nkululeko 0.89.0__py3-none-any.whl → 0.89.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.89.0"
1
+ VERSION="0.89.1"
2
2
  SAMPLING_RATE = 16000
nkululeko/ensemble.py CHANGED
@@ -26,7 +26,11 @@ from pathlib import Path
26
26
 
27
27
  import numpy as np
28
28
  import pandas as pd
29
- from sklearn.metrics import balanced_accuracy_score
29
+ from sklearn.metrics import(
30
+ balanced_accuracy_score,
31
+ classification_report,
32
+ f1_score
33
+ )
30
34
 
31
35
  from nkululeko.constants import VERSION
32
36
  from nkululeko.experiment import Experiment
@@ -284,6 +288,10 @@ def ensemble_predictions(
284
288
  predicted = ensemble_preds["predicted"]
285
289
  uar = balanced_accuracy_score(truth, predicted)
286
290
  acc = (truth == predicted).mean()
291
+ # print classification report
292
+ Util("ensemble").debug(f"\n {classification_report(truth, predicted)}")
293
+ # f1 = f1_score(truth, predicted, pos_label='p')
294
+ # Util("ensemble").debug(f"F1: {f1:.3f}")
287
295
  Util("ensemble").debug(f"{method}: UAR: {uar:.3f}, ACC: {acc:.3f}")
288
296
 
289
297
  return ensemble_preds
@@ -139,7 +139,7 @@ class FeatureAnalyser:
139
139
  elif model_s == "svm":
140
140
  from sklearn.svm import SVC
141
141
 
142
- c = float(self.util.config_val("MODEL", "C_val", "0.001"))
142
+ c = float(self.util.config_val("MODEL", "C_val", "1.0"))
143
143
  model = SVC(kernel="linear", C=c, gamma="scale")
144
144
  result_importances[model_s] = self._get_importance(
145
145
  model, permutation
@@ -205,7 +205,7 @@ class FeatureAnalyser:
205
205
  model, permutation
206
206
  )
207
207
  elif model_s == "xgr":
208
- from xgboost import XGBClassifier
208
+ from xgboost import XGBRegressor
209
209
 
210
210
  model = XGBRegressor()
211
211
  result_importances[model_s] = self._get_importance(
@@ -270,12 +270,14 @@ class FeatureAnalyser:
270
270
  )
271
271
  )
272
272
 
273
+ # print feature importance values to file and debug and save to result
274
+ self.util.debug(f"Importance features from {model_name}: features = \n{df_imp['feats'].values.tolist()}")
273
275
  # result file
274
276
  res_dir = self.util.get_path("res_dir")
275
277
  filename = f"_EXPL_{model_name}"
276
278
  if permutation:
277
279
  filename += "_perm"
278
- filename = f"{res_dir}{self.util.get_exp_name(only_data=True)}{filename}_{model_name}.txt"
280
+ filename = f"{res_dir}{self.util.get_exp_name(only_data=True)}{filename}_{max_feat_num}_fi.txt"
279
281
  with open(filename, "w") as text_file:
280
282
  text_file.write(
281
283
  "features in order of decreasing importance according to model"
@@ -283,7 +285,8 @@ class FeatureAnalyser:
283
285
  )
284
286
 
285
287
  df_imp.to_csv(filename, mode="a")
286
-
288
+ self.util.debug(f"Saved feature importance values to {filename}")
289
+
287
290
  # check if feature distributions should be plotted
288
291
  plot_feats = self.util.config_val("EXPL", "feature_distributions", False)
289
292
  if plot_feats:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.89.0
3
+ Version: 0.89.1
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -356,6 +356,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
356
356
  Changelog
357
357
  =========
358
358
 
359
+ Version 0.89.1
360
+ --------------
361
+ * print and save result of feature importance
362
+
359
363
  Version 0.89.0
360
364
  --------------
361
365
  * added Roc plots and classification report on Debug
@@ -2,11 +2,11 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
3
  nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=YlaNUy3dWo6v0O02alzu9cMApavzOisvDjFSaYzGepo,39
5
+ nkululeko/constants.py,sha256=nRA0bWrvi-5tXm8QWv4dzDE-3sujMiz26U4QgSVuck0,39
6
6
  nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
7
7
  nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
8
  nkululeko/demo_predictor.py,sha256=zs1bjhpnKuNCPLJeiyDm19ME1NEDOQT3QNeyVKJq9Yc,4882
9
- nkululeko/ensemble.py,sha256=cVz8hWd2m7poyS0lTIfrsha0K8U-hd6eiBWMqDOAlt8,12669
9
+ nkululeko/ensemble.py,sha256=egtOFxEp7gjuM5cKBfETnhTn1-7_4zWBPEah65K1C3U,12927
10
10
  nkululeko/experiment.py,sha256=L4PzoScPLG2xTyniVy9evcBy_8CIe3RTeTEUVTqiuvQ,31186
11
11
  nkululeko/explore.py,sha256=_GOgcRaPvh2xBbKPAkSJjYzgHhD_xb3ZCB6M1MPA6ao,3867
12
12
  nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
@@ -51,7 +51,7 @@ nkululeko/data/dataset_csv.py,sha256=UGEpi__eT2KFS6Fop6N4HkMrzO-u5VP71gt44kwZavo
51
51
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
52
  nkululeko/feat_extract/feats_agender.py,sha256=tMK3_qs8adylNNSR0CS1RjU9RxmpumLqmuyzmc2ZYjA,3184
53
53
  nkululeko/feat_extract/feats_agender_agender.py,sha256=19NoRT0KJ8WoZ3EabTYexXymD7bDy58-H20jYmdqjD0,3498
54
- nkululeko/feat_extract/feats_analyser.py,sha256=Y9hMpZ9WsQOrxTP3B1diHnzMeOgwbVpVFWVlIyhHMJs,12722
54
+ nkululeko/feat_extract/feats_analyser.py,sha256=eW0v7Boybfj2gXi77MPjaLyHUQ1C42mx9hgoQeDwNac,12999
55
55
  nkululeko/feat_extract/feats_ast.py,sha256=ycJn5eSVOxcEpmeHVk0FPB8q5XiTC8VSKz61L9n0Wa4,4638
56
56
  nkululeko/feat_extract/feats_auddim.py,sha256=ulP_o4SGeQDFTs8YYCGKgccARAo6-wcjPK6-hhGjmn8,3155
57
57
  nkululeko/feat_extract/feats_audmodel.py,sha256=aRGTBDKdYaTT_9xDaFZqpuyPhzxSNN_3b1PJDUHtYW4,3180
@@ -107,8 +107,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
107
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
108
108
  nkululeko/utils/stats.py,sha256=eC9dMO-by6CDnGLHDBQu-2B4-BudZNJ0nnWGhKYdUMA,2968
109
109
  nkululeko/utils/util.py,sha256=363Lgmcg6fPKCGbroX0DDyW_zcYNx-Ayqv67qdpfYcw,16710
110
- nkululeko-0.89.0.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
- nkululeko-0.89.0.dist-info/METADATA,sha256=IoIlF0i109BRy7ki2K9Heq-OWVeyhg7rModVCY2fQp0,40590
112
- nkululeko-0.89.0.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
113
- nkululeko-0.89.0.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
- nkululeko-0.89.0.dist-info/RECORD,,
110
+ nkululeko-0.89.1.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
+ nkululeko-0.89.1.dist-info/METADATA,sha256=AuVssWNRMXlseH5xSzcls--AAYLFSeEbFtHbAFT2o_o,40667
112
+ nkululeko-0.89.1.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
113
+ nkululeko-0.89.1.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
+ nkululeko-0.89.1.dist-info/RECORD,,