nkululeko 0.88.10__py3-none-any.whl → 0.88.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.88.10"
1
+ VERSION="0.88.11"
2
2
  SAMPLING_RATE = 16000
@@ -380,11 +380,11 @@ def compute_features(file_index):
380
380
  )
381
381
 
382
382
  # add pca data
383
- pcaData = run_pca(df) # Run jitter and shimmer PCA
384
- df = pd.concat([df, pcaData], axis=1) # Add PCA data
383
+ pca_data = run_pca(df) # Run jitter and shimmer PCA
384
+ df = pd.concat([df, pca_data], axis=1) # Add PCA data
385
385
  # reload the data so it's all numbers
386
- df.to_csv("processed_results.csv", index=False)
387
- df = pd.read_csv("processed_results.csv", header=0)
386
+ # df.to_csv("processed_results.csv", index=False)
387
+ # df = pd.read_csv("processed_results.csv", header=0)
388
388
  # df.sort_values('voiceID').head(20)
389
389
  # ## Next we calculate the vocal-tract length estimates
390
390
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.88.10
3
+ Version: 0.88.11
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -192,8 +192,6 @@ type = svm
192
192
  [EXPL]
193
193
  model = tree
194
194
  plot_tree = True
195
- [PLOT]
196
- combine_per_speaker = mode
197
195
  ```
198
196
  Read the [Hello World example](#hello-world-example) for initial usage with Emo-DB dataset.
199
197
 
@@ -361,6 +359,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
361
359
  Changelog
362
360
  =========
363
361
 
362
+ Version 0.88.11
363
+ --------------
364
+ * removed hack in Praat script
365
+
364
366
  Version 0.88.10
365
367
  --------------
366
368
  * SVM C val defaults to 1
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
3
  nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=8iRgPx-MBB6fcD0RICfYCOaSZFjH2hPcLRqFhgbTcTU,40
5
+ nkululeko/constants.py,sha256=vAMfrlfXY0Xl1htJgzd9fGZGvioFWzmphB4SRJLDRfQ,40
6
6
  nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
7
7
  nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
8
  nkululeko/demo_predictor.py,sha256=zs1bjhpnKuNCPLJeiyDm19ME1NEDOQT3QNeyVKJq9Yc,4882
@@ -72,7 +72,7 @@ nkululeko/feat_extract/feats_wav2vec2.py,sha256=XyxD4NcrF4VFWSeHkXCKWdEOdr8VMzgV
72
72
  nkululeko/feat_extract/feats_wavlm.py,sha256=O9cfc39VF5aPJRRATKb37pHT4W11i2cu5O1mY9LOjIA,4755
73
73
  nkululeko/feat_extract/feats_whisper.py,sha256=0N7Vj65OVi2PNoB_NrDjWT5lP6xZNKxFOZZIoxkJvcA,4533
74
74
  nkululeko/feat_extract/featureset.py,sha256=ll7tyKAdr--TDShyOYJg0FB4I9NqBq0Ni1k_kUJ-2Vw,1541
75
- nkululeko/feat_extract/feinberg_praat.py,sha256=EP9pMALjlKdiYInLQdrZ7MmE499Mq-ISRCgqbqL3Rxc,21304
75
+ nkululeko/feat_extract/feinberg_praat.py,sha256=_8MwVikn0vjcyv1ygjScfjIJijOr_IN-o2ZQW1VVZtg,21310
76
76
  nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
77
  nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
78
78
  nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
@@ -107,8 +107,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
107
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
108
108
  nkululeko/utils/stats.py,sha256=eC9dMO-by6CDnGLHDBQu-2B4-BudZNJ0nnWGhKYdUMA,2968
109
109
  nkululeko/utils/util.py,sha256=KMxPzb0HN3XuNzAd7Kn3M3Nq91-0sDrAAEBgDKryCdo,16688
110
- nkululeko-0.88.10.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
- nkululeko-0.88.10.dist-info/METADATA,sha256=EABiFmDYNwCs_0_5L2XlGqcdxA4bfZhWKmL1ZkiNQC8,40364
112
- nkululeko-0.88.10.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
113
- nkululeko-0.88.10.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
- nkululeko-0.88.10.dist-info/RECORD,,
110
+ nkululeko-0.88.11.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
+ nkululeko-0.88.11.dist-info/METADATA,sha256=siesWp8FeTPWYYvZRnoiwVvN4js0m_Rj3WLCryoyMko,40394
112
+ nkululeko-0.88.11.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
113
+ nkululeko-0.88.11.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
+ nkululeko-0.88.11.dist-info/RECORD,,