nkululeko 0.81.4__py3-none-any.whl → 0.81.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/autopredict/estimate_snr.py +17 -6
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +9 -2
- nkululeko/demo.py +20 -5
- nkululeko/demo_predictor.py +6 -3
- nkululeko/experiment.py +1 -1
- nkululeko/explore.py +13 -8
- nkululeko/feat_extract/feats_agender.py +1 -4
- nkululeko/feat_extract/{feats_audmodel_dim.py → feats_auddim.py} +5 -4
- nkululeko/feat_extract/feats_audmodel.py +5 -4
- nkululeko/feat_extract/feats_import.py +1 -1
- nkululeko/feat_extract/feats_mos.py +2 -1
- nkululeko/feat_extract/feats_praat.py +10 -8
- nkululeko/feat_extract/feats_snr.py +17 -9
- nkululeko/feat_extract/feats_squim.py +13 -16
- nkululeko/feature_extractor.py +72 -148
- nkululeko/multidb.py +18 -12
- nkululeko/predict.py +26 -8
- nkululeko/reporter.py +332 -0
- nkululeko/resample.py +12 -7
- nkululeko/runmanager.py +17 -8
- nkululeko/test.py +9 -6
- nkululeko/test_predictor.py +1 -0
- nkululeko/utils/stats.py +12 -5
- {nkululeko-0.81.4.dist-info → nkululeko-0.81.6.dist-info}/METADATA +11 -1
- {nkululeko-0.81.4.dist-info → nkululeko-0.81.6.dist-info}/RECORD +29 -28
- {nkululeko-0.81.4.dist-info → nkululeko-0.81.6.dist-info}/LICENSE +0 -0
- {nkululeko-0.81.4.dist-info → nkululeko-0.81.6.dist-info}/WHEEL +0 -0
- {nkululeko-0.81.4.dist-info → nkululeko-0.81.6.dist-info}/top_level.txt +0 -0
@@ -1,20 +1,30 @@
|
|
1
1
|
# estimate.snr
|
2
|
-
|
2
|
+
"""
|
3
|
+
Module for estimating SNR (signal to noise ratio) from an audio signal.
|
4
|
+
|
5
|
+
This module provides a class `SNREstimator` which calculates the SNR based on
|
6
|
+
the log energy and energy thresholds of the audio signal.
|
7
|
+
|
8
|
+
"""
|
9
|
+
|
10
|
+
import argparse
|
11
|
+
|
3
12
|
import audiofile
|
4
13
|
import matplotlib.pyplot as plt
|
14
|
+
import numpy as np
|
5
15
|
from scipy.signal.windows import hamming
|
6
|
-
import argparse
|
7
16
|
|
8
17
|
|
9
18
|
class SNREstimator:
|
10
|
-
"""Estimate SNR from audio signal using log energy and energy thresholds
|
19
|
+
"""Estimate SNR from audio signal using log energy and energy thresholds.
|
20
|
+
|
11
21
|
Args:
|
12
22
|
input_data (ndarray): Input audio signal
|
13
23
|
sample_rate (int): Sampling rate of input audio signal
|
14
24
|
window_size (int): Window size in samples
|
15
25
|
hop_size (int): Hop size in samples
|
16
26
|
|
17
|
-
|
27
|
+
Returns:
|
18
28
|
object: SNREstimator object
|
19
29
|
estimated_snr (float): Estimated SNR in dB, extracted from SNREstimator.estimate_snr()
|
20
30
|
|
@@ -34,7 +44,7 @@ class SNREstimator:
|
|
34
44
|
num_frames = 1 + (len(signal) - self.frame_length) // self.hop_length
|
35
45
|
frames = [
|
36
46
|
signal[
|
37
|
-
i * self.hop_length
|
47
|
+
i * self.hop_length: (i * self.hop_length) + self.frame_length
|
38
48
|
]
|
39
49
|
for i in range(num_frames)
|
40
50
|
]
|
@@ -54,7 +64,8 @@ class SNREstimator:
|
|
54
64
|
for frame in frames
|
55
65
|
]
|
56
66
|
|
57
|
-
energy_threshold_low = np.percentile(
|
67
|
+
energy_threshold_low = np.percentile(
|
68
|
+
log_energies, 25) # First quartile
|
58
69
|
energy_threshold_high = np.percentile(
|
59
70
|
log_energies, 75
|
60
71
|
) # Third quartile
|
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.81.
|
1
|
+
VERSION="0.81.6"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -76,6 +76,7 @@ class Dataset:
|
|
76
76
|
if rename_cols:
|
77
77
|
col_dict = ast.literal_eval(rename_cols)
|
78
78
|
df = df.rename(columns=col_dict)
|
79
|
+
self.util.debug(f"renamed data columns: {col_dict}")
|
79
80
|
return df
|
80
81
|
|
81
82
|
def _report_load(self):
|
@@ -281,13 +282,19 @@ class Dataset:
|
|
281
282
|
# try to get the age values
|
282
283
|
df_local["age"] = source_df["age"].astype(int)
|
283
284
|
got_age = True
|
284
|
-
except (KeyError, ValueError, audformat.errors.BadKeyError)
|
285
|
+
except (KeyError, ValueError, audformat.errors.BadKeyError):
|
285
286
|
pass
|
286
287
|
try:
|
287
288
|
# also it might be possible that the sex is part of the speaker description
|
288
289
|
df_local["gender"] = db[table]["speaker"].get(map="gender")
|
289
290
|
got_gender = True
|
290
|
-
except (ValueError, audformat.errors.BadKeyError)
|
291
|
+
except (ValueError, audformat.errors.BadKeyError):
|
292
|
+
pass
|
293
|
+
try:
|
294
|
+
# also it might be possible that the sex is part of the speaker description
|
295
|
+
df_local["gender"] = db[table]["speaker"].get(map="sex")
|
296
|
+
got_gender = True
|
297
|
+
except (ValueError, audformat.errors.BadKeyError):
|
291
298
|
pass
|
292
299
|
try:
|
293
300
|
# also it might be possible that the age is part of the speaker description
|
nkululeko/demo.py
CHANGED
@@ -2,20 +2,35 @@
|
|
2
2
|
# Demonstration code to use the ML-experiment framework
|
3
3
|
# Test the loading of a previously trained model and demo mode
|
4
4
|
# needs the project config file to run before
|
5
|
+
"""
|
6
|
+
This script is used to test the loading of a previously trained model and run it in demo mode.
|
7
|
+
It requires the project config file to be run before.
|
5
8
|
|
6
|
-
|
9
|
+
Usage:
|
10
|
+
python -m nkululeko.demo [--config CONFIG] [--file FILE] [--list LIST] [--folder FOLDER] [--outfile OUTFILE]
|
11
|
+
|
12
|
+
Options: \n
|
13
|
+
--config CONFIG The base configuration file (default: exp.ini) \n
|
14
|
+
--file FILE A file that should be processed (16kHz mono wav) \n
|
15
|
+
--list LIST A file with a list of files, one per line, that should be processed (16kHz mono wav) \n
|
16
|
+
--folder FOLDER A name of a folder where the files within the list are in (default: ./) \n
|
17
|
+
--outfile OUTFILE A filename to store the results in CSV (default: None)
|
18
|
+
"""
|
7
19
|
import argparse
|
8
20
|
import configparser
|
21
|
+
import os
|
9
22
|
|
23
|
+
import nkululeko.glob_conf as glob_conf
|
24
|
+
from nkululeko.constants import VERSION
|
10
25
|
from nkululeko.experiment import Experiment
|
11
26
|
from nkululeko.utils.util import Util
|
12
|
-
from nkululeko.constants import VERSION
|
13
|
-
import nkululeko.glob_conf as glob_conf
|
14
27
|
|
15
28
|
|
16
29
|
def main(src_dir):
|
17
|
-
parser = argparse.ArgumentParser(
|
18
|
-
|
30
|
+
parser = argparse.ArgumentParser(
|
31
|
+
description="Call the nkululeko DEMO framework.")
|
32
|
+
parser.add_argument("--config", default="exp.ini",
|
33
|
+
help="The base configuration")
|
19
34
|
parser.add_argument(
|
20
35
|
"--file", help="A file that should be processed (16kHz mono wav)"
|
21
36
|
)
|
nkululeko/demo_predictor.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1
|
+
# demo_predictor.py
|
1
2
|
import os
|
2
|
-
|
3
|
-
import numpy as np
|
4
|
-
import audiofile
|
3
|
+
|
5
4
|
import audformat
|
5
|
+
import audiofile
|
6
|
+
import numpy as np
|
7
|
+
import pandas as pd
|
8
|
+
|
6
9
|
import nkululeko.glob_conf as glob_conf
|
7
10
|
from nkululeko.utils.util import Util
|
8
11
|
|
nkululeko/experiment.py
CHANGED
@@ -695,7 +695,7 @@ class Experiment:
|
|
695
695
|
pickle.dump(self.__dict__, f)
|
696
696
|
f.close()
|
697
697
|
except TypeError:
|
698
|
-
self.feature_extractor.
|
698
|
+
self.feature_extractor.feat_extractor.model = None
|
699
699
|
f = open(filename, "wb")
|
700
700
|
pickle.dump(self.__dict__, f)
|
701
701
|
f.close()
|
nkululeko/explore.py
CHANGED
@@ -1,17 +1,20 @@
|
|
1
1
|
# explore.py
|
2
2
|
# explore the feature sets
|
3
3
|
|
4
|
-
from nkululeko.experiment import Experiment
|
5
|
-
import configparser
|
6
|
-
from nkululeko.utils.util import Util
|
7
|
-
from nkululeko.constants import VERSION
|
8
4
|
import argparse
|
5
|
+
import configparser
|
9
6
|
import os
|
10
7
|
|
8
|
+
from nkululeko.constants import VERSION
|
9
|
+
from nkululeko.experiment import Experiment
|
10
|
+
from nkululeko.utils.util import Util
|
11
|
+
|
11
12
|
|
12
13
|
def main(src_dir):
|
13
|
-
parser = argparse.ArgumentParser(
|
14
|
-
|
14
|
+
parser = argparse.ArgumentParser(
|
15
|
+
description="Call the nkululeko EXPLORE framework.")
|
16
|
+
parser.add_argument("--config", default="exp.ini",
|
17
|
+
help="The base configuration")
|
15
18
|
args = parser.parse_args()
|
16
19
|
if args.config is not None:
|
17
20
|
config_file = args.config
|
@@ -46,9 +49,11 @@ def main(src_dir):
|
|
46
49
|
|
47
50
|
# split into train and test
|
48
51
|
expr.fill_train_and_tests()
|
49
|
-
util.debug(
|
52
|
+
util.debug(
|
53
|
+
f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
|
50
54
|
|
51
|
-
plot_feats = eval(util.config_val(
|
55
|
+
plot_feats = eval(util.config_val(
|
56
|
+
"EXPL", "feature_distributions", "False"))
|
52
57
|
tsne = eval(util.config_val("EXPL", "tsne", "False"))
|
53
58
|
scatter = eval(util.config_val("EXPL", "scatter", "False"))
|
54
59
|
spotlight = eval(util.config_val("EXPL", "spotlight", "False"))
|
@@ -32,10 +32,7 @@ class AudModelAgenderSet(Featureset):
|
|
32
32
|
audeer.extract_archive(archive_path, model_root)
|
33
33
|
device = self.util.config_val("MODEL", "device", "cpu")
|
34
34
|
self.model = audonnx.load(model_root, device=device)
|
35
|
-
|
36
|
-
self.util.debug(
|
37
|
-
f"initialized agender model with {pytorch_total_params} parameters in total"
|
38
|
-
)
|
35
|
+
self.util.debug(f"initialized agender model")
|
39
36
|
self.model_loaded = True
|
40
37
|
|
41
38
|
def extract(self):
|
@@ -13,11 +13,12 @@ from nkululeko.feat_extract.featureset import Featureset
|
|
13
13
|
import nkululeko.glob_conf as glob_conf
|
14
14
|
|
15
15
|
|
16
|
-
class
|
17
|
-
"""
|
18
|
-
|
16
|
+
class AuddimSet(Featureset):
|
17
|
+
"""Emotional dimensions from the wav2vec2 model finetuned on MSPPodcast emotions.
|
18
|
+
|
19
|
+
Described in the paper
|
19
20
|
"Dawn of the transformer era in speech emotion recognition: closing the valence gap"
|
20
|
-
https://arxiv.org/abs/2203.07378
|
21
|
+
https://arxiv.org/abs/2203.07378.
|
21
22
|
"""
|
22
23
|
|
23
24
|
def __init__(self, name, data_df):
|
@@ -11,11 +11,12 @@ import torch
|
|
11
11
|
from nkululeko.feat_extract.featureset import Featureset
|
12
12
|
|
13
13
|
|
14
|
-
class
|
15
|
-
"""
|
16
|
-
|
14
|
+
class AudmodelSet(Featureset):
|
15
|
+
"""Embeddings from the wav2vec2 based model finetuned on MSPPodcast emotions.
|
16
|
+
|
17
|
+
Described in the paper:
|
17
18
|
"Dawn of the transformer era in speech emotion recognition: closing the valence gap"
|
18
|
-
https://arxiv.org/abs/2203.07378
|
19
|
+
https://arxiv.org/abs/2203.07378.
|
19
20
|
"""
|
20
21
|
|
21
22
|
def __init__(self, name, data_df):
|
@@ -8,7 +8,7 @@ from nkululeko.utils.util import Util
|
|
8
8
|
from nkululeko.feat_extract.featureset import Featureset
|
9
9
|
|
10
10
|
|
11
|
-
class
|
11
|
+
class ImportSet(Featureset):
|
12
12
|
"""Class to import features that have been compiled elsewhere"""
|
13
13
|
|
14
14
|
def __init__(self, name, data_df):
|
@@ -10,6 +10,7 @@ pip uninstall -y torch torchvision torchaudio
|
|
10
10
|
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
11
11
|
|
12
12
|
"""
|
13
|
+
|
13
14
|
import os
|
14
15
|
import pandas as pd
|
15
16
|
from tqdm import tqdm
|
@@ -23,7 +24,7 @@ from nkululeko.utils.util import Util
|
|
23
24
|
from nkululeko.feat_extract.featureset import Featureset
|
24
25
|
|
25
26
|
|
26
|
-
class
|
27
|
+
class MosSet(Featureset):
|
27
28
|
"""Class to predict MOS (mean opinion score)"""
|
28
29
|
|
29
30
|
def __init__(self, name, data_df):
|
@@ -1,17 +1,19 @@
|
|
1
1
|
# feats_praat.py
|
2
|
-
|
2
|
+
import ast
|
3
3
|
import os
|
4
|
-
|
4
|
+
|
5
5
|
import numpy as np
|
6
|
-
import
|
6
|
+
import pandas as pd
|
7
|
+
|
7
8
|
from nkululeko.feat_extract import feinberg_praat
|
8
|
-
import
|
9
|
+
from nkululeko.feat_extract.featureset import Featureset
|
10
|
+
import nkululeko.glob_conf as glob_conf
|
9
11
|
|
10
12
|
|
11
|
-
class
|
12
|
-
"""
|
13
|
-
|
14
|
-
David R. Feinberg's Praat scripts for the parselmouth python interface.
|
13
|
+
class PraatSet(Featureset):
|
14
|
+
"""A feature extractor for the Praat software.
|
15
|
+
|
16
|
+
Based on David R. Feinberg's Praat scripts for the parselmouth python interface.
|
15
17
|
https://osf.io/6dwr3/
|
16
18
|
|
17
19
|
"""
|
@@ -1,14 +1,17 @@
|
|
1
|
-
""" feats_snr.py
|
2
|
-
|
1
|
+
""" feats_snr.py is to estimate snr.
|
2
|
+
|
3
|
+
SNR (signal to noise ratio) is extracted as acoustic features.
|
3
4
|
"""
|
4
5
|
import os
|
5
|
-
|
6
|
-
import pandas as pd
|
6
|
+
|
7
7
|
import audiofile
|
8
|
+
import pandas as pd
|
9
|
+
from tqdm import tqdm
|
10
|
+
|
8
11
|
import nkululeko.glob_conf as glob_conf
|
9
|
-
from nkululeko.utils.util import Util
|
10
|
-
from nkululeko.feat_extract.featureset import Featureset
|
11
12
|
from nkululeko.autopredict.estimate_snr import SNREstimator
|
13
|
+
from nkululeko.feat_extract.featureset import Featureset
|
14
|
+
from nkululeko.utils.util import Util
|
12
15
|
|
13
16
|
|
14
17
|
class SNRSet(Featureset):
|
@@ -16,14 +19,17 @@ class SNRSet(Featureset):
|
|
16
19
|
|
17
20
|
def __init__(self, name, data_df):
|
18
21
|
"""Constructor."""
|
22
|
+
|
19
23
|
super().__init__(name, data_df)
|
20
24
|
|
21
25
|
def extract(self):
|
22
26
|
"""Estimate the features or load them from disk if present."""
|
27
|
+
|
23
28
|
store = self.util.get_path("store")
|
24
29
|
store_format = self.util.config_val("FEATS", "store_format", "pkl")
|
25
30
|
storage = f"{store}{self.name}.{store_format}"
|
26
|
-
extract = self.util.config_val(
|
31
|
+
extract = self.util.config_val(
|
32
|
+
"FEATS", "needs_feature_extraction", False)
|
27
33
|
no_reuse = eval(self.util.config_val("FEATS", "no_reuse", "False"))
|
28
34
|
if extract or no_reuse or not os.path.isfile(storage):
|
29
35
|
self.util.debug("estimating SNR, this might take a while...")
|
@@ -40,7 +46,8 @@ class SNRSet(Featureset):
|
|
40
46
|
snr = self.get_snr(signal[0], sampling_rate)
|
41
47
|
snr_series[idx] = snr
|
42
48
|
print("")
|
43
|
-
self.df = pd.DataFrame(
|
49
|
+
self.df = pd.DataFrame(
|
50
|
+
snr_series.values.tolist(), index=self.data_df.index)
|
44
51
|
self.df.columns = ["snr"]
|
45
52
|
self.util.write_store(self.df, storage, store_format)
|
46
53
|
try:
|
@@ -53,10 +60,11 @@ class SNRSet(Featureset):
|
|
53
60
|
|
54
61
|
def get_snr(self, signal, sampling_rate):
|
55
62
|
r"""Estimate SNR from raw audio signal.
|
63
|
+
|
56
64
|
Args:
|
57
65
|
signal: audio signal
|
58
66
|
sampling_rate: sample rate
|
59
|
-
Returns
|
67
|
+
Returns:
|
60
68
|
snr: estimated signal to noise ratio
|
61
69
|
"""
|
62
70
|
snr_estimator = SNREstimator(signal, sampling_rate)
|
@@ -1,36 +1,33 @@
|
|
1
|
-
"""
|
2
|
-
predict SQUIM ( SPEECH QUALITY AND INTELLIGIBILITY
|
3
|
-
MEASURES) features
|
1
|
+
"""Predict SQUIM ( SPEECH QUALITY AND INTELLIGIBILITY MEASURES) features.
|
4
2
|
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
adapted from
|
3
|
+
Wideband Perceptual Estimation of Speech Quality (PESQ) [2].
|
4
|
+
Short-Time Objective Intelligibility (STOI) [3].
|
5
|
+
Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [4].
|
6
|
+
Adapted from
|
12
7
|
from https://pytorch.org/audio/main/tutorials/squim_tutorial.html#sphx-glr-tutorials-squim-tutorial-py
|
13
|
-
paper: https://arxiv.org/pdf/2304.01448.pdf
|
14
|
-
|
15
|
-
needs
|
8
|
+
paper: https://arxiv.org/pdf/2304.01448.pdf.
|
9
|
+
Needs
|
16
10
|
pip uninstall -y torch torchvision torchaudio
|
17
11
|
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
18
12
|
|
19
13
|
"""
|
20
14
|
|
21
15
|
import os
|
22
|
-
|
16
|
+
|
23
17
|
import pandas as pd
|
24
18
|
import torch
|
25
19
|
import torchaudio
|
26
20
|
from torchaudio.pipelines import SQUIM_OBJECTIVE
|
21
|
+
from tqdm import tqdm
|
22
|
+
|
27
23
|
import audiofile
|
24
|
+
|
25
|
+
from nkululeko.feat_extract.featureset import Featureset
|
28
26
|
import nkululeko.glob_conf as glob_conf
|
29
27
|
from nkululeko.utils.util import Util
|
30
|
-
from nkululeko.feat_extract.featureset import Featureset
|
31
28
|
|
32
29
|
|
33
|
-
class
|
30
|
+
class SquimSet(Featureset):
|
34
31
|
"""Class to predict SQUIM features"""
|
35
32
|
|
36
33
|
def __init__(self, name, data_df):
|
nkululeko/feature_extractor.py
CHANGED
@@ -1,22 +1,25 @@
|
|
1
|
-
"""
|
2
|
-
feature_extractor.py
|
3
|
-
|
4
|
-
Helper class to encapsulate feature extraction methods
|
1
|
+
"""Extract acoustic features from audio samples.
|
5
2
|
|
3
|
+
Extract acoustic features using several feature extractors
|
4
|
+
(appends the features column-wise)
|
6
5
|
"""
|
6
|
+
|
7
7
|
import pandas as pd
|
8
8
|
|
9
9
|
from nkululeko.utils.util import Util
|
10
10
|
|
11
11
|
|
12
12
|
class FeatureExtractor:
|
13
|
-
"""
|
14
|
-
|
13
|
+
"""Extract acoustic features from audio samples.
|
14
|
+
|
15
|
+
Extract acoustic features using several feature extractors (appends the features column-wise).
|
16
|
+
|
15
17
|
Args:
|
16
18
|
data_df (pandas.DataFrame): dataframe with audiofile paths as index
|
17
|
-
feats_types (
|
18
|
-
data_name (
|
19
|
-
feats_designation (
|
19
|
+
feats_types (List[str]): designations of acoustic feature extractors to be used
|
20
|
+
data_name (str): name of databases that are extracted (for caching)
|
21
|
+
feats_designation (str): the type of split (train/test), also is used for the cache name.
|
22
|
+
|
20
23
|
Returns:
|
21
24
|
df (pandas.DataFrame): dataframe with same index as data_df and acoustic features in columns
|
22
25
|
"""
|
@@ -25,7 +28,6 @@ class FeatureExtractor:
|
|
25
28
|
df = None
|
26
29
|
data_df = None # dataframe to get audio paths
|
27
30
|
|
28
|
-
# def __init__
|
29
31
|
def __init__(self, data_df, feats_types, data_name, feats_designation):
|
30
32
|
self.data_df = data_df
|
31
33
|
self.data_name = data_name
|
@@ -34,147 +36,69 @@ class FeatureExtractor:
|
|
34
36
|
self.feats_designation = feats_designation
|
35
37
|
|
36
38
|
def extract(self):
|
37
|
-
# feats_types = self.util.config_val_list('FEATS', 'type', ['os'])
|
38
|
-
self.featExtractor = None
|
39
39
|
self.feats = pd.DataFrame()
|
40
|
-
_scale = True
|
41
40
|
for feats_type in self.feats_types:
|
42
41
|
store_name = f"{self.data_name}_{feats_type}"
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
48
|
-
)
|
49
|
-
elif feats_type == "spectra":
|
50
|
-
from nkululeko.feat_extract.feats_spectra import Spectraloader
|
51
|
-
|
52
|
-
self.featExtractor = Spectraloader(
|
53
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
54
|
-
)
|
55
|
-
elif feats_type == "trill":
|
56
|
-
from nkululeko.feat_extract.feats_trill import TRILLset
|
57
|
-
|
58
|
-
self.featExtractor = TRILLset(
|
59
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
60
|
-
)
|
61
|
-
elif feats_type.startswith("wav2vec"):
|
62
|
-
from nkululeko.feat_extract.feats_wav2vec2 import Wav2vec2
|
63
|
-
|
64
|
-
self.featExtractor = Wav2vec2(
|
65
|
-
f"{store_name}_{self.feats_designation}",
|
66
|
-
self.data_df,
|
67
|
-
feats_type,
|
68
|
-
)
|
69
|
-
elif feats_type.startswith("hubert"):
|
70
|
-
from nkululeko.feat_extract.feats_hubert import Hubert
|
71
|
-
|
72
|
-
self.featExtractor = Hubert(
|
73
|
-
f"{store_name}_{self.feats_designation}",
|
74
|
-
self.data_df,
|
75
|
-
feats_type,
|
76
|
-
)
|
77
|
-
|
78
|
-
elif feats_type.startswith("wavlm"):
|
79
|
-
from nkululeko.feat_extract.feats_wavlm import Wavlm
|
80
|
-
|
81
|
-
self.featExtractor = Wavlm(
|
82
|
-
f"{store_name}_{self.feats_designation}",
|
83
|
-
self.data_df,
|
84
|
-
feats_type,
|
85
|
-
)
|
86
|
-
|
87
|
-
elif feats_type.startswith("spkrec"):
|
88
|
-
from nkululeko.feat_extract.feats_spkrec import Spkrec
|
89
|
-
|
90
|
-
self.featExtractor = Spkrec(
|
91
|
-
f"{store_name}_{self.feats_designation}",
|
92
|
-
self.data_df,
|
93
|
-
feats_type,
|
94
|
-
)
|
95
|
-
elif feats_type == "audmodel":
|
96
|
-
from nkululeko.feat_extract.feats_audmodel import AudModelSet
|
97
|
-
|
98
|
-
self.featExtractor = AudModelSet(
|
99
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
100
|
-
)
|
101
|
-
elif feats_type == "auddim":
|
102
|
-
from nkululeko.feat_extract.feats_audmodel_dim import (
|
103
|
-
AudModelDimSet,
|
104
|
-
)
|
105
|
-
|
106
|
-
self.featExtractor = AudModelDimSet(
|
107
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
108
|
-
)
|
109
|
-
elif feats_type == "agender":
|
110
|
-
from nkululeko.feat_extract.feats_agender import (
|
111
|
-
AudModelAgenderSet,
|
112
|
-
)
|
113
|
-
|
114
|
-
self.featExtractor = AudModelAgenderSet(
|
115
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
116
|
-
)
|
117
|
-
elif feats_type == "agender_agender":
|
118
|
-
from nkululeko.feat_extract.feats_agender_agender import (
|
119
|
-
AgenderAgenderSet,
|
120
|
-
)
|
121
|
-
|
122
|
-
self.featExtractor = AgenderAgenderSet(
|
123
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
124
|
-
)
|
125
|
-
elif feats_type == "snr":
|
126
|
-
from nkululeko.feat_extract.feats_snr import SNRSet
|
127
|
-
|
128
|
-
self.featExtractor = SNRSet(
|
129
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
130
|
-
)
|
131
|
-
elif feats_type == "mos":
|
132
|
-
from nkululeko.feat_extract.feats_mos import MOSSet
|
133
|
-
|
134
|
-
self.featExtractor = MOSSet(
|
135
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
136
|
-
)
|
137
|
-
elif feats_type == "squim":
|
138
|
-
from nkululeko.feat_extract.feats_squim import SQUIMSet
|
139
|
-
|
140
|
-
self.featExtractor = SQUIMSet(
|
141
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
142
|
-
)
|
143
|
-
elif feats_type == "clap":
|
144
|
-
from nkululeko.feat_extract.feats_clap import Clap
|
145
|
-
|
146
|
-
self.featExtractor = Clap(
|
147
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
148
|
-
)
|
149
|
-
elif feats_type == "praat":
|
150
|
-
from nkululeko.feat_extract.feats_praat import Praatset
|
151
|
-
|
152
|
-
self.featExtractor = Praatset(
|
153
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
154
|
-
)
|
155
|
-
elif feats_type == "mld":
|
156
|
-
from nkululeko.feat_extract.feats_mld import MLD_set
|
157
|
-
|
158
|
-
self.featExtractor = MLD_set(
|
159
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
160
|
-
)
|
161
|
-
elif feats_type == "import":
|
162
|
-
from nkululeko.feat_extract.feats_import import Importset
|
163
|
-
|
164
|
-
self.featExtractor = Importset(
|
165
|
-
f"{store_name}_{self.feats_designation}", self.data_df
|
166
|
-
)
|
167
|
-
else:
|
168
|
-
self.util.error(f"unknown feats_type: {feats_type}")
|
169
|
-
|
170
|
-
self.featExtractor.extract()
|
171
|
-
self.featExtractor.filter()
|
172
|
-
# remove samples that were not extracted by MLD
|
173
|
-
# self.df_test = self.df_test.loc[self.df_test.index.intersection(featExtractor_test.df.index)]
|
174
|
-
# self.df_train = self.df_train.loc[self.df_train.index.intersection(featExtractor_train.df.index)]
|
175
|
-
self.util.debug(f"{feats_type}: shape : {self.featExtractor.df.shape}")
|
176
|
-
self.feats = pd.concat([self.feats, self.featExtractor.df], axis=1)
|
42
|
+
self.feat_extractor = self._get_feat_extractor(store_name, feats_type)
|
43
|
+
self.feat_extractor.extract()
|
44
|
+
self.feat_extractor.filter()
|
45
|
+
self.feats = pd.concat([self.feats, self.feat_extractor.df], axis=1)
|
177
46
|
return self.feats
|
178
47
|
|
179
48
|
def extract_sample(self, signal, sr):
|
180
|
-
return self.
|
49
|
+
return self.feat_extractor.extract_sample(signal, sr)
|
50
|
+
|
51
|
+
def _get_feat_extractor(self, store_name, feats_type):
|
52
|
+
feat_extractor_class = self._get_feat_extractor_class(feats_type)
|
53
|
+
if feat_extractor_class is None:
|
54
|
+
self.util.error(f"unknown feats_type: {feats_type}")
|
55
|
+
return feat_extractor_class(
|
56
|
+
f"{store_name}_{self.feats_designation}", self.data_df
|
57
|
+
)
|
58
|
+
|
59
|
+
def _get_feat_extractor_class(self, feats_type):
|
60
|
+
if feats_type == "os":
|
61
|
+
from nkululeko.feat_extract.feats_opensmile import Opensmileset
|
62
|
+
|
63
|
+
return Opensmileset
|
64
|
+
elif feats_type == "spectra":
|
65
|
+
from nkululeko.feat_extract.feats_spectra import Spectraloader
|
66
|
+
|
67
|
+
return Spectraloader
|
68
|
+
elif feats_type == "trill":
|
69
|
+
from nkululeko.feat_extract.feats_trill import TRILLset
|
70
|
+
|
71
|
+
return TRILLset
|
72
|
+
elif feats_type.startswith(("wav2vec", "hubert", "wavlm", "spkrec")):
|
73
|
+
return self._get_feat_extractor_by_prefix(feats_type)
|
74
|
+
elif feats_type in (
|
75
|
+
"audmodel",
|
76
|
+
"auddim",
|
77
|
+
"agender",
|
78
|
+
"agender_agender",
|
79
|
+
"snr",
|
80
|
+
"mos",
|
81
|
+
"squim",
|
82
|
+
"clap",
|
83
|
+
"praat",
|
84
|
+
"mld",
|
85
|
+
"import",
|
86
|
+
):
|
87
|
+
return self._get_feat_extractor_by_name(feats_type)
|
88
|
+
else:
|
89
|
+
return None
|
90
|
+
|
91
|
+
def _get_feat_extractor_by_prefix(self, feats_type):
|
92
|
+
prefix, _, ext = feats_type.partition("_")
|
93
|
+
from importlib import import_module
|
94
|
+
|
95
|
+
module = import_module(f"nkululeko.feat_extract.feats_{prefix.lower()}")
|
96
|
+
class_name = f"{prefix.capitalize()}{ext.capitalize()}set"
|
97
|
+
return getattr(module, class_name)
|
98
|
+
|
99
|
+
def _get_feat_extractor_by_name(self, feats_type):
|
100
|
+
from importlib import import_module
|
101
|
+
|
102
|
+
module = import_module(f"nkululeko.feat_extract.feats_{feats_type.lower()}")
|
103
|
+
class_name = f"{feats_type.capitalize()}Set"
|
104
|
+
return getattr(module, class_name)
|