nkululeko 0.88.9__py3-none-any.whl → 0.88.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/explore.py +21 -0
- nkululeko/feat_extract/feats_agender_agender.py +5 -4
- nkululeko/feat_extract/feats_spkrec.py +1 -1
- nkululeko/feat_extract/feinberg_praat.py +4 -4
- nkululeko/models/model_gmm.py +20 -3
- nkululeko/multidb.py +7 -0
- nkululeko/plots.py +11 -10
- {nkululeko-0.88.9.dist-info → nkululeko-0.88.11.dist-info}/METADATA +13 -5
- {nkululeko-0.88.9.dist-info → nkululeko-0.88.11.dist-info}/RECORD +13 -13
- {nkululeko-0.88.9.dist-info → nkululeko-0.88.11.dist-info}/WHEEL +1 -1
- {nkululeko-0.88.9.dist-info → nkululeko-0.88.11.dist-info}/LICENSE +0 -0
- {nkululeko-0.88.9.dist-info → nkululeko-0.88.11.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.88.
|
1
|
+
VERSION="0.88.11"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/explore.py
CHANGED
@@ -1,3 +1,24 @@
|
|
1
|
+
"""
|
2
|
+
Explore the feature sets of a machine learning experiment.
|
3
|
+
|
4
|
+
This script is the entry point for the 'explore' module of the nkululeko framework.
|
5
|
+
It handles loading the experiment configuration, setting up the experiment, and
|
6
|
+
running various feature exploration techniques based on the configuration.
|
7
|
+
|
8
|
+
The script supports the following configuration options:
|
9
|
+
- `no_warnings`: If set to `True`, it will ignore all warnings during the exploration.
|
10
|
+
- `feature_distributions`: If set to `True`, it will generate plots of the feature distributions.
|
11
|
+
- `tsne`: If set to `True`, it will generate a t-SNE plot of the feature space.
|
12
|
+
- `scatter`: If set to `True`, it will generate a scatter plot of the feature space.
|
13
|
+
- `spotlight`: If set to `True`, it will generate a 'spotlight' plot of the feature space.
|
14
|
+
- `shap`: If set to `True`, it will generate SHAP feature importance plots.
|
15
|
+
- `model`: The type of model to use for the feature exploration (e.g. 'SVM').
|
16
|
+
- `plot_tree`: If set to `True`, it will generate a decision tree plot.
|
17
|
+
|
18
|
+
The script can be run from the command line with the `--config` argument to specify
|
19
|
+
the configuration file to use. If no configuration file is provided, it will look
|
20
|
+
for an `exp.ini` file in the same directory as the script.
|
21
|
+
"""
|
1
22
|
# explore.py
|
2
23
|
# explore the feature sets
|
3
24
|
|
@@ -7,18 +7,19 @@ import nkululeko.glob_conf as glob_conf
|
|
7
7
|
import audonnx
|
8
8
|
import numpy as np
|
9
9
|
import audinterface
|
10
|
+
import torch
|
10
11
|
|
11
|
-
|
12
|
-
class AgenderAgenderSet(Featureset):
|
12
|
+
class Agender_agenderSet(Featureset):
|
13
13
|
"""
|
14
14
|
Age and gender predictions from the wav2vec2. based model finetuned on agender, described in the paper
|
15
15
|
"Speech-based Age and Gender Prediction with Transformers"
|
16
16
|
https://arxiv.org/abs/2306.16962
|
17
17
|
"""
|
18
18
|
|
19
|
-
def __init__(self, name, data_df):
|
20
|
-
super().__init__(name, data_df)
|
19
|
+
def __init__(self, name, data_df, feats_type):
|
20
|
+
super().__init__(name, data_df, feats_type)
|
21
21
|
self.model_loaded = False
|
22
|
+
self.feats_type = feats_type
|
22
23
|
|
23
24
|
def _load_model(self):
|
24
25
|
model_url = "https://zenodo.org/record/7761387/files/w2v2-L-robust-6-age-gender.25c844af-1.1.1.zip"
|
@@ -12,7 +12,7 @@ import pandas as pd
|
|
12
12
|
import torch
|
13
13
|
import torchaudio
|
14
14
|
from nkululeko.feat_extract.featureset import Featureset
|
15
|
-
from speechbrain.
|
15
|
+
from speechbrain.inference import EncoderClassifier
|
16
16
|
from tqdm import tqdm
|
17
17
|
|
18
18
|
# from transformers import HubertModel, Wav2Vec2FeatureExtractor
|
@@ -380,11 +380,11 @@ def compute_features(file_index):
|
|
380
380
|
)
|
381
381
|
|
382
382
|
# add pca data
|
383
|
-
|
384
|
-
df = pd.concat([df,
|
383
|
+
pca_data = run_pca(df) # Run jitter and shimmer PCA
|
384
|
+
df = pd.concat([df, pca_data], axis=1) # Add PCA data
|
385
385
|
# reload the data so it's all numbers
|
386
|
-
df.to_csv("processed_results.csv", index=False)
|
387
|
-
df = pd.read_csv("processed_results.csv", header=0)
|
386
|
+
# df.to_csv("processed_results.csv", index=False)
|
387
|
+
# df = pd.read_csv("processed_results.csv", header=0)
|
388
388
|
# df.sort_values('voiceID').head(20)
|
389
389
|
# ## Next we calculate the vocal-tract length estimates
|
390
390
|
|
nkululeko/models/model_gmm.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2
2
|
|
3
3
|
from sklearn import mixture
|
4
4
|
from nkululeko.models.model import Model
|
5
|
-
|
5
|
+
import pandas as pd
|
6
6
|
|
7
7
|
class GMM_model(Model):
|
8
8
|
"""An GMM model"""
|
@@ -12,9 +12,26 @@ class GMM_model(Model):
|
|
12
12
|
def __init__(self, df_train, df_test, feats_train, feats_test):
|
13
13
|
super().__init__(df_train, df_test, feats_train, feats_test)
|
14
14
|
self.name = "gmm"
|
15
|
-
n_components = int(self.util.config_val("MODEL", "GMM_components", "4"))
|
15
|
+
self.n_components = int(self.util.config_val("MODEL", "GMM_components", "4"))
|
16
16
|
covariance_type = self.util.config_val("MODEL", "GMM_covariance_type", "full")
|
17
17
|
self.clf = mixture.GaussianMixture(
|
18
|
-
n_components=n_components,
|
18
|
+
n_components=self.n_components,
|
19
|
+
covariance_type=covariance_type,
|
20
|
+
random_state = 42,
|
19
21
|
)
|
20
22
|
# set up the classifier
|
23
|
+
|
24
|
+
def get_predictions(self):
|
25
|
+
"""Use the predict_proba method of the GaussianMixture model to get
|
26
|
+
probabilities. Create a DataFrame with these probabilities and return
|
27
|
+
it along with the predictions."""
|
28
|
+
probs = self.clf.predict_proba(self.feats_test)
|
29
|
+
preds = self.clf.predict(self.feats_test)
|
30
|
+
|
31
|
+
# Convert predictions to a list
|
32
|
+
preds = preds.tolist()
|
33
|
+
|
34
|
+
# Create a DataFrame for probabilities
|
35
|
+
proba_df = pd.DataFrame(probs, index=self.feats_test.index, columns=range(self.n_components))
|
36
|
+
|
37
|
+
return preds, proba_df
|
nkululeko/multidb.py
CHANGED
@@ -1,3 +1,10 @@
|
|
1
|
+
"""
|
2
|
+
Demonstrates the usage of the ML-experiment framework for the nkululeko MULTIDB project.
|
3
|
+
|
4
|
+
The `main` function is the entry point of the script, which parses command-line arguments, reads a configuration file, and runs the nkululeko or aug_train functions based on the configuration.
|
5
|
+
|
6
|
+
The `plot_heatmap` function generates a heatmap plot of the results and saves it to a file, along with some summary statistics.
|
7
|
+
"""
|
1
8
|
# main.py
|
2
9
|
# Demonstration code to use the ML-experiment framework
|
3
10
|
|
nkululeko/plots.py
CHANGED
@@ -4,14 +4,14 @@ import ast
|
|
4
4
|
import matplotlib.pyplot as plt
|
5
5
|
import numpy as np
|
6
6
|
import pandas as pd
|
7
|
-
from scipy import stats
|
8
7
|
import seaborn as sns
|
8
|
+
from scipy import stats
|
9
9
|
from sklearn.manifold import TSNE
|
10
10
|
|
11
11
|
import nkululeko.glob_conf as glob_conf
|
12
|
+
import nkululeko.utils.stats as su
|
12
13
|
from nkululeko.reporting.defines import Header
|
13
14
|
from nkululeko.reporting.report_item import ReportItem
|
14
|
-
import nkululeko.utils.stats as su
|
15
15
|
from nkululeko.utils.util import Util
|
16
16
|
|
17
17
|
|
@@ -32,9 +32,9 @@ class Plots:
|
|
32
32
|
# plot the distribution of samples per speaker
|
33
33
|
# one up because of the runs
|
34
34
|
fig_dir = self.util.get_path("fig_dir") + "../"
|
35
|
-
self.util.debug(
|
35
|
+
self.util.debug("plotting samples per speaker")
|
36
36
|
if "gender" in df_speakers:
|
37
|
-
filename =
|
37
|
+
filename = "samples_value_counts"
|
38
38
|
ax = (
|
39
39
|
df_speakers.groupby("samplenum")["gender"]
|
40
40
|
.value_counts()
|
@@ -46,7 +46,7 @@ class Plots:
|
|
46
46
|
rot=0,
|
47
47
|
)
|
48
48
|
)
|
49
|
-
ax.set_ylabel(
|
49
|
+
ax.set_ylabel("number of speakers")
|
50
50
|
ax.set_xlabel("number of samples")
|
51
51
|
self.save_plot(
|
52
52
|
ax,
|
@@ -58,7 +58,7 @@ class Plots:
|
|
58
58
|
|
59
59
|
# fig.clear()
|
60
60
|
else:
|
61
|
-
filename =
|
61
|
+
filename = "samples_value_counts"
|
62
62
|
ax = (
|
63
63
|
df_speakers["samplenum"]
|
64
64
|
.value_counts()
|
@@ -265,7 +265,8 @@ class Plots:
|
|
265
265
|
"""Plot relation of categorical distribution with continuous."""
|
266
266
|
dist_type = self.util.config_val("EXPL", "dist_type", "hist")
|
267
267
|
cats, cat_str, es = su.get_effect_size(df, cat_col, cont_col)
|
268
|
-
|
268
|
+
model_type = self.util.get_model_type()
|
269
|
+
if dist_type == "hist" and model_type != "tree":
|
269
270
|
ax = sns.histplot(df, x=cont_col, hue=cat_col, kde=True)
|
270
271
|
caption = f"{ylab} {df.shape[0]}. {cat_str} ({cats}):" f" {es}"
|
271
272
|
ax.set_title(caption)
|
@@ -489,7 +490,7 @@ class Plots:
|
|
489
490
|
glob_conf.report.add_item(
|
490
491
|
ReportItem(
|
491
492
|
Header.HEADER_EXPLORE,
|
492
|
-
|
493
|
+
"Scatter plot",
|
493
494
|
f"using {dimred_type}",
|
494
495
|
filename,
|
495
496
|
)
|
@@ -561,8 +562,8 @@ class Plots:
|
|
561
562
|
glob_conf.report.add_item(
|
562
563
|
ReportItem(
|
563
564
|
Header.HEADER_EXPLORE,
|
564
|
-
|
565
|
-
|
565
|
+
"Tree plot",
|
566
|
+
"for feature importance",
|
566
567
|
filename,
|
567
568
|
)
|
568
569
|
)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.88.
|
3
|
+
Version: 0.88.11
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -192,8 +192,6 @@ type = svm
|
|
192
192
|
[EXPL]
|
193
193
|
model = tree
|
194
194
|
plot_tree = True
|
195
|
-
[PLOT]
|
196
|
-
combine_per_speaker = mode
|
197
195
|
```
|
198
196
|
Read the [Hello World example](#hello-world-example) for initial usage with Emo-DB dataset.
|
199
197
|
|
@@ -204,9 +202,10 @@ All of them take *--config <my_config.ini>* as an argument.
|
|
204
202
|
* **nkululeko.nkululeko**: do machine learning experiments combining features and learners
|
205
203
|
* **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
|
206
204
|
* *configurations*: which experiments to combine
|
207
|
-
* *--method* (optional): majority_voting, mean, max, sum,
|
205
|
+
* *--method* (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
|
208
206
|
* *--threshold*: uncertainty threshold (1.0 means no threshold)
|
209
|
-
* *--
|
207
|
+
* *--weightes*: weights for performance_weighted method (could be from previous UAR, ACC)
|
208
|
+
* *--outfile* (optional): name of CSV file for output (default: ensemble_result.csv)
|
210
209
|
* *--no_labels* (optional): indicate that no ground truth is given
|
211
210
|
* **nkululeko.multidb**: do [multiple experiments](http://blog.syntheticspeech.de/2024/01/02/nkululeko-compare-several-databases/), comparing several databases cross and in itself
|
212
211
|
* **nkululeko.demo**: [demo the current best model](http://blog.syntheticspeech.de/2022/01/24/nkululeko-try-out-demo-a-trained-model/) on the command line
|
@@ -360,6 +359,15 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
360
359
|
Changelog
|
361
360
|
=========
|
362
361
|
|
362
|
+
Version 0.88.11
|
363
|
+
--------------
|
364
|
+
* removed hack in Praat script
|
365
|
+
|
366
|
+
Version 0.88.10
|
367
|
+
--------------
|
368
|
+
* SVM C val defaults to 1
|
369
|
+
* fixed agender_agender naming bug
|
370
|
+
|
363
371
|
Version 0.88.9
|
364
372
|
--------------
|
365
373
|
* added performance_weighted ensemble
|
@@ -2,23 +2,23 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
|
3
3
|
nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
|
4
4
|
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=vAMfrlfXY0Xl1htJgzd9fGZGvioFWzmphB4SRJLDRfQ,40
|
6
6
|
nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
|
7
7
|
nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
|
8
8
|
nkululeko/demo_predictor.py,sha256=zs1bjhpnKuNCPLJeiyDm19ME1NEDOQT3QNeyVKJq9Yc,4882
|
9
9
|
nkululeko/ensemble.py,sha256=cVz8hWd2m7poyS0lTIfrsha0K8U-hd6eiBWMqDOAlt8,12669
|
10
10
|
nkululeko/experiment.py,sha256=L4PzoScPLG2xTyniVy9evcBy_8CIe3RTeTEUVTqiuvQ,31186
|
11
|
-
nkululeko/explore.py,sha256=
|
11
|
+
nkululeko/explore.py,sha256=_GOgcRaPvh2xBbKPAkSJjYzgHhD_xb3ZCB6M1MPA6ao,3867
|
12
12
|
nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
|
13
13
|
nkululeko/feature_extractor.py,sha256=UnspIWz3XrNhKnBBhWZkH2bHvD-sROtrQVqB1JvkUyw,4088
|
14
14
|
nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,3474
|
15
15
|
nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
|
16
16
|
nkululeko/glob_conf.py,sha256=KL9YJQTHvTztxo1vr25qRRgaPnx4NTg0XrdbovKGMmw,525
|
17
17
|
nkululeko/modelrunner.py,sha256=cKYD9a7MRoBxfqUy3X8kf6rGTYho-33In8I9YkzMOo8,11196
|
18
|
-
nkululeko/multidb.py,sha256=
|
18
|
+
nkululeko/multidb.py,sha256=CCjmVsZyvydgOztFlaeBvOJH8nsvU-sPQdFAw8-q0U4,6752
|
19
19
|
nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
|
20
20
|
nkululeko/nkululeko.py,sha256=Kn3s2E3yyH8cJ7z6lkMxrnqtCxTu7-qfe9Zr_ONTD5g,1968
|
21
|
-
nkululeko/plots.py,sha256=
|
21
|
+
nkululeko/plots.py,sha256=gfNy9Eu2PhSaykMazBPThcYS5o5KwuQwY2jshAUK5Rk,22965
|
22
22
|
nkululeko/predict.py,sha256=sF091sSSLnEWcISx9ZcULLie3tY5XeFsQJd6b3vrxFg,2409
|
23
23
|
nkululeko/resample.py,sha256=2d9eao_0sLrGZ_KSl8OVKsPor3BkFrlmMhrpB9WelIs,4267
|
24
24
|
nkululeko/runmanager.py,sha256=xvxL5a9d3jtGFqx0Z3nyyxowA368uNyP0ZitO8kxIIE,7581
|
@@ -50,7 +50,7 @@ nkululeko/data/dataset.py,sha256=xaawk5QthuVStWjHWTFBtorcIe71lbPQgC6mHzSXGeI,292
|
|
50
50
|
nkululeko/data/dataset_csv.py,sha256=UGEpi__eT2KFS6Fop6N4HkMrzO-u5VP71gt44kwZavo,4588
|
51
51
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
52
52
|
nkululeko/feat_extract/feats_agender.py,sha256=sHyvxxlWXv1QGYXHGHIYEQK7X39eifSVie0tu-zBG3M,3189
|
53
|
-
nkululeko/feat_extract/feats_agender_agender.py,sha256=
|
53
|
+
nkululeko/feat_extract/feats_agender_agender.py,sha256=19NoRT0KJ8WoZ3EabTYexXymD7bDy58-H20jYmdqjD0,3498
|
54
54
|
nkululeko/feat_extract/feats_analyser.py,sha256=Y9hMpZ9WsQOrxTP3B1diHnzMeOgwbVpVFWVlIyhHMJs,12722
|
55
55
|
nkululeko/feat_extract/feats_ast.py,sha256=ycJn5eSVOxcEpmeHVk0FPB8q5XiTC8VSKz61L9n0Wa4,4638
|
56
56
|
nkululeko/feat_extract/feats_auddim.py,sha256=VlzKKXTXa5kjLgQBWyEFy-daIyU1SkOwCCOIhKsWCvE,3162
|
@@ -65,14 +65,14 @@ nkululeko/feat_extract/feats_oxbow.py,sha256=CmIG9cbHTJTJVnzgCPdQpYpnlewWExpsr5Z
|
|
65
65
|
nkululeko/feat_extract/feats_praat.py,sha256=kZrS6srzH7WoWEd2prp1Dxw6g9JklFQGTNq5zzPpHzg,3105
|
66
66
|
nkululeko/feat_extract/feats_snr.py,sha256=9dqZ-4RpK98iJEssM3ttozNd18LWlZYM_QVXvp5xDcs,2829
|
67
67
|
nkululeko/feat_extract/feats_spectra.py,sha256=5Pex8awIQC3cjQRHSu4NQFmg4quamG0RL3V3Yd0pJHs,3670
|
68
|
-
nkululeko/feat_extract/feats_spkrec.py,sha256=
|
68
|
+
nkululeko/feat_extract/feats_spkrec.py,sha256=j_-h2NfLa3qes6vOFrNiIfPc5HmAxDpMpMlw5QqSBAM,4813
|
69
69
|
nkululeko/feat_extract/feats_squim.py,sha256=Y31YmDmscuG0YozvxyBZIutO3id8t7IZJWCfKucw-6M,4617
|
70
70
|
nkululeko/feat_extract/feats_trill.py,sha256=K2ahhdpwpjgg3WZS1POg3UMP2U44i8cLZZvn5Rq7fUI,3228
|
71
71
|
nkululeko/feat_extract/feats_wav2vec2.py,sha256=XyxD4NcrF4VFWSeHkXCKWdEOdr8VMzgVUz8N4mwhdyo,5248
|
72
72
|
nkululeko/feat_extract/feats_wavlm.py,sha256=O9cfc39VF5aPJRRATKb37pHT4W11i2cu5O1mY9LOjIA,4755
|
73
73
|
nkululeko/feat_extract/feats_whisper.py,sha256=0N7Vj65OVi2PNoB_NrDjWT5lP6xZNKxFOZZIoxkJvcA,4533
|
74
74
|
nkululeko/feat_extract/featureset.py,sha256=ll7tyKAdr--TDShyOYJg0FB4I9NqBq0Ni1k_kUJ-2Vw,1541
|
75
|
-
nkululeko/feat_extract/feinberg_praat.py,sha256=
|
75
|
+
nkululeko/feat_extract/feinberg_praat.py,sha256=_8MwVikn0vjcyv1ygjScfjIJijOr_IN-o2ZQW1VVZtg,21310
|
76
76
|
nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
77
77
|
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
78
78
|
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
@@ -80,7 +80,7 @@ nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
|
|
80
80
|
nkululeko/models/model.py,sha256=JXrd0fbU0JhTxUDrs0kOEHF9rtPJBxBeO6zcrHAzk8k,12475
|
81
81
|
nkululeko/models/model_bayes.py,sha256=WJFZ8wFKwWATz6MhmjeZIi1Pal1viU549WL_PjXDSy8,406
|
82
82
|
nkululeko/models/model_cnn.py,sha256=NreR2LrKMyBYHyIJEL6wm3UQ4mA5HleZfpUyA5wNYpA,10629
|
83
|
-
nkululeko/models/model_gmm.py,sha256=
|
83
|
+
nkululeko/models/model_gmm.py,sha256=m1ONBql-T0La8Cv0awB7lPUG-kgbygoWmbuqzDzmj-Y,1337
|
84
84
|
nkululeko/models/model_knn.py,sha256=KlnrJfwiVnmXZrAaYGFrKA2f5sznvTzSJQ8-5etOP0k,599
|
85
85
|
nkululeko/models/model_knn_reg.py,sha256=j7YFfVm6xOR2d9yBYdQiwwqYfqkX0JynX_qLCvkr1fk,610
|
86
86
|
nkululeko/models/model_lin_reg.py,sha256=0D7mSnSwK82lNWDMwHYRyq3FmGa6y-DHDGg4qUe85q4,422
|
@@ -107,8 +107,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
107
107
|
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
108
108
|
nkululeko/utils/stats.py,sha256=eC9dMO-by6CDnGLHDBQu-2B4-BudZNJ0nnWGhKYdUMA,2968
|
109
109
|
nkululeko/utils/util.py,sha256=KMxPzb0HN3XuNzAd7Kn3M3Nq91-0sDrAAEBgDKryCdo,16688
|
110
|
-
nkululeko-0.88.
|
111
|
-
nkululeko-0.88.
|
112
|
-
nkululeko-0.88.
|
113
|
-
nkululeko-0.88.
|
114
|
-
nkululeko-0.88.
|
110
|
+
nkululeko-0.88.11.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
111
|
+
nkululeko-0.88.11.dist-info/METADATA,sha256=siesWp8FeTPWYYvZRnoiwVvN4js0m_Rj3WLCryoyMko,40394
|
112
|
+
nkululeko-0.88.11.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
|
113
|
+
nkululeko-0.88.11.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
114
|
+
nkululeko-0.88.11.dist-info/RECORD,,
|
File without changes
|
File without changes
|