nkululeko 0.88.6__py3-none-any.whl → 0.88.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.88.6"
1
+ VERSION="0.88.8"
2
2
  SAMPLING_RATE = 16000
nkululeko/data/dataset.py CHANGED
@@ -429,6 +429,14 @@ class Dataset:
429
429
  else:
430
430
  self.util.error(f"unknown split strategy: {split_strategy}")
431
431
 
432
+ # check if train or test set should be ignored
433
+ as_test = eval(self.util.config_val_data(self.name, "as_test", "False"))
434
+ if as_test:
435
+ self.df_train = pd.DataFrame()
436
+ as_train = eval(self.util.config_val_data(self.name, "as_train", "False"))
437
+ if as_train:
438
+ self.df_test = pd.DataFrame()
439
+
432
440
  if self.df_test.shape[0] > 0:
433
441
  self.df_test = self.finish_up(self.df_test, storage_test)
434
442
  if self.df_train.shape[0] > 0:
nkululeko/experiment.py CHANGED
@@ -5,13 +5,13 @@ import pickle
5
5
  import random
6
6
  import time
7
7
 
8
- import audeer
9
- import audformat
10
8
  import numpy as np
11
9
  import pandas as pd
12
10
  from sklearn.preprocessing import LabelEncoder
13
11
 
14
- import nkululeko.glob_conf as glob_conf
12
+ import audeer
13
+ import audformat
14
+
15
15
  from nkululeko.data.dataset import Dataset
16
16
  from nkululeko.data.dataset_csv import Dataset_CSV
17
17
  from nkululeko.demo_predictor import Demo_predictor
@@ -19,6 +19,7 @@ from nkululeko.feat_extract.feats_analyser import FeatureAnalyser
19
19
  from nkululeko.feature_extractor import FeatureExtractor
20
20
  from nkululeko.file_checker import FileChecker
21
21
  from nkululeko.filter_data import DataFilter
22
+ import nkululeko.glob_conf as glob_conf
22
23
  from nkululeko.plots import Plots
23
24
  from nkululeko.reporting.report import Report
24
25
  from nkululeko.runmanager import Runmanager
@@ -185,9 +186,7 @@ class Experiment:
185
186
  f"reusing previously stored {storage_test} and {storage_train}"
186
187
  )
187
188
  self.df_test = self._import_csv(storage_test)
188
- # print(f"df_test: {self.df_test}")
189
189
  self.df_train = self._import_csv(storage_train)
190
- # print(f"df_train: {self.df_train}")
191
190
  else:
192
191
  self.df_train, self.df_test = pd.DataFrame(), pd.DataFrame()
193
192
  for d in self.datasets.values():
nkululeko/multidb.py CHANGED
@@ -36,6 +36,10 @@ def main(src_dir):
36
36
  config.read(config_file)
37
37
  datasets = config["EXP"]["databases"]
38
38
  datasets = ast.literal_eval(datasets)
39
+ try:
40
+ use_splits = eval(config["EXP"]["use_splits"])
41
+ except KeyError:
42
+ use_splits = False
39
43
  dim = len(datasets)
40
44
  results = np.zeros(dim * dim).reshape([dim, dim])
41
45
  last_epochs = np.zeros(dim * dim).reshape([dim, dim])
@@ -72,15 +76,23 @@ def main(src_dir):
72
76
  config["DATA"][
73
77
  "databases"
74
78
  ] = f"['{train}', '{test}', {extra_trains_1}]"
75
- config["DATA"][f"{test}.split_strategy"] = "test"
76
- config["DATA"][f"{train}.split_strategy"] = "train"
79
+ if use_splits:
80
+ config["DATA"][f"{test}.as_test"] = "True"
81
+ config["DATA"][f"{train}.as_train"] = "True"
82
+ else:
83
+ config["DATA"][f"{test}.split_strategy"] = "test"
84
+ config["DATA"][f"{train}.split_strategy"] = "train"
77
85
  extra_trains_2 = ast.literal_eval(extra_trains)
78
86
  for extra_train in extra_trains_2:
79
87
  config["DATA"][f"{extra_train}.split_strategy"] = "train"
80
88
  else:
81
89
  config["DATA"]["databases"] = f"['{train}', '{test}']"
82
- config["DATA"][f"{test}.split_strategy"] = "test"
83
- config["DATA"][f"{train}.split_strategy"] = "train"
90
+ if use_splits:
91
+ config["DATA"][f"{test}.as_test"] = "True"
92
+ config["DATA"][f"{train}.as_train"] = "True"
93
+ else:
94
+ config["DATA"][f"{test}.split_strategy"] = "test"
95
+ config["DATA"][f"{train}.split_strategy"] = "train"
84
96
  config["EXP"]["name"] = f"{train}_vs_{test}"
85
97
 
86
98
  tmp_config = "tmp.ini"
@@ -116,6 +128,8 @@ def plot_heatmap(results, last_epochs, labels, name, config, datasets):
116
128
  colsums = results.mean(axis=0)
117
129
  vfunc = np.vectorize(trunc_to_three)
118
130
  colsums = vfunc(colsums)
131
+ rowsums = results.mean(axis=1)
132
+ rowsums = vfunc(rowsums)
119
133
  colsums_epochs = last_epochs.mean(axis=0)
120
134
  colsums_epochs = vfunc(colsums_epochs)
121
135
  res_dir = config["EXP"]["root"]
@@ -127,7 +141,9 @@ def plot_heatmap(results, last_epochs, labels, name, config, datasets):
127
141
  data_s = ", ".join(datasets)
128
142
  text_file.write(f"{data_s}\n")
129
143
  colsums = np.array2string(colsums, separator=", ")
130
- text_file.write(f"column sums\n{colsums}\n")
144
+ text_file.write(f"column means\n{colsums}\n")
145
+ rowsums = np.array2string(rowsums, separator=", ")
146
+ text_file.write(f"rows means\n{rowsums}\n")
131
147
  text_file.write("all results\n")
132
148
  text_file.write(repr(results))
133
149
  text_file.write("\n")
nkululeko/utils/util.py CHANGED
@@ -6,13 +6,12 @@ import os.path
6
6
  import pickle
7
7
  import sys
8
8
 
9
- # from sysconfig import get_config_h_filename
10
- # from turtle import setup
11
- import audeer
12
- import audformat
13
9
  import numpy as np
14
10
  import pandas as pd
15
11
 
12
+ import audeer
13
+ import audformat
14
+
16
15
 
17
16
  class Util:
18
17
  # a list of words that need not to be warned upon if default values are
@@ -116,8 +115,8 @@ class Util:
116
115
  return dir_name
117
116
 
118
117
  def config_val_data(self, dataset, key, default):
119
- """
120
- Retrieve a configuration value for datasets.
118
+ """Retrieve a configuration value for datasets.
119
+
121
120
  If the value is present in the experiment configuration it will be used, else
122
121
  we look in a global file specified by the root_folders value.
123
122
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.88.6
3
+ Version: 0.88.8
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -360,6 +360,14 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
360
360
  Changelog
361
361
  =========
362
362
 
363
+ Version 0.88.8
364
+ --------------
365
+ * some cosmetics
366
+
367
+ Version 0.88.7
368
+ --------------
369
+ * added use_splits for multidb
370
+
363
371
  Version 0.88.6
364
372
  --------------
365
373
  * added test speaker assign
@@ -2,12 +2,12 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
3
  nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=HFKr4pZomwthK3M6yBJLjNzKCEuB1PvMeUwKrHm2cL8,39
5
+ nkululeko/constants.py,sha256=3Nmhw17pUf3RwL5DNe30tecc8pfUy330T6zOkAxxcPI,39
6
6
  nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
7
7
  nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
8
  nkululeko/demo_predictor.py,sha256=zs1bjhpnKuNCPLJeiyDm19ME1NEDOQT3QNeyVKJq9Yc,4882
9
9
  nkululeko/ensemble.py,sha256=rUHg8YmD6L8Ktt2T5M6iwsWVWbpCnfiynhHdN22bLRQ,11873
10
- nkululeko/experiment.py,sha256=wXZnb_cfOqF8b0Zqzu2bbrEgCCpG_zPkDbD-Usw5sRs,31283
10
+ nkululeko/experiment.py,sha256=L4PzoScPLG2xTyniVy9evcBy_8CIe3RTeTEUVTqiuvQ,31186
11
11
  nkululeko/explore.py,sha256=lDzRoW_Taa5u4BBABZLD89BcQWnYlrftJR4jgt1yyj0,2609
12
12
  nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
13
13
  nkululeko/feature_extractor.py,sha256=UnspIWz3XrNhKnBBhWZkH2bHvD-sROtrQVqB1JvkUyw,4088
@@ -15,7 +15,7 @@ nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,347
15
15
  nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
16
16
  nkululeko/glob_conf.py,sha256=KL9YJQTHvTztxo1vr25qRRgaPnx4NTg0XrdbovKGMmw,525
17
17
  nkululeko/modelrunner.py,sha256=cKYD9a7MRoBxfqUy3X8kf6rGTYho-33In8I9YkzMOo8,11196
18
- nkululeko/multidb.py,sha256=fG3VukEWP1vreVN4gB1IRXxwwg4jLftsSEYtu0o1f78,5634
18
+ nkululeko/multidb.py,sha256=1X2vZwDHf6HuYKCoIGDP34FECMZ2mcGNZ6-cFYZFnIQ,6332
19
19
  nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
20
20
  nkululeko/nkululeko.py,sha256=Kn3s2E3yyH8cJ7z6lkMxrnqtCxTu7-qfe9Zr_ONTD5g,1968
21
21
  nkululeko/plots.py,sha256=WsI_dtPKfrYPsKymHRmIhqj33aZzTcE8fF_EwLkm_5A,22899
@@ -46,7 +46,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvd
46
46
  nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
47
47
  nkululeko/autopredict/estimate_snr.py,sha256=S-bpS0xFkwWc4Ch75UrjbS8y538lQ0U3g_iLRFXureY,5048
48
48
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
- nkululeko/data/dataset.py,sha256=o2xuluErZg0I8qkR0YtMu2UdewdcgSdRUvUhRXDMwuI,28940
49
+ nkululeko/data/dataset.py,sha256=xaawk5QthuVStWjHWTFBtorcIe71lbPQgC6mHzSXGeI,29286
50
50
  nkululeko/data/dataset_csv.py,sha256=UGEpi__eT2KFS6Fop6N4HkMrzO-u5VP71gt44kwZavo,4588
51
51
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
52
  nkululeko/feat_extract/feats_agender.py,sha256=sHyvxxlWXv1QGYXHGHIYEQK7X39eifSVie0tu-zBG3M,3189
@@ -106,9 +106,9 @@ nkululeko/segmenting/seg_silero.py,sha256=lLytS38KzARS17omwv8VBw-zz60RVSXGSvZ5Ev
106
106
  nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
107
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
108
108
  nkululeko/utils/stats.py,sha256=eC9dMO-by6CDnGLHDBQu-2B4-BudZNJ0nnWGhKYdUMA,2968
109
- nkululeko/utils/util.py,sha256=y-pdrjovT8yGtBTJ3ifIpTcF0fPnoz8UKbuLIZ0efpc,16768
110
- nkululeko-0.88.6.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
- nkululeko-0.88.6.dist-info/METADATA,sha256=7UE8yEbdfJo_SU4xeE3gLlaLkfwC2NEg7w1nou8eGLQ,39955
112
- nkululeko-0.88.6.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
113
- nkululeko-0.88.6.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
- nkululeko-0.88.6.dist-info/RECORD,,
109
+ nkululeko/utils/util.py,sha256=KMxPzb0HN3XuNzAd7Kn3M3Nq91-0sDrAAEBgDKryCdo,16688
110
+ nkululeko-0.88.8.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
+ nkululeko-0.88.8.dist-info/METADATA,sha256=0aeD4P8CSWXH4LmnWFHUNEmFTdHvb0BN5YYhyoR2W6c,40065
112
+ nkululeko-0.88.8.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
113
+ nkululeko-0.88.8.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
+ nkululeko-0.88.8.dist-info/RECORD,,