nkululeko 0.82.0__py3-none-any.whl → 0.82.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.82.0"
1
+ VERSION="0.82.2"
2
2
  SAMPLING_RATE = 16000
@@ -23,6 +23,8 @@ class Dataset_CSV(Dataset):
23
23
  root = os.path.dirname(data_file)
24
24
  audio_path = self.util.config_val_data(self.name, "audio_path", "")
25
25
  df = audformat.utils.read_csv(data_file)
26
+ if isinstance(df, pd.Series):
27
+ df = df.to_frame()
26
28
  rename_cols = self.util.config_val_data(self.name, "colnames", False)
27
29
  if rename_cols:
28
30
  col_dict = ast.literal_eval(rename_cols)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.82.0
3
+ Version: 0.82.2
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -42,8 +42,7 @@ Requires-Dist: umap-learn
42
42
  Requires-Dist: xgboost
43
43
  Requires-Dist: pylatex
44
44
 
45
- usage: nkuluflag.py [-h] [--config CONFIG] [--data [DATA ...]] [--label [LABEL ...]] [--tuning_params [TUNING_PARAMS ...]] [--layers [LAYERS ...]] [--model MODEL] [--feat FEAT] [--set SET]
46
- [--with_os WITH_OS] [--target TARGET] [--epochs EPOCHS] [--runs RUNS] [--learning_rate LEARNING_RATE] [--drop DROP]
45
+
47
46
  - [Overview](#overview)
48
47
  - [Confusion matrix](#confusion-matrix)
49
48
  - [Epoch progression](#epoch-progression)
@@ -256,6 +255,7 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
256
255
  * [Oversample the training set](http://blog.syntheticspeech.de/2023/11/16/nkululeko-oversample-the-training-set/)
257
256
  * [Compare several databases](http://blog.syntheticspeech.de/2024/01/02/nkululeko-compare-several-databases/)
258
257
  * [Tweak the target variable for database comparison](http://blog.syntheticspeech.de/2024/03/13/nkululeko-how-to-tweak-the-target-variable-for-database-comparison/)
258
+ * [How to run multiple experiments in one go](http://blog.syntheticspeech.de/2022/03/28/how-to-run-multiple-experiments-in-one-go-with-nkululeko/)
259
259
 
260
260
  ### <a name="helloworld">Hello World example</a>
261
261
  * NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and here is the same [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
@@ -333,6 +333,14 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
333
333
  Changelog
334
334
  =========
335
335
 
336
+ Version 0.82.2
337
+ --------------
338
+ * fixed audformat peculiarity that dataframes can have only one column
339
+
340
+ Version 0.82.1
341
+ --------------
342
+ * Add more test for GC action
343
+
336
344
  Version 0.82.0
337
345
  --------------
338
346
  * added nkuluflag module
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
3
  nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=pJeMUKDoX39rCCwLSX0poKEE1FLIa6YngxfdeUqE_T0,39
5
+ nkululeko/constants.py,sha256=gPbZOExm1t31PbhB4n-QVZ_gqlY3LMOkTLs8QP0Uucg,39
6
6
  nkululeko/demo.py,sha256=55kNFA2helMhOxD4yZuKg1JWDtlUUpxm-6uAnroIydI,3264
7
7
  nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
8
  nkululeko/demo_predictor.py,sha256=-ggSHc3DXxRzjzcGB4qFBOMvKsfUdTkkde50BDrS9dA,4755
@@ -46,7 +46,7 @@ nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzW
46
46
  nkululeko/autopredict/estimate_snr.py,sha256=S-bpS0xFkwWc4Ch75UrjbS8y538lQ0U3g_iLRFXureY,5048
47
47
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
48
  nkululeko/data/dataset.py,sha256=JGzMD6HIvkFkYBekmbmslIKc5ADaCj06T-8gpqH_kFo,27650
49
- nkululeko/data/dataset_csv.py,sha256=v3lSjF23EVjoP460QOfhdcqbWAlBQWlBOuaYujZoS4s,3407
49
+ nkululeko/data/dataset_csv.py,sha256=AinRsdR_WTaZ9emhHXzDgjWvQJqBYzFnqD8IVHKB4TQ,3476
50
50
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  nkululeko/feat_extract/feats_agender.py,sha256=Qm69G4kqAyTVVk7wwRgrXlNwGaDMGRYyKGpuf0vOEgM,3113
52
52
  nkululeko/feat_extract/feats_agender_agender.py,sha256=5dA7YA-YGxODovMC7ynMk3bnpPjfs0ApvSfjqvoSZY0,3346
@@ -104,8 +104,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
104
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
105
105
  nkululeko/utils/stats.py,sha256=1yUq0FTOyqkU8TwUocJRYdJaqMU5SlOBBRUun9STo2M,2829
106
106
  nkululeko/utils/util.py,sha256=_Z6OMJ3f-8TdETW9eqJYY5hwNRS5XCt9azzRnqoTTZE,12330
107
- nkululeko-0.82.0.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
108
- nkululeko-0.82.0.dist-info/METADATA,sha256=TAI5xVQFphXFGnotP-tM4dNQ5GwthtvZbFdWtvYthfo,35801
109
- nkululeko-0.82.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
110
- nkululeko-0.82.0.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
111
- nkululeko-0.82.0.dist-info/RECORD,,
107
+ nkululeko-0.82.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
108
+ nkululeko-0.82.2.dist-info/METADATA,sha256=MasMoxHlcUmYgyaDu1CyNrmnh4vUVJVb0J6EqpV0ta0,35787
109
+ nkululeko-0.82.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
110
+ nkululeko-0.82.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
111
+ nkululeko-0.82.2.dist-info/RECORD,,