nkululeko 0.81.3__py3-none-any.whl → 0.81.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/autopredict/estimate_snr.py +17 -6
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +11 -4
- nkululeko/demo.py +20 -5
- nkululeko/demo_predictor.py +6 -3
- nkululeko/experiment.py +3 -3
- nkululeko/explore.py +13 -8
- nkululeko/feat_extract/feats_agender.py +1 -4
- nkululeko/feat_extract/{feats_audmodel_dim.py → feats_auddim.py} +13 -8
- nkululeko/feat_extract/feats_audmodel.py +5 -4
- nkululeko/feat_extract/feats_import.py +1 -1
- nkululeko/feat_extract/feats_mos.py +2 -1
- nkululeko/feat_extract/feats_praat.py +10 -8
- nkululeko/feat_extract/feats_snr.py +17 -9
- nkululeko/feat_extract/feats_squim.py +13 -16
- nkululeko/feature_extractor.py +72 -148
- nkululeko/modelrunner.py +2 -2
- nkululeko/models/model.py +13 -13
- nkululeko/models/model_svm.py +5 -2
- nkululeko/multidb.py +18 -12
- nkululeko/predict.py +29 -9
- nkululeko/reporter.py +332 -0
- nkululeko/resample.py +12 -7
- nkululeko/runmanager.py +17 -8
- nkululeko/test.py +9 -6
- nkululeko/test_predictor.py +1 -0
- nkululeko/utils/stats.py +12 -5
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.6.dist-info}/METADATA +16 -1
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.6.dist-info}/RECORD +32 -31
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.6.dist-info}/LICENSE +0 -0
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.6.dist-info}/WHEEL +0 -0
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.6.dist-info}/top_level.txt +0 -0
@@ -1,20 +1,30 @@
|
|
1
1
|
# estimate.snr
|
2
|
-
|
2
|
+
"""
|
3
|
+
Module for estimating SNR (signal to noise ratio) from an audio signal.
|
4
|
+
|
5
|
+
This module provides a class `SNREstimator` which calculates the SNR based on
|
6
|
+
the log energy and energy thresholds of the audio signal.
|
7
|
+
|
8
|
+
"""
|
9
|
+
|
10
|
+
import argparse
|
11
|
+
|
3
12
|
import audiofile
|
4
13
|
import matplotlib.pyplot as plt
|
14
|
+
import numpy as np
|
5
15
|
from scipy.signal.windows import hamming
|
6
|
-
import argparse
|
7
16
|
|
8
17
|
|
9
18
|
class SNREstimator:
|
10
|
-
"""Estimate SNR from audio signal using log energy and energy thresholds
|
19
|
+
"""Estimate SNR from audio signal using log energy and energy thresholds.
|
20
|
+
|
11
21
|
Args:
|
12
22
|
input_data (ndarray): Input audio signal
|
13
23
|
sample_rate (int): Sampling rate of input audio signal
|
14
24
|
window_size (int): Window size in samples
|
15
25
|
hop_size (int): Hop size in samples
|
16
26
|
|
17
|
-
|
27
|
+
Returns:
|
18
28
|
object: SNREstimator object
|
19
29
|
estimated_snr (float): Estimated SNR in dB, extracted from SNREstimator.estimate_snr()
|
20
30
|
|
@@ -34,7 +44,7 @@ class SNREstimator:
|
|
34
44
|
num_frames = 1 + (len(signal) - self.frame_length) // self.hop_length
|
35
45
|
frames = [
|
36
46
|
signal[
|
37
|
-
i * self.hop_length
|
47
|
+
i * self.hop_length: (i * self.hop_length) + self.frame_length
|
38
48
|
]
|
39
49
|
for i in range(num_frames)
|
40
50
|
]
|
@@ -54,7 +64,8 @@ class SNREstimator:
|
|
54
64
|
for frame in frames
|
55
65
|
]
|
56
66
|
|
57
|
-
energy_threshold_low = np.percentile(
|
67
|
+
energy_threshold_low = np.percentile(
|
68
|
+
log_energies, 25) # First quartile
|
58
69
|
energy_threshold_high = np.percentile(
|
59
70
|
log_energies, 75
|
60
71
|
) # Third quartile
|
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.81.
|
1
|
+
VERSION="0.81.6"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -76,6 +76,7 @@ class Dataset:
|
|
76
76
|
if rename_cols:
|
77
77
|
col_dict = ast.literal_eval(rename_cols)
|
78
78
|
df = df.rename(columns=col_dict)
|
79
|
+
self.util.debug(f"renamed data columns: {col_dict}")
|
79
80
|
return df
|
80
81
|
|
81
82
|
def _report_load(self):
|
@@ -96,8 +97,8 @@ class Dataset:
|
|
96
97
|
"""Load the dataframe with files, speakers and task labels"""
|
97
98
|
# store the dataframe
|
98
99
|
store = self.util.get_path("store")
|
99
|
-
store_file = f"{store}{self.name}"
|
100
100
|
store_format = self.util.config_val("FEATS", "store_format", "pkl")
|
101
|
+
store_file = f"{store}{self.name}.{store_format}"
|
101
102
|
self.root = self._load_db()
|
102
103
|
if not self.start_fresh and os.path.isfile(store_file):
|
103
104
|
self.util.debug(f"{self.name}: reusing previously stored file {store_file}")
|
@@ -241,7 +242,7 @@ class Dataset:
|
|
241
242
|
# store the dataframe
|
242
243
|
store = self.util.get_path("store")
|
243
244
|
store_format = self.util.config_val("FEATS", "store_format", "pkl")
|
244
|
-
store_file = f"{store}{self.name}"
|
245
|
+
store_file = f"{store}{self.name}.{store_format}"
|
245
246
|
self.util.write_store(self.df, store_file, store_format)
|
246
247
|
|
247
248
|
def _get_df_for_lists(self, db, df_files):
|
@@ -281,13 +282,19 @@ class Dataset:
|
|
281
282
|
# try to get the age values
|
282
283
|
df_local["age"] = source_df["age"].astype(int)
|
283
284
|
got_age = True
|
284
|
-
except (KeyError, ValueError, audformat.errors.BadKeyError)
|
285
|
+
except (KeyError, ValueError, audformat.errors.BadKeyError):
|
285
286
|
pass
|
286
287
|
try:
|
287
288
|
# also it might be possible that the sex is part of the speaker description
|
288
289
|
df_local["gender"] = db[table]["speaker"].get(map="gender")
|
289
290
|
got_gender = True
|
290
|
-
except (ValueError, audformat.errors.BadKeyError)
|
291
|
+
except (ValueError, audformat.errors.BadKeyError):
|
292
|
+
pass
|
293
|
+
try:
|
294
|
+
# also it might be possible that the sex is part of the speaker description
|
295
|
+
df_local["gender"] = db[table]["speaker"].get(map="sex")
|
296
|
+
got_gender = True
|
297
|
+
except (ValueError, audformat.errors.BadKeyError):
|
291
298
|
pass
|
292
299
|
try:
|
293
300
|
# also it might be possible that the age is part of the speaker description
|
nkululeko/demo.py
CHANGED
@@ -2,20 +2,35 @@
|
|
2
2
|
# Demonstration code to use the ML-experiment framework
|
3
3
|
# Test the loading of a previously trained model and demo mode
|
4
4
|
# needs the project config file to run before
|
5
|
+
"""
|
6
|
+
This script is used to test the loading of a previously trained model and run it in demo mode.
|
7
|
+
It requires the project config file to be run before.
|
5
8
|
|
6
|
-
|
9
|
+
Usage:
|
10
|
+
python -m nkululeko.demo [--config CONFIG] [--file FILE] [--list LIST] [--folder FOLDER] [--outfile OUTFILE]
|
11
|
+
|
12
|
+
Options: \n
|
13
|
+
--config CONFIG The base configuration file (default: exp.ini) \n
|
14
|
+
--file FILE A file that should be processed (16kHz mono wav) \n
|
15
|
+
--list LIST A file with a list of files, one per line, that should be processed (16kHz mono wav) \n
|
16
|
+
--folder FOLDER A name of a folder where the files within the list are in (default: ./) \n
|
17
|
+
--outfile OUTFILE A filename to store the results in CSV (default: None)
|
18
|
+
"""
|
7
19
|
import argparse
|
8
20
|
import configparser
|
21
|
+
import os
|
9
22
|
|
23
|
+
import nkululeko.glob_conf as glob_conf
|
24
|
+
from nkululeko.constants import VERSION
|
10
25
|
from nkululeko.experiment import Experiment
|
11
26
|
from nkululeko.utils.util import Util
|
12
|
-
from nkululeko.constants import VERSION
|
13
|
-
import nkululeko.glob_conf as glob_conf
|
14
27
|
|
15
28
|
|
16
29
|
def main(src_dir):
|
17
|
-
parser = argparse.ArgumentParser(
|
18
|
-
|
30
|
+
parser = argparse.ArgumentParser(
|
31
|
+
description="Call the nkululeko DEMO framework.")
|
32
|
+
parser.add_argument("--config", default="exp.ini",
|
33
|
+
help="The base configuration")
|
19
34
|
parser.add_argument(
|
20
35
|
"--file", help="A file that should be processed (16kHz mono wav)"
|
21
36
|
)
|
nkululeko/demo_predictor.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1
|
+
# demo_predictor.py
|
1
2
|
import os
|
2
|
-
|
3
|
-
import numpy as np
|
4
|
-
import audiofile
|
3
|
+
|
5
4
|
import audformat
|
5
|
+
import audiofile
|
6
|
+
import numpy as np
|
7
|
+
import pandas as pd
|
8
|
+
|
6
9
|
import nkululeko.glob_conf as glob_conf
|
7
10
|
from nkululeko.utils.util import Util
|
8
11
|
|
nkululeko/experiment.py
CHANGED
@@ -685,7 +685,7 @@ class Experiment:
|
|
685
685
|
glob_conf.set_labels(self.labels)
|
686
686
|
|
687
687
|
def save(self, filename):
|
688
|
-
if self.runmgr.modelrunner.model.
|
688
|
+
if self.runmgr.modelrunner.model.is_ann():
|
689
689
|
self.runmgr.modelrunner.model = None
|
690
690
|
self.util.warn(
|
691
691
|
f"Save experiment: Can't pickle the learning model so saving without it."
|
@@ -695,7 +695,7 @@ class Experiment:
|
|
695
695
|
pickle.dump(self.__dict__, f)
|
696
696
|
f.close()
|
697
697
|
except TypeError:
|
698
|
-
self.feature_extractor.
|
698
|
+
self.feature_extractor.feat_extractor.model = None
|
699
699
|
f = open(filename, "wb")
|
700
700
|
pickle.dump(self.__dict__, f)
|
701
701
|
f.close()
|
@@ -708,7 +708,7 @@ class Experiment:
|
|
708
708
|
def save_onnx(self, filename):
|
709
709
|
# export the model to onnx
|
710
710
|
model = self.runmgr.get_best_model()
|
711
|
-
if model.
|
711
|
+
if model.is_ann():
|
712
712
|
print("converting to onnx from torch")
|
713
713
|
else:
|
714
714
|
from skl2onnx import to_onnx
|
nkululeko/explore.py
CHANGED
@@ -1,17 +1,20 @@
|
|
1
1
|
# explore.py
|
2
2
|
# explore the feature sets
|
3
3
|
|
4
|
-
from nkululeko.experiment import Experiment
|
5
|
-
import configparser
|
6
|
-
from nkululeko.utils.util import Util
|
7
|
-
from nkululeko.constants import VERSION
|
8
4
|
import argparse
|
5
|
+
import configparser
|
9
6
|
import os
|
10
7
|
|
8
|
+
from nkululeko.constants import VERSION
|
9
|
+
from nkululeko.experiment import Experiment
|
10
|
+
from nkululeko.utils.util import Util
|
11
|
+
|
11
12
|
|
12
13
|
def main(src_dir):
|
13
|
-
parser = argparse.ArgumentParser(
|
14
|
-
|
14
|
+
parser = argparse.ArgumentParser(
|
15
|
+
description="Call the nkululeko EXPLORE framework.")
|
16
|
+
parser.add_argument("--config", default="exp.ini",
|
17
|
+
help="The base configuration")
|
15
18
|
args = parser.parse_args()
|
16
19
|
if args.config is not None:
|
17
20
|
config_file = args.config
|
@@ -46,9 +49,11 @@ def main(src_dir):
|
|
46
49
|
|
47
50
|
# split into train and test
|
48
51
|
expr.fill_train_and_tests()
|
49
|
-
util.debug(
|
52
|
+
util.debug(
|
53
|
+
f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
|
50
54
|
|
51
|
-
plot_feats = eval(util.config_val(
|
55
|
+
plot_feats = eval(util.config_val(
|
56
|
+
"EXPL", "feature_distributions", "False"))
|
52
57
|
tsne = eval(util.config_val("EXPL", "tsne", "False"))
|
53
58
|
scatter = eval(util.config_val("EXPL", "scatter", "False"))
|
54
59
|
spotlight = eval(util.config_val("EXPL", "spotlight", "False"))
|
@@ -32,10 +32,7 @@ class AudModelAgenderSet(Featureset):
|
|
32
32
|
audeer.extract_archive(archive_path, model_root)
|
33
33
|
device = self.util.config_val("MODEL", "device", "cpu")
|
34
34
|
self.model = audonnx.load(model_root, device=device)
|
35
|
-
|
36
|
-
self.util.debug(
|
37
|
-
f"initialized agender model with {pytorch_total_params} parameters in total"
|
38
|
-
)
|
35
|
+
self.util.debug(f"initialized agender model")
|
39
36
|
self.model_loaded = True
|
40
37
|
|
41
38
|
def extract(self):
|
@@ -1,19 +1,24 @@
|
|
1
1
|
# feats_audmodel_dim.py
|
2
|
-
from nkululeko.feat_extract.featureset import Featureset
|
3
2
|
import os
|
3
|
+
|
4
|
+
import numpy as np
|
4
5
|
import pandas as pd
|
6
|
+
import torch
|
7
|
+
|
5
8
|
import audeer
|
6
|
-
import nkululeko.glob_conf as glob_conf
|
7
|
-
import audonnx
|
8
|
-
import numpy as np
|
9
9
|
import audinterface
|
10
|
+
import audonnx
|
11
|
+
|
12
|
+
from nkululeko.feat_extract.featureset import Featureset
|
13
|
+
import nkululeko.glob_conf as glob_conf
|
10
14
|
|
11
15
|
|
12
|
-
class
|
13
|
-
"""
|
14
|
-
|
16
|
+
class AuddimSet(Featureset):
|
17
|
+
"""Emotional dimensions from the wav2vec2 model finetuned on MSPPodcast emotions.
|
18
|
+
|
19
|
+
Described in the paper
|
15
20
|
"Dawn of the transformer era in speech emotion recognition: closing the valence gap"
|
16
|
-
https://arxiv.org/abs/2203.07378
|
21
|
+
https://arxiv.org/abs/2203.07378.
|
17
22
|
"""
|
18
23
|
|
19
24
|
def __init__(self, name, data_df):
|
@@ -11,11 +11,12 @@ import torch
|
|
11
11
|
from nkululeko.feat_extract.featureset import Featureset
|
12
12
|
|
13
13
|
|
14
|
-
class
|
15
|
-
"""
|
16
|
-
|
14
|
+
class AudmodelSet(Featureset):
|
15
|
+
"""Embeddings from the wav2vec2 based model finetuned on MSPPodcast emotions.
|
16
|
+
|
17
|
+
Described in the paper:
|
17
18
|
"Dawn of the transformer era in speech emotion recognition: closing the valence gap"
|
18
|
-
https://arxiv.org/abs/2203.07378
|
19
|
+
https://arxiv.org/abs/2203.07378.
|
19
20
|
"""
|
20
21
|
|
21
22
|
def __init__(self, name, data_df):
|
@@ -8,7 +8,7 @@ from nkululeko.utils.util import Util
|
|
8
8
|
from nkululeko.feat_extract.featureset import Featureset
|
9
9
|
|
10
10
|
|
11
|
-
class
|
11
|
+
class ImportSet(Featureset):
|
12
12
|
"""Class to import features that have been compiled elsewhere"""
|
13
13
|
|
14
14
|
def __init__(self, name, data_df):
|
@@ -10,6 +10,7 @@ pip uninstall -y torch torchvision torchaudio
|
|
10
10
|
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
11
11
|
|
12
12
|
"""
|
13
|
+
|
13
14
|
import os
|
14
15
|
import pandas as pd
|
15
16
|
from tqdm import tqdm
|
@@ -23,7 +24,7 @@ from nkululeko.utils.util import Util
|
|
23
24
|
from nkululeko.feat_extract.featureset import Featureset
|
24
25
|
|
25
26
|
|
26
|
-
class
|
27
|
+
class MosSet(Featureset):
|
27
28
|
"""Class to predict MOS (mean opinion score)"""
|
28
29
|
|
29
30
|
def __init__(self, name, data_df):
|
@@ -1,17 +1,19 @@
|
|
1
1
|
# feats_praat.py
|
2
|
-
|
2
|
+
import ast
|
3
3
|
import os
|
4
|
-
|
4
|
+
|
5
5
|
import numpy as np
|
6
|
-
import
|
6
|
+
import pandas as pd
|
7
|
+
|
7
8
|
from nkululeko.feat_extract import feinberg_praat
|
8
|
-
import
|
9
|
+
from nkululeko.feat_extract.featureset import Featureset
|
10
|
+
import nkululeko.glob_conf as glob_conf
|
9
11
|
|
10
12
|
|
11
|
-
class
|
12
|
-
"""
|
13
|
-
|
14
|
-
David R. Feinberg's Praat scripts for the parselmouth python interface.
|
13
|
+
class PraatSet(Featureset):
|
14
|
+
"""A feature extractor for the Praat software.
|
15
|
+
|
16
|
+
Based on David R. Feinberg's Praat scripts for the parselmouth python interface.
|
15
17
|
https://osf.io/6dwr3/
|
16
18
|
|
17
19
|
"""
|
@@ -1,14 +1,17 @@
|
|
1
|
-
""" feats_snr.py
|
2
|
-
|
1
|
+
""" feats_snr.py is to estimate snr.
|
2
|
+
|
3
|
+
SNR (signal to noise ratio) is extracted as acoustic features.
|
3
4
|
"""
|
4
5
|
import os
|
5
|
-
|
6
|
-
import pandas as pd
|
6
|
+
|
7
7
|
import audiofile
|
8
|
+
import pandas as pd
|
9
|
+
from tqdm import tqdm
|
10
|
+
|
8
11
|
import nkululeko.glob_conf as glob_conf
|
9
|
-
from nkululeko.utils.util import Util
|
10
|
-
from nkululeko.feat_extract.featureset import Featureset
|
11
12
|
from nkululeko.autopredict.estimate_snr import SNREstimator
|
13
|
+
from nkululeko.feat_extract.featureset import Featureset
|
14
|
+
from nkululeko.utils.util import Util
|
12
15
|
|
13
16
|
|
14
17
|
class SNRSet(Featureset):
|
@@ -16,14 +19,17 @@ class SNRSet(Featureset):
|
|
16
19
|
|
17
20
|
def __init__(self, name, data_df):
|
18
21
|
"""Constructor."""
|
22
|
+
|
19
23
|
super().__init__(name, data_df)
|
20
24
|
|
21
25
|
def extract(self):
|
22
26
|
"""Estimate the features or load them from disk if present."""
|
27
|
+
|
23
28
|
store = self.util.get_path("store")
|
24
29
|
store_format = self.util.config_val("FEATS", "store_format", "pkl")
|
25
30
|
storage = f"{store}{self.name}.{store_format}"
|
26
|
-
extract = self.util.config_val(
|
31
|
+
extract = self.util.config_val(
|
32
|
+
"FEATS", "needs_feature_extraction", False)
|
27
33
|
no_reuse = eval(self.util.config_val("FEATS", "no_reuse", "False"))
|
28
34
|
if extract or no_reuse or not os.path.isfile(storage):
|
29
35
|
self.util.debug("estimating SNR, this might take a while...")
|
@@ -40,7 +46,8 @@ class SNRSet(Featureset):
|
|
40
46
|
snr = self.get_snr(signal[0], sampling_rate)
|
41
47
|
snr_series[idx] = snr
|
42
48
|
print("")
|
43
|
-
self.df = pd.DataFrame(
|
49
|
+
self.df = pd.DataFrame(
|
50
|
+
snr_series.values.tolist(), index=self.data_df.index)
|
44
51
|
self.df.columns = ["snr"]
|
45
52
|
self.util.write_store(self.df, storage, store_format)
|
46
53
|
try:
|
@@ -53,10 +60,11 @@ class SNRSet(Featureset):
|
|
53
60
|
|
54
61
|
def get_snr(self, signal, sampling_rate):
|
55
62
|
r"""Estimate SNR from raw audio signal.
|
63
|
+
|
56
64
|
Args:
|
57
65
|
signal: audio signal
|
58
66
|
sampling_rate: sample rate
|
59
|
-
Returns
|
67
|
+
Returns:
|
60
68
|
snr: estimated signal to noise ratio
|
61
69
|
"""
|
62
70
|
snr_estimator = SNREstimator(signal, sampling_rate)
|
@@ -1,36 +1,33 @@
|
|
1
|
-
"""
|
2
|
-
predict SQUIM ( SPEECH QUALITY AND INTELLIGIBILITY
|
3
|
-
MEASURES) features
|
1
|
+
"""Predict SQUIM ( SPEECH QUALITY AND INTELLIGIBILITY MEASURES) features.
|
4
2
|
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
adapted from
|
3
|
+
Wideband Perceptual Estimation of Speech Quality (PESQ) [2].
|
4
|
+
Short-Time Objective Intelligibility (STOI) [3].
|
5
|
+
Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [4].
|
6
|
+
Adapted from
|
12
7
|
from https://pytorch.org/audio/main/tutorials/squim_tutorial.html#sphx-glr-tutorials-squim-tutorial-py
|
13
|
-
paper: https://arxiv.org/pdf/2304.01448.pdf
|
14
|
-
|
15
|
-
needs
|
8
|
+
paper: https://arxiv.org/pdf/2304.01448.pdf.
|
9
|
+
Needs
|
16
10
|
pip uninstall -y torch torchvision torchaudio
|
17
11
|
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
18
12
|
|
19
13
|
"""
|
20
14
|
|
21
15
|
import os
|
22
|
-
|
16
|
+
|
23
17
|
import pandas as pd
|
24
18
|
import torch
|
25
19
|
import torchaudio
|
26
20
|
from torchaudio.pipelines import SQUIM_OBJECTIVE
|
21
|
+
from tqdm import tqdm
|
22
|
+
|
27
23
|
import audiofile
|
24
|
+
|
25
|
+
from nkululeko.feat_extract.featureset import Featureset
|
28
26
|
import nkululeko.glob_conf as glob_conf
|
29
27
|
from nkululeko.utils.util import Util
|
30
|
-
from nkululeko.feat_extract.featureset import Featureset
|
31
28
|
|
32
29
|
|
33
|
-
class
|
30
|
+
class SquimSet(Featureset):
|
34
31
|
"""Class to predict SQUIM features"""
|
35
32
|
|
36
33
|
def __init__(self, name, data_df):
|