nkululeko 0.82.2__py3-none-any.whl → 0.82.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.82.2"
1
+ VERSION="0.82.3"
2
2
  SAMPLING_RATE = 16000
@@ -22,7 +22,16 @@ class Dataset_CSV(Dataset):
22
22
  # data_file = os.path.join(exp_root, data_file)
23
23
  root = os.path.dirname(data_file)
24
24
  audio_path = self.util.config_val_data(self.name, "audio_path", "")
25
- df = audformat.utils.read_csv(data_file)
25
+ df = pd.read_csv(data_file)
26
+ # special treatment for segmented dataframes with only one column:
27
+ if "start" in df.columns and len(df.columns) == 4:
28
+ index = audformat.segmented_index(
29
+ df.file.values, df.start.values, df.end.values
30
+ )
31
+ df = df.set_index(index)
32
+ df = df.drop(columns=["file", "start", "end"])
33
+ else:
34
+ df = audformat.utils.read_csv(data_file)
26
35
  if isinstance(df, pd.Series):
27
36
  df = df.to_frame()
28
37
  rename_cols = self.util.config_val_data(self.name, "colnames", False)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.82.2
3
+ Version: 0.82.3
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -333,6 +333,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
333
333
  Changelog
334
334
  =========
335
335
 
336
+ Version 0.82.3
337
+ --------------
338
+ * fixed another audformat peculiarity to interprete time values as nanoseconds
339
+
336
340
  Version 0.82.2
337
341
  --------------
338
342
  * fixed audformat peculiarity that dataframes can have only one column
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
3
  nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=gPbZOExm1t31PbhB4n-QVZ_gqlY3LMOkTLs8QP0Uucg,39
5
+ nkululeko/constants.py,sha256=93xLMo0067bKyjC_8lPes0HKyZlFzaIRqiHGoBdO0_k,39
6
6
  nkululeko/demo.py,sha256=55kNFA2helMhOxD4yZuKg1JWDtlUUpxm-6uAnroIydI,3264
7
7
  nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
8
  nkululeko/demo_predictor.py,sha256=-ggSHc3DXxRzjzcGB4qFBOMvKsfUdTkkde50BDrS9dA,4755
@@ -46,7 +46,7 @@ nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzW
46
46
  nkululeko/autopredict/estimate_snr.py,sha256=S-bpS0xFkwWc4Ch75UrjbS8y538lQ0U3g_iLRFXureY,5048
47
47
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
48
  nkululeko/data/dataset.py,sha256=JGzMD6HIvkFkYBekmbmslIKc5ADaCj06T-8gpqH_kFo,27650
49
- nkululeko/data/dataset_csv.py,sha256=AinRsdR_WTaZ9emhHXzDgjWvQJqBYzFnqD8IVHKB4TQ,3476
49
+ nkululeko/data/dataset_csv.py,sha256=uLa7jW4w2ft299NkpXZMD361kPHF8oSYoIZ_ucxhuOM,3884
50
50
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  nkululeko/feat_extract/feats_agender.py,sha256=Qm69G4kqAyTVVk7wwRgrXlNwGaDMGRYyKGpuf0vOEgM,3113
52
52
  nkululeko/feat_extract/feats_agender_agender.py,sha256=5dA7YA-YGxODovMC7ynMk3bnpPjfs0ApvSfjqvoSZY0,3346
@@ -104,8 +104,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
104
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
105
105
  nkululeko/utils/stats.py,sha256=1yUq0FTOyqkU8TwUocJRYdJaqMU5SlOBBRUun9STo2M,2829
106
106
  nkululeko/utils/util.py,sha256=_Z6OMJ3f-8TdETW9eqJYY5hwNRS5XCt9azzRnqoTTZE,12330
107
- nkululeko-0.82.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
108
- nkululeko-0.82.2.dist-info/METADATA,sha256=MasMoxHlcUmYgyaDu1CyNrmnh4vUVJVb0J6EqpV0ta0,35787
109
- nkululeko-0.82.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
110
- nkululeko-0.82.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
111
- nkululeko-0.82.2.dist-info/RECORD,,
107
+ nkululeko-0.82.3.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
108
+ nkululeko-0.82.3.dist-info/METADATA,sha256=y5dOASC7DBecvYidUNzk8fB9y2aUIYdx3chocURYRmo,35897
109
+ nkululeko-0.82.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
110
+ nkululeko-0.82.3.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
111
+ nkululeko-0.82.3.dist-info/RECORD,,