113
+ nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
+ nkululeko/utils/util.py,sha256=a9fs5swVkv_k0CfJRwDhEx1ChZv7rs7K4oQDYspiQWY,16709
115
+ nkululeko-0.90.1.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.90.1.dist-info/METADATA,sha256=unqq8xrL0bfP178Q3fKBaGyry4SJvHxPGJCR3figOpQ,40961
117
+ nkululeko-0.90.1.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
118
+ nkululeko-0.90.1.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
119
+ nkululeko-0.90.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (74.1.2)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,114 +0,0 @@
1
- nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
- nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
- nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
- nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=WFGVylIst9Be_eHBZ9GiR43Qi4CdRySmNUzyNox6aMM,39
6
- nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
7
- nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
- nkululeko/demo_predictor.py,sha256=zs1bjhpnKuNCPLJeiyDm19ME1NEDOQT3QNeyVKJq9Yc,4882
9
- nkululeko/ensemble.py,sha256=MayHpngGH_FTvSxUsH3NdxJd6WBAosGRFQeQ7cMjIco,12922
10
- nkululeko/experiment.py,sha256=L4PzoScPLG2xTyniVy9evcBy_8CIe3RTeTEUVTqiuvQ,31186
11
- nkululeko/explore.py,sha256=AbTVDmuDIaLfALQGvDW1yndcw2ikaEVEZ_fJVuUS070,3940
12
- nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
13
- nkululeko/feature_extractor.py,sha256=UnspIWz3XrNhKnBBhWZkH2bHvD-sROtrQVqB1JvkUyw,4088
14
- nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,3474
15
- nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
16
- nkululeko/glob_conf.py,sha256=KL9YJQTHvTztxo1vr25qRRgaPnx4NTg0XrdbovKGMmw,525
17
- nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,11199
18
- nkululeko/multidb.py,sha256=CCjmVsZyvydgOztFlaeBvOJH8nsvU-sPQdFAw8-q0U4,6752
19
- nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
20
- nkululeko/nkululeko.py,sha256=Kn3s2E3yyH8cJ7z6lkMxrnqtCxTu7-qfe9Zr_ONTD5g,1968
21
- nkululeko/plots.py,sha256=gfNy9Eu2PhSaykMazBPThcYS5o5KwuQwY2jshAUK5Rk,22965
22
- nkululeko/predict.py,sha256=sF091sSSLnEWcISx9ZcULLie3tY5XeFsQJd6b3vrxFg,2409
23
- nkululeko/resample.py,sha256=2d9eao_0sLrGZ_KSl8OVKsPor3BkFrlmMhrpB9WelIs,4267
24
- nkululeko/runmanager.py,sha256=xvxL5a9d3jtGFqx0Z3nyyxowA368uNyP0ZitO8kxIIE,7581
25
- nkululeko/scaler.py,sha256=4nkIqoajkIkuTPK0Z02ifMN_awl6fP_i-GBYdoGYgGM,4101
26
- nkululeko/segment.py,sha256=YLKckX44tbvTb3LrdgYw9X4guzuF27sutl92z9DkpZU,4835
27
- nkululeko/syllable_nuclei.py,sha256=Sky-C__MeUDaxqHnDl2TGLLYOYvsahD35TUjWGeG31k,10047
28
- nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
29
- nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
30
- nkululeko/test_pretrain.py,sha256=ZWl-bR6nmeSmXkGAIE6zyfQEjN8Zg0rIxfaS-O6Zbas,8465
31
- nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
- nkululeko/augmenting/augmenter.py,sha256=XAt0dpmlnKxqyysqCgV3rcz-pRIvOz7rU7dmGDCVAzs,2905
33
- nkululeko/augmenting/randomsplicer.py,sha256=Z5rxdKKUpuncLWuTS6xVfVKUeVbeiYU_dLRHQ5fcg4Y,2669
34
- nkululeko/augmenting/randomsplicing.py,sha256=ldym9vZNsZIU5BAAaJVaOmAgmVHNs4a5i5K3bW-WAQU,1791
35
- nkululeko/augmenting/resampler.py,sha256=nOBsiQpX6p4jXsP7x6wak78F3B5YYYRmC_iHX8iuOXs,3542
36
- nkululeko/autopredict/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
- nkululeko/autopredict/ap_age.py,sha256=2Wn5E-Jd49sTn40WqaMcYtUEl4zEq3OY75XmjOpdxsA,1095
38
- nkululeko/autopredict/ap_arousal.py,sha256=ymt0diu4v1osw3VxJbSglsVKDAJYRzebQ2TTfFMKKxk,1024
39
- nkululeko/autopredict/ap_dominance.py,sha256=CIMjbHpYfJBV_F2y0Hen5U7WastuArDOkBmXY437efs,1039
40
- nkululeko/autopredict/ap_gender.py,sha256=gVCMYHpcVp56xWIeI4HA0MJLLINRgvzrKC_wladnbiE,1008
41
- nkululeko/autopredict/ap_mos.py,sha256=tmFBIKO0lW19fciH9syLnOLI699I_WU0yn1axdo6iEw,1104
42
- nkululeko/autopredict/ap_pesq.py,sha256=3Zvl47jyCLv7NXwbaDlOhltVcpskcHoU8CcjCJWGkMc,1137
43
- nkululeko/autopredict/ap_sdr.py,sha256=qpgvJGl0NYMa8o7zHS4qU4dfY1Ey_R1p-0T8BnX3uNs,1185
44
- nkululeko/autopredict/ap_snr.py,sha256=xHb7mmGfa4wF1r0GK7dIZ1d9m4cEz0LcpK0n3sLF9pQ,1107
45
- nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvdLRA,1184
46
- nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
47
- nkululeko/autopredict/estimate_snr.py,sha256=S-bpS0xFkwWc4Ch75UrjbS8y538lQ0U3g_iLRFXureY,5048
48
- nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
- nkululeko/data/dataset.py,sha256=xaawk5QthuVStWjHWTFBtorcIe71lbPQgC6mHzSXGeI,29286
50
- nkululeko/data/dataset_csv.py,sha256=UGEpi__eT2KFS6Fop6N4HkMrzO-u5VP71gt44kwZavo,4588
51
- nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
- nkululeko/feat_extract/feats_agender.py,sha256=tMK3_qs8adylNNSR0CS1RjU9RxmpumLqmuyzmc2ZYjA,3184
53
- nkululeko/feat_extract/feats_agender_agender.py,sha256=19NoRT0KJ8WoZ3EabTYexXymD7bDy58-H20jYmdqjD0,3498
54
- nkululeko/feat_extract/feats_analyser.py,sha256=rSsN6kcDUv64DaTl2DvReXF3_g7CtSwiPKgMzbJPqVI,13516
55
- nkululeko/feat_extract/feats_ast.py,sha256=ycJn5eSVOxcEpmeHVk0FPB8q5XiTC8VSKz61L9n0Wa4,4638
56
- nkululeko/feat_extract/feats_auddim.py,sha256=ulP_o4SGeQDFTs8YYCGKgccARAo6-wcjPK6-hhGjmn8,3155
57
- nkululeko/feat_extract/feats_audmodel.py,sha256=aRGTBDKdYaTT_9xDaFZqpuyPhzxSNN_3b1PJDUHtYW4,3180
58
- nkululeko/feat_extract/feats_clap.py,sha256=nR6eEIRdsMHcfmD1bNtt5WfDvkxKjvEbukSSrXHm-HU,3489
59
- nkululeko/feat_extract/feats_hubert.py,sha256=cLoUzSLjSYBkQnftjacSL7ES3O7Ysh_KrPYvZtLX_TU,5196
60
- nkululeko/feat_extract/feats_import.py,sha256=WiU5lCkJsmFNTDyPV0qIh8mJssa6bpgP7AYw_ClKfWM,1674
61
- nkululeko/feat_extract/feats_mld.py,sha256=Vvu7GZOkn7Vda8eIOXqHjg78zegkFe3vTUaCXyVM0eA,2021
62
- nkululeko/feat_extract/feats_mos.py,sha256=KXNt7QYEfxkvr6UyVhig2aWQBaIvovlrR4gPuP03gmo,4174
63
- nkululeko/feat_extract/feats_opensmile.py,sha256=oP5ZWuddPN3_Sa59uyVJisCBd6e2By-IZZ9gVo7NtpE,4038
64
- nkululeko/feat_extract/feats_oxbow.py,sha256=djPH5k_pBzTV7yaY0eD4qVmYAnKoDu3_Cbaypx_V4vM,4932
65
- nkululeko/feat_extract/feats_praat.py,sha256=kZrS6srzH7WoWEd2prp1Dxw6g9JklFQGTNq5zzPpHzg,3105
66
- nkululeko/feat_extract/feats_snr.py,sha256=9dqZ-4RpK98iJEssM3ttozNd18LWlZYM_QVXvp5xDcs,2829
67
- nkululeko/feat_extract/feats_spectra.py,sha256=5Pex8awIQC3cjQRHSu4NQFmg4quamG0RL3V3Yd0pJHs,3670
68
- nkululeko/feat_extract/feats_spkrec.py,sha256=j_-h2NfLa3qes6vOFrNiIfPc5HmAxDpMpMlw5QqSBAM,4813
69
- nkululeko/feat_extract/feats_squim.py,sha256=Y31YmDmscuG0YozvxyBZIutO3id8t7IZJWCfKucw-6M,4617
70
- nkululeko/feat_extract/feats_trill.py,sha256=K2ahhdpwpjgg3WZS1POg3UMP2U44i8cLZZvn5Rq7fUI,3228
71
- nkululeko/feat_extract/feats_wav2vec2.py,sha256=XyxD4NcrF4VFWSeHkXCKWdEOdr8VMzgVUz8N4mwhdyo,5248
72
- nkululeko/feat_extract/feats_wavlm.py,sha256=O9cfc39VF5aPJRRATKb37pHT4W11i2cu5O1mY9LOjIA,4755
73
- nkululeko/feat_extract/feats_whisper.py,sha256=0N7Vj65OVi2PNoB_NrDjWT5lP6xZNKxFOZZIoxkJvcA,4533
74
- nkululeko/feat_extract/featureset.py,sha256=WV4Lm2VXNZlEDOUaS2e3KyId-LP8bOX0jnhWnRtJqfY,1613
75
- nkululeko/feat_extract/feinberg_praat.py,sha256=_8MwVikn0vjcyv1ygjScfjIJijOr_IN-o2ZQW1VVZtg,21310
76
- nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
- nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
78
- nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
79
- nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
80
- nkululeko/models/model.py,sha256=LpoJOj1LEFrxpK8WQOfusPBeQfBUnPtAANOKBJoQ8Iw,13010
81
- nkululeko/models/model_bayes.py,sha256=WJFZ8wFKwWATz6MhmjeZIi1Pal1viU549WL_PjXDSy8,406
82
- nkululeko/models/model_cnn.py,sha256=-VTKi9aiI5ubn7-kTQCFkgh1CpPOYEiiHvlvP_zsgAQ,10573
83
- nkululeko/models/model_gmm.py,sha256=m1ONBql-T0La8Cv0awB7lPUG-kgbygoWmbuqzDzmj-Y,1337
84
- nkululeko/models/model_knn.py,sha256=KlnrJfwiVnmXZrAaYGFrKA2f5sznvTzSJQ8-5etOP0k,599
85
- nkululeko/models/model_knn_reg.py,sha256=j7YFfVm6xOR2d9yBYdQiwwqYfqkX0JynX_qLCvkr1fk,610
86
- nkululeko/models/model_lin_reg.py,sha256=0D7mSnSwK82lNWDMwHYRyq3FmGa6y-DHDGg4qUe85q4,422
87
- nkululeko/models/model_mlp.py,sha256=CaR0PCRBcdCo_hhC5r9Q6IbVIApvtoRVrUdZsgzbx1M,10516
88
- nkululeko/models/model_mlp_regression.py,sha256=YMHMWRlWL6iL8HdYe6rTAoAW6GwHBx3PDvysCZYj5tQ,10186
89
- nkululeko/models/model_svm.py,sha256=AzWksBRbIdpUuMbDnAh_YAXebewR5POj9AkB9VC40pI,1010
90
- nkululeko/models/model_svr.py,sha256=_YZeksqB3eBENGlg3g9RwYFlk9rQQ-XCeNBKLlGGVoE,725
91
- nkululeko/models/model_tree.py,sha256=KScDTGgkOePTZEcereB7bxQ47wIKhYI-xhTKCU4cKDk,454
92
- nkululeko/models/model_tree_reg.py,sha256=IgQcPTE-304HQLYSKPF8Z4ot_Ur9dH01fZjS0nXke_M,428
93
- nkululeko/models/model_tuned.py,sha256=vmNBkqvEH-4nnhY1REXDA9kA4vpZJzeRmGJFq7E3bLM,21340
94
- nkululeko/models/model_xgb.py,sha256=Thgx5ESdIok4v72mKh4plxpo4smGcKALWNCJTDScY0M,447
95
- nkululeko/models/model_xgr.py,sha256=aGBtNGLWjOE_2rICGYGFxmT8DtnHYsIl1lIpMtghHsY,418
96
- nkululeko/reporting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
97
- nkululeko/reporting/defines.py,sha256=IsY1YgKRMaABpylVKjBJgJ5bNCEbGCVA_E6pivraqSU,648
98
- nkululeko/reporting/latex_writer.py,sha256=qiCRSmB4KOD_za4oHu5x-PhwjZohzfo8wecMOwlXZwc,1886
99
- nkululeko/reporting/report.py,sha256=W0rcigDdjBvxZQ3pZja_gvToILYvaZ1BFtnN2qFRfYI,1060
100
- nkululeko/reporting/report_item.py,sha256=siWeGNgo4bAE46YBMNcsdf3jTMTy76BO9Fi6DTvDig4,533
101
- nkululeko/reporting/reporter.py,sha256=oodLaNZXqPpfoRqVxTldYcx68oN35OGgy-vvbAuY-yI,20039
102
- nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
103
- nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
- nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=pmLHuXsaqvcdYxB4PSW9l1mbQWZZBJFhi_CGabqydas,1947
105
- nkululeko/segmenting/seg_silero.py,sha256=lLytS38KzARS17omwv8VBw-zz60RVSXGSvZ5EvWlcWQ,3301
106
- nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
- nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
108
- nkululeko/utils/stats.py,sha256=eC9dMO-by6CDnGLHDBQu-2B4-BudZNJ0nnWGhKYdUMA,2968
109
- nkululeko/utils/util.py,sha256=363Lgmcg6fPKCGbroX0DDyW_zcYNx-Ayqv67qdpfYcw,16710
110
- nkululeko-0.89.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
- nkululeko-0.89.2.dist-info/METADATA,sha256=00CLy_4Wm7IktJy7dAkKrXkCMi0f1HUXCoQYMNcp2kw,40729
112
- nkululeko-0.89.2.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
113
- nkululeko-0.89.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
- nkululeko-0.89.2.dist-info/RECORD,,