nkululeko 0.81.4__py3-none-any.whl → 0.81.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. nkululeko/autopredict/estimate_snr.py +17 -6
  2. nkululeko/constants.py +1 -1
  3. nkululeko/data/dataset.py +9 -2
  4. nkululeko/demo.py +20 -5
  5. nkululeko/demo_predictor.py +6 -3
  6. nkululeko/experiment.py +1 -1
  7. nkululeko/explore.py +13 -8
  8. nkululeko/feat_extract/feats_agender.py +7 -8
  9. nkululeko/feat_extract/{feats_audmodel_dim.py → feats_auddim.py} +10 -7
  10. nkululeko/feat_extract/feats_audmodel.py +10 -7
  11. nkululeko/feat_extract/feats_clap.py +10 -6
  12. nkululeko/feat_extract/feats_hubert.py +3 -2
  13. nkululeko/feat_extract/feats_import.py +3 -3
  14. nkululeko/feat_extract/feats_mos.py +4 -3
  15. nkululeko/feat_extract/feats_opensmile.py +10 -24
  16. nkululeko/feat_extract/feats_oxbow.py +16 -11
  17. nkululeko/feat_extract/feats_praat.py +18 -13
  18. nkululeko/feat_extract/feats_snr.py +17 -9
  19. nkululeko/feat_extract/feats_spectra.py +3 -2
  20. nkululeko/feat_extract/feats_squim.py +15 -18
  21. nkululeko/feat_extract/feats_trill.py +10 -6
  22. nkululeko/feat_extract/feats_wav2vec2.py +16 -7
  23. nkululeko/feat_extract/feats_wavlm.py +1 -4
  24. nkululeko/feat_extract/feats_whisper.py +110 -0
  25. nkululeko/feat_extract/featureset.py +6 -3
  26. nkululeko/feature_extractor.py +83 -148
  27. nkululeko/multidb.py +18 -12
  28. nkululeko/predict.py +26 -8
  29. nkululeko/reporter.py +332 -0
  30. nkululeko/resample.py +12 -7
  31. nkululeko/runmanager.py +17 -8
  32. nkululeko/test.py +9 -6
  33. nkululeko/test_predictor.py +1 -0
  34. nkululeko/utils/stats.py +12 -5
  35. {nkululeko-0.81.4.dist-info → nkululeko-0.81.7.dist-info}/METADATA +16 -1
  36. {nkululeko-0.81.4.dist-info → nkululeko-0.81.7.dist-info}/RECORD +39 -37
  37. {nkululeko-0.81.4.dist-info → nkululeko-0.81.7.dist-info}/LICENSE +0 -0
  38. {nkululeko-0.81.4.dist-info → nkululeko-0.81.7.dist-info}/WHEEL +0 -0
  39. {nkululeko-0.81.4.dist-info → nkululeko-0.81.7.dist-info}/top_level.txt +0 -0
@@ -1,20 +1,30 @@
1
1
  # estimate.snr
2
- import numpy as np
2
+ """
3
+ Module for estimating SNR (signal to noise ratio) from an audio signal.
4
+
5
+ This module provides a class `SNREstimator` which calculates the SNR based on
6
+ the log energy and energy thresholds of the audio signal.
7
+
8
+ """
9
+
10
+ import argparse
11
+
3
12
  import audiofile
4
13
  import matplotlib.pyplot as plt
14
+ import numpy as np
5
15
  from scipy.signal.windows import hamming
6
- import argparse
7
16
 
8
17
 
9
18
  class SNREstimator:
10
- """Estimate SNR from audio signal using log energy and energy thresholds
19
+ """Estimate SNR from audio signal using log energy and energy thresholds.
20
+
11
21
  Args:
12
22
  input_data (ndarray): Input audio signal
13
23
  sample_rate (int): Sampling rate of input audio signal
14
24
  window_size (int): Window size in samples
15
25
  hop_size (int): Hop size in samples
16
26
 
17
- Returns:
27
+ Returns:
18
28
  object: SNREstimator object
19
29
  estimated_snr (float): Estimated SNR in dB, extracted from SNREstimator.estimate_snr()
20
30
 
@@ -34,7 +44,7 @@ class SNREstimator:
34
44
  num_frames = 1 + (len(signal) - self.frame_length) // self.hop_length
35
45
  frames = [
36
46
  signal[
37
- i * self.hop_length : (i * self.hop_length) + self.frame_length
47
+ i * self.hop_length: (i * self.hop_length) + self.frame_length
38
48
  ]
39
49
  for i in range(num_frames)
40
50
  ]
@@ -54,7 +64,8 @@ class SNREstimator:
54
64
  for frame in frames
55
65
  ]
56
66
 
57
- energy_threshold_low = np.percentile(log_energies, 25) # First quartile
67
+ energy_threshold_low = np.percentile(
68
+ log_energies, 25) # First quartile
58
69
  energy_threshold_high = np.percentile(
59
70
  log_energies, 75
60
71
  ) # Third quartile
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.81.4"
1
+ VERSION="0.81.7"
2
2
  SAMPLING_RATE = 16000
nkululeko/data/dataset.py CHANGED
@@ -76,6 +76,7 @@ class Dataset:
76
76
  if rename_cols:
77
77
  col_dict = ast.literal_eval(rename_cols)
78
78
  df = df.rename(columns=col_dict)
79
+ self.util.debug(f"renamed data columns: {col_dict}")
79
80
  return df
80
81
 
81
82
  def _report_load(self):
@@ -281,13 +282,19 @@ class Dataset:
281
282
  # try to get the age values
282
283
  df_local["age"] = source_df["age"].astype(int)
283
284
  got_age = True
284
- except (KeyError, ValueError, audformat.errors.BadKeyError) as e:
285
+ except (KeyError, ValueError, audformat.errors.BadKeyError):
285
286
  pass
286
287
  try:
287
288
  # also it might be possible that the sex is part of the speaker description
288
289
  df_local["gender"] = db[table]["speaker"].get(map="gender")
289
290
  got_gender = True
290
- except (ValueError, audformat.errors.BadKeyError) as e:
291
+ except (ValueError, audformat.errors.BadKeyError):
292
+ pass
293
+ try:
294
+ # also it might be possible that the sex is part of the speaker description
295
+ df_local["gender"] = db[table]["speaker"].get(map="sex")
296
+ got_gender = True
297
+ except (ValueError, audformat.errors.BadKeyError):
291
298
  pass
292
299
  try:
293
300
  # also it might be possible that the age is part of the speaker description
nkululeko/demo.py CHANGED
@@ -2,20 +2,35 @@
2
2
  # Demonstration code to use the ML-experiment framework
3
3
  # Test the loading of a previously trained model and demo mode
4
4
  # needs the project config file to run before
5
+ """
6
+ This script is used to test the loading of a previously trained model and run it in demo mode.
7
+ It requires the project config file to be run before.
5
8
 
6
- import os
9
+ Usage:
10
+ python -m nkululeko.demo [--config CONFIG] [--file FILE] [--list LIST] [--folder FOLDER] [--outfile OUTFILE]
11
+
12
+ Options: \n
13
+ --config CONFIG The base configuration file (default: exp.ini) \n
14
+ --file FILE A file that should be processed (16kHz mono wav) \n
15
+ --list LIST A file with a list of files, one per line, that should be processed (16kHz mono wav) \n
16
+ --folder FOLDER A name of a folder where the files within the list are in (default: ./) \n
17
+ --outfile OUTFILE A filename to store the results in CSV (default: None)
18
+ """
7
19
  import argparse
8
20
  import configparser
21
+ import os
9
22
 
23
+ import nkululeko.glob_conf as glob_conf
24
+ from nkululeko.constants import VERSION
10
25
  from nkululeko.experiment import Experiment
11
26
  from nkululeko.utils.util import Util
12
- from nkululeko.constants import VERSION
13
- import nkululeko.glob_conf as glob_conf
14
27
 
15
28
 
16
29
  def main(src_dir):
17
- parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
18
- parser.add_argument("--config", default="exp.ini", help="The base configuration")
30
+ parser = argparse.ArgumentParser(
31
+ description="Call the nkululeko DEMO framework.")
32
+ parser.add_argument("--config", default="exp.ini",
33
+ help="The base configuration")
19
34
  parser.add_argument(
20
35
  "--file", help="A file that should be processed (16kHz mono wav)"
21
36
  )
@@ -1,8 +1,11 @@
1
+ # demo_predictor.py
1
2
  import os
2
- import pandas as pd
3
- import numpy as np
4
- import audiofile
3
+
5
4
  import audformat
5
+ import audiofile
6
+ import numpy as np
7
+ import pandas as pd
8
+
6
9
  import nkululeko.glob_conf as glob_conf
7
10
  from nkululeko.utils.util import Util
8
11
 
nkululeko/experiment.py CHANGED
@@ -695,7 +695,7 @@ class Experiment:
695
695
  pickle.dump(self.__dict__, f)
696
696
  f.close()
697
697
  except TypeError:
698
- self.feature_extractor.featExtractor.model = None
698
+ self.feature_extractor.feat_extractor.model = None
699
699
  f = open(filename, "wb")
700
700
  pickle.dump(self.__dict__, f)
701
701
  f.close()
nkululeko/explore.py CHANGED
@@ -1,17 +1,20 @@
1
1
  # explore.py
2
2
  # explore the feature sets
3
3
 
4
- from nkululeko.experiment import Experiment
5
- import configparser
6
- from nkululeko.utils.util import Util
7
- from nkululeko.constants import VERSION
8
4
  import argparse
5
+ import configparser
9
6
  import os
10
7
 
8
+ from nkululeko.constants import VERSION
9
+ from nkululeko.experiment import Experiment
10
+ from nkululeko.utils.util import Util
11
+
11
12
 
12
13
  def main(src_dir):
13
- parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
14
- parser.add_argument("--config", default="exp.ini", help="The base configuration")
14
+ parser = argparse.ArgumentParser(
15
+ description="Call the nkululeko EXPLORE framework.")
16
+ parser.add_argument("--config", default="exp.ini",
17
+ help="The base configuration")
15
18
  args = parser.parse_args()
16
19
  if args.config is not None:
17
20
  config_file = args.config
@@ -46,9 +49,11 @@ def main(src_dir):
46
49
 
47
50
  # split into train and test
48
51
  expr.fill_train_and_tests()
49
- util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
52
+ util.debug(
53
+ f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
50
54
 
51
- plot_feats = eval(util.config_val("EXPL", "feature_distributions", "False"))
55
+ plot_feats = eval(util.config_val(
56
+ "EXPL", "feature_distributions", "False"))
52
57
  tsne = eval(util.config_val("EXPL", "tsne", "False"))
53
58
  scatter = eval(util.config_val("EXPL", "scatter", "False"))
54
59
  spotlight = eval(util.config_val("EXPL", "spotlight", "False"))
@@ -9,16 +9,17 @@ import numpy as np
9
9
  import audinterface
10
10
 
11
11
 
12
- class AudModelAgenderSet(Featureset):
12
+ class AgenderSet(Featureset):
13
13
  """
14
14
  Embeddings from the wav2vec2. based model finetuned on agender data, described in the paper
15
15
  "Speech-based Age and Gender Prediction with Transformers"
16
16
  https://arxiv.org/abs/2306.16962
17
17
  """
18
18
 
19
- def __init__(self, name, data_df):
20
- super().__init__(name, data_df)
19
+ def __init__(self, name, data_df, feats_type):
20
+ super().__init__(name, data_df, feats_type)
21
21
  self.model_loaded = False
22
+ self.feats_type = feats_type
22
23
 
23
24
  def _load_model(self):
24
25
  model_url = "https://zenodo.org/record/7761387/files/w2v2-L-robust-6-age-gender.25c844af-1.1.1.zip"
@@ -28,14 +29,12 @@ class AudModelAgenderSet(Featureset):
28
29
  if not os.path.isdir(model_root):
29
30
  cache_root = audeer.mkdir("cache")
30
31
  model_root = audeer.mkdir(model_root)
31
- archive_path = audeer.download_url(model_url, cache_root, verbose=True)
32
+ archive_path = audeer.download_url(
33
+ model_url, cache_root, verbose=True)
32
34
  audeer.extract_archive(archive_path, model_root)
33
35
  device = self.util.config_val("MODEL", "device", "cpu")
34
36
  self.model = audonnx.load(model_root, device=device)
35
- pytorch_total_params = sum(p.numel() for p in self.model.parameters())
36
- self.util.debug(
37
- f"initialized agender model with {pytorch_total_params} parameters in total"
38
- )
37
+ self.util.debug(f"initialized agender model")
39
38
  self.model_loaded = True
40
39
 
41
40
  def extract(self):
@@ -13,16 +13,18 @@ from nkululeko.feat_extract.featureset import Featureset
13
13
  import nkululeko.glob_conf as glob_conf
14
14
 
15
15
 
16
- class AudModelDimSet(Featureset):
17
- """
18
- Emotional dimensions from the wav2vec2. based model finetuned on MSPPodcast emotions, described in the paper
16
+ class AuddimSet(Featureset):
17
+ """Emotional dimensions from the wav2vec2 model finetuned on MSPPodcast emotions.
18
+
19
+ Described in the paper
19
20
  "Dawn of the transformer era in speech emotion recognition: closing the valence gap"
20
- https://arxiv.org/abs/2203.07378
21
+ https://arxiv.org/abs/2203.07378.
21
22
  """
22
23
 
23
- def __init__(self, name, data_df):
24
- super().__init__(name, data_df)
24
+ def __init__(self, name, data_df, feats_type):
25
+ super().__init__(name, data_df, feats_type)
25
26
  self.model_loaded = False
27
+ self.feats_types = feats_type
26
28
 
27
29
  def _load_model(self):
28
30
  model_url = "https://zenodo.org/record/6221127/files/w2v2-L-robust-12.6bc4a7fd-1.1.0.zip"
@@ -30,7 +32,8 @@ class AudModelDimSet(Featureset):
30
32
  if not os.path.isdir(model_root):
31
33
  cache_root = audeer.mkdir("cache")
32
34
  model_root = audeer.mkdir(model_root)
33
- archive_path = audeer.download_url(model_url, cache_root, verbose=True)
35
+ archive_path = audeer.download_url(
36
+ model_url, cache_root, verbose=True)
34
37
  audeer.extract_archive(archive_path, model_root)
35
38
  cuda = "cuda" if torch.cuda.is_available() else "cpu"
36
39
  device = self.util.config_val("MODEL", "device", cuda)
@@ -11,16 +11,18 @@ import torch
11
11
  from nkululeko.feat_extract.featureset import Featureset
12
12
 
13
13
 
14
- class AudModelSet(Featureset):
15
- """
16
- Embeddings from the wav2vec2. based model finetuned on MSPPodcast emotions, described in the paper
14
+ class AudmodelSet(Featureset):
15
+ """Embeddings from the wav2vec2 based model finetuned on MSPPodcast emotions.
16
+
17
+ Described in the paper:
17
18
  "Dawn of the transformer era in speech emotion recognition: closing the valence gap"
18
- https://arxiv.org/abs/2203.07378
19
+ https://arxiv.org/abs/2203.07378.
19
20
  """
20
21
 
21
- def __init__(self, name, data_df):
22
- super().__init__(name, data_df)
22
+ def __init__(self, name, data_df, feats_type):
23
+ super().__init__(name, data_df, feats_type)
23
24
  self.model_loaded = False
25
+ self.feats_type = feats_type
24
26
 
25
27
  def _load_model(self):
26
28
  model_url = "https://zenodo.org/record/6221127/files/w2v2-L-robust-12.6bc4a7fd-1.1.0.zip"
@@ -28,7 +30,8 @@ class AudModelSet(Featureset):
28
30
  if not os.path.isdir(model_root):
29
31
  cache_root = audeer.mkdir("cache")
30
32
  model_root = audeer.mkdir(model_root)
31
- archive_path = audeer.download_url(model_url, cache_root, verbose=True)
33
+ archive_path = audeer.download_url(
34
+ model_url, cache_root, verbose=True)
32
35
  audeer.extract_archive(archive_path, model_root)
33
36
  cuda = "cuda" if torch.cuda.is_available() else "cpu"
34
37
  device = self.util.config_val("MODEL", "device", cuda)
@@ -11,14 +11,15 @@ import laion_clap
11
11
  import audiofile
12
12
 
13
13
 
14
- class Clap(Featureset):
14
+ class ClapSet(Featureset):
15
15
  """Class to extract laion's clap embeddings (https://github.com/LAION-AI/CLAP)"""
16
16
 
17
- def __init__(self, name, data_df):
17
+ def __init__(self, name, data_df, feats_type):
18
18
  """Constructor. is_train is needed to distinguish from test/dev sets, because they use the codebook from the training"""
19
- super().__init__(name, data_df)
19
+ super().__init__(name, data_df, feats_type)
20
20
  self.device = self.util.config_val("MODEL", "device", "cpu")
21
21
  self.model_initialized = False
22
+ self.feat_type = feats_type
22
23
 
23
24
  def init_model(self):
24
25
  # load model
@@ -32,12 +33,14 @@ class Clap(Featureset):
32
33
  store = self.util.get_path("store")
33
34
  store_format = self.util.config_val("FEATS", "store_format", "pkl")
34
35
  storage = f"{store}{self.name}.{store_format}"
35
- extract = self.util.config_val("FEATS", "needs_feature_extraction", False)
36
+ extract = self.util.config_val(
37
+ "FEATS", "needs_feature_extraction", False)
36
38
  no_reuse = eval(self.util.config_val("FEATS", "no_reuse", "False"))
37
39
  if extract or no_reuse or not os.path.isfile(storage):
38
40
  if not self.model_initialized:
39
41
  self.init_model()
40
- self.util.debug("extracting clap embeddings, this might take a while...")
42
+ self.util.debug(
43
+ "extracting clap embeddings, this might take a while...")
41
44
  emb_series = pd.Series(index=self.data_df.index, dtype=object)
42
45
  length = len(self.data_df.index)
43
46
  for idx, (file, start, end) in enumerate(
@@ -51,7 +54,8 @@ class Clap(Featureset):
51
54
  )
52
55
  emb = self.get_embeddings(signal, sampling_rate)
53
56
  emb_series[idx] = emb
54
- self.df = pd.DataFrame(emb_series.values.tolist(), index=self.data_df.index)
57
+ self.df = pd.DataFrame(
58
+ emb_series.values.tolist(), index=self.data_df.index)
55
59
  self.util.write_store(self.df, storage, store_format)
56
60
  try:
57
61
  glob_conf.config["DATA"]["needs_feature_extraction"] = "false"
@@ -1,6 +1,7 @@
1
1
  # feats_hubert.py
2
2
  # HuBERT feature extractor for Nkululeko
3
- # example feat_type = "hubert-large-ll60k", "hubert-xlarge-ll60k"
3
+ # example feat_type = "hubert-large-ll60k", "hubert-xlarge-ll60k",
4
+ # "hubert-base-ls960", hubert-large-ls960-ft", "hubert-xlarge-ls960-ft"
4
5
 
5
6
 
6
7
  import os
@@ -22,7 +23,7 @@ class Hubert(Featureset):
22
23
  def __init__(self, name, data_df, feat_type):
23
24
  """Constructor. is_train is needed to distinguish from test/dev sets,
24
25
  because they use the codebook from the training"""
25
- super().__init__(name, data_df)
26
+ super().__init__(name, data_df, feat_type)
26
27
  # check if device is not set, use cuda if available
27
28
  cuda = "cuda" if torch.cuda.is_available() else "cpu"
28
29
  self.device = self.util.config_val("MODEL", "device", cuda)
@@ -8,11 +8,11 @@ from nkululeko.utils.util import Util
8
8
  from nkululeko.feat_extract.featureset import Featureset
9
9
 
10
10
 
11
- class Importset(Featureset):
11
+ class ImportSet(Featureset):
12
12
  """Class to import features that have been compiled elsewhere"""
13
13
 
14
- def __init__(self, name, data_df):
15
- super().__init__(name, data_df)
14
+ def __init__(self, name, data_df, feats_type):
15
+ super().__init__(name, data_df, feats_type)
16
16
 
17
17
  def extract(self):
18
18
  """Import the features."""
@@ -10,6 +10,7 @@ pip uninstall -y torch torchvision torchaudio
10
10
  pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
11
11
 
12
12
  """
13
+
13
14
  import os
14
15
  import pandas as pd
15
16
  from tqdm import tqdm
@@ -23,12 +24,12 @@ from nkululeko.utils.util import Util
23
24
  from nkululeko.feat_extract.featureset import Featureset
24
25
 
25
26
 
26
- class MOSSet(Featureset):
27
+ class MosSet(Featureset):
27
28
  """Class to predict MOS (mean opinion score)"""
28
29
 
29
- def __init__(self, name, data_df):
30
+ def __init__(self, name, data_df, feats_type):
30
31
  """Constructor. is_train is needed to distinguish from test/dev sets, because they use the codebook from the training"""
31
- super().__init__(name, data_df)
32
+ super().__init__(name, data_df, feats_type)
32
33
  self.device = self.util.config_val("MODEL", "device", "cpu")
33
34
  self.model_initialized = False
34
35
 
@@ -8,31 +8,21 @@ import opensmile
8
8
 
9
9
 
10
10
  class Opensmileset(Featureset):
11
- def __init__(self, name, data_df):
12
- super().__init__(name, data_df)
11
+ def __init__(self, name, data_df, feats_type=None, config_file=None):
12
+ super().__init__(name, data_df, feats_type)
13
13
  self.featset = self.util.config_val("FEATS", "set", "eGeMAPSv02")
14
14
  try:
15
15
  self.feature_set = eval(f"opensmile.FeatureSet.{self.featset}")
16
- #'eGeMAPSv02, ComParE_2016, GeMAPSv01a, eGeMAPSv01a':
16
+ # 'eGeMAPSv02, ComParE_2016, GeMAPSv01a, eGeMAPSv01a':
17
17
  except AttributeError:
18
- self.util.error(
19
- f"something is wrong with feature set: {self.featset}"
20
- )
18
+ self.util.error(f"something is wrong with feature set: {self.featset}")
21
19
  self.featlevel = self.util.config_val("FEATS", "level", "functionals")
22
20
  try:
23
- self.featlevel = self.featlevel.replace(
24
- "lld", "LowLevelDescriptors"
25
- )
26
- self.featlevel = self.featlevel.replace(
27
- "functionals", "Functionals"
28
- )
29
- self.feature_level = eval(
30
- f"opensmile.FeatureLevel.{self.featlevel}"
31
- )
21
+ self.featlevel = self.featlevel.replace("lld", "LowLevelDescriptors")
22
+ self.featlevel = self.featlevel.replace("functionals", "Functionals")
23
+ self.feature_level = eval(f"opensmile.FeatureLevel.{self.featlevel}")
32
24
  except AttributeError:
33
- self.util.error(
34
- f"something is wrong with feature level: {self.featlevel}"
35
- )
25
+ self.util.error(f"something is wrong with feature level: {self.featlevel}")
36
26
 
37
27
  def extract(self):
38
28
  """Extract the features based on the initialized dataset or re-open them when found on disk."""
@@ -44,9 +34,7 @@ class Opensmileset(Featureset):
44
34
  )
45
35
  no_reuse = eval(self.util.config_val("FEATS", "no_reuse", "False"))
46
36
  if extract or not os.path.isfile(storage) or no_reuse:
47
- self.util.debug(
48
- "extracting openSmile features, this might take a while..."
49
- )
37
+ self.util.debug("extracting openSmile features, this might take a while...")
50
38
  smile = opensmile.Smile(
51
39
  feature_set=self.feature_set,
52
40
  feature_level=self.feature_level,
@@ -85,9 +73,7 @@ class Opensmileset(Featureset):
85
73
  selected_features = ast.literal_eval(
86
74
  glob_conf.config["FEATS"]["os.features"]
87
75
  )
88
- self.util.debug(
89
- f"selecting features from opensmile: {selected_features}"
90
- )
76
+ self.util.debug(f"selecting features from opensmile: {selected_features}")
91
77
  sel_feats_df = pd.DataFrame()
92
78
  hit = False
93
79
  for feat in selected_features:
@@ -10,9 +10,10 @@ import opensmile
10
10
  class Openxbow(Featureset):
11
11
  """Class to extract openXBOW processed opensmile features (https://github.com/openXBOW)"""
12
12
 
13
- def __init__(self, name, data_df, is_train=False):
13
+ def __init__(self, name, data_df, feats_type, is_train=False):
14
14
  """Constructor. is_train is needed to distinguish from test/dev sets, because they use the codebook from the training"""
15
- super().__init__(name, data_df)
15
+ super().__init__(name, data_df, feats_type)
16
+ self.feats_types = feats_type
16
17
  self.is_train = is_train
17
18
 
18
19
  def extract(self):
@@ -21,11 +22,13 @@ class Openxbow(Featureset):
21
22
  self.feature_set = eval(f"opensmile.FeatureSet.{self.featset}")
22
23
  store = self.util.get_path("store")
23
24
  storage = f"{store}{self.name}_{self.featset}.pkl"
24
- extract = self.util.config_val("FEATS", "needs_feature_extraction", False)
25
+ extract = self.util.config_val(
26
+ "FEATS", "needs_feature_extraction", False)
25
27
  no_reuse = eval(self.util.config_val("FEATS", "no_reuse", "False"))
26
28
  if extract or no_reuse or not os.path.isfile(storage):
27
29
  # extract smile features first
28
- self.util.debug("extracting openSmile features, this might take a while...")
30
+ self.util.debug(
31
+ "extracting openSmile features, this might take a while...")
29
32
  smile = opensmile.Smile(
30
33
  feature_set=self.feature_set,
31
34
  feature_level=opensmile.FeatureLevel.LowLevelDescriptors,
@@ -48,7 +51,13 @@ class Openxbow(Featureset):
48
51
  # save the smile features
49
52
  smile_df.to_csv(lld_name, sep=";", header=False)
50
53
  # get the path of the xbow java jar file
51
- xbow_path = self.util.config_val("FEATS", "xbow.model", "../openXBOW/")
54
+ xbow_path = self.util.config_val(
55
+ "FEATS", "xbow.model", "openXBOW")
56
+ # check if JAR file exist
57
+ if not os.path.isfile(f"{xbow_path}/openXBOW.jar"):
58
+ # download using wget if not exist and locate in xbow_path
59
+ os.system(
60
+ f"git clone https://github.com/openXBOW/openXBOW")
52
61
  # get the size of the codebook
53
62
  size = self.util.config_val("FEATS", "size", 500)
54
63
  # get the number of assignements
@@ -57,16 +66,12 @@ class Openxbow(Featureset):
57
66
  if self.is_train:
58
67
  # store the codebook
59
68
  os.system(
60
- f"java -jar {xbow_path}openXBOW.jar -i"
61
- f" {lld_name} -standardizeInput -log -o"
62
- f" {xbow_name} -size {size} -a {assignments} -B"
63
- f" {codebook_name}"
69
+ f"java -jar {xbow_path}/openXBOW.jar -i {lld_name} -standardizeInput -log -o {xbow_name} -size {size} -a {assignments} -B {codebook_name}"
64
70
  )
65
71
  else:
66
72
  # use the codebook
67
73
  os.system(
68
- f"java -jar {xbow_path}openXBOW.jar -i {lld_name} "
69
- f" -o {xbow_name} -b {codebook_name}"
74
+ f"java -jar {xbow_path}/openXBOW.jar -i {lld_name} -o {xbow_name} -b {codebook_name}"
70
75
  )
71
76
  # read in the result from disk
72
77
  xbow_df = pd.read_csv(xbow_name, sep=";", header=None)
@@ -1,33 +1,37 @@
1
1
  # feats_praat.py
2
- from nkululeko.feat_extract.featureset import Featureset
2
+ import ast
3
3
  import os
4
- import pandas as pd
4
+
5
5
  import numpy as np
6
- import nkululeko.glob_conf as glob_conf
6
+ import pandas as pd
7
+
7
8
  from nkululeko.feat_extract import feinberg_praat
8
- import ast
9
+ from nkululeko.feat_extract.featureset import Featureset
10
+ import nkululeko.glob_conf as glob_conf
9
11
 
10
12
 
11
- class Praatset(Featureset):
12
- """
13
- a feature extractor for the Praat software, based on
14
- David R. Feinberg's Praat scripts for the parselmouth python interface.
13
+ class PraatSet(Featureset):
14
+ """A feature extractor for the Praat software.
15
+
16
+ Based on David R. Feinberg's Praat scripts for the parselmouth python interface.
15
17
  https://osf.io/6dwr3/
16
18
 
17
19
  """
18
20
 
19
- def __init__(self, name, data_df):
20
- super().__init__(name, data_df)
21
+ def __init__(self, name, data_df, feats_type):
22
+ super().__init__(name, data_df, feats_type)
21
23
 
22
24
  def extract(self):
23
25
  """Extract the features based on the initialized dataset or re-open them when found on disk."""
24
26
  store = self.util.get_path("store")
25
27
  store_format = self.util.config_val("FEATS", "store_format", "pkl")
26
28
  storage = f"{store}{self.name}.{store_format}"
27
- extract = self.util.config_val("FEATS", "needs_feature_extraction", False)
29
+ extract = self.util.config_val(
30
+ "FEATS", "needs_feature_extraction", False)
28
31
  no_reuse = eval(self.util.config_val("FEATS", "no_reuse", "False"))
29
32
  if extract or no_reuse or not os.path.isfile(storage):
30
- self.util.debug("extracting Praat features, this might take a while...")
33
+ self.util.debug(
34
+ "extracting Praat features, this might take a while...")
31
35
  self.df = feinberg_praat.compute_features(self.data_df.index)
32
36
  self.df = self.df.set_index(self.data_df.index)
33
37
  for i, col in enumerate(self.df.columns):
@@ -50,7 +54,8 @@ class Praatset(Featureset):
50
54
  self.df = self.df.astype(float)
51
55
 
52
56
  def extract_sample(self, signal, sr):
53
- import audiofile, audformat
57
+ import audiofile
58
+ import audformat
54
59
 
55
60
  tmp_audio_names = ["praat_audio_tmp.wav"]
56
61
  audiofile.write(tmp_audio_names[0], signal, sr)