nkululeko 0.81.3__py3-none-any.whl → 0.81.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.81.3"
1
+ VERSION="0.81.4"
2
2
  SAMPLING_RATE = 16000
nkululeko/data/dataset.py CHANGED
@@ -96,8 +96,8 @@ class Dataset:
96
96
  """Load the dataframe with files, speakers and task labels"""
97
97
  # store the dataframe
98
98
  store = self.util.get_path("store")
99
- store_file = f"{store}{self.name}"
100
99
  store_format = self.util.config_val("FEATS", "store_format", "pkl")
100
+ store_file = f"{store}{self.name}.{store_format}"
101
101
  self.root = self._load_db()
102
102
  if not self.start_fresh and os.path.isfile(store_file):
103
103
  self.util.debug(f"{self.name}: reusing previously stored file {store_file}")
@@ -241,7 +241,7 @@ class Dataset:
241
241
  # store the dataframe
242
242
  store = self.util.get_path("store")
243
243
  store_format = self.util.config_val("FEATS", "store_format", "pkl")
244
- store_file = f"{store}{self.name}"
244
+ store_file = f"{store}{self.name}.{store_format}"
245
245
  self.util.write_store(self.df, store_file, store_format)
246
246
 
247
247
  def _get_df_for_lists(self, db, df_files):
nkululeko/experiment.py CHANGED
@@ -685,7 +685,7 @@ class Experiment:
685
685
  glob_conf.set_labels(self.labels)
686
686
 
687
687
  def save(self, filename):
688
- if self.runmgr.modelrunner.model.is_ANN():
688
+ if self.runmgr.modelrunner.model.is_ann():
689
689
  self.runmgr.modelrunner.model = None
690
690
  self.util.warn(
691
691
  f"Save experiment: Can't pickle the learning model so saving without it."
@@ -708,7 +708,7 @@ class Experiment:
708
708
  def save_onnx(self, filename):
709
709
  # export the model to onnx
710
710
  model = self.runmgr.get_best_model()
711
- if model.is_ANN():
711
+ if model.is_ann():
712
712
  print("converting to onnx from torch")
713
713
  else:
714
714
  from skl2onnx import to_onnx
@@ -1,12 +1,16 @@
1
1
  # feats_audmodel_dim.py
2
- from nkululeko.feat_extract.featureset import Featureset
3
2
  import os
3
+
4
+ import numpy as np
4
5
  import pandas as pd
6
+ import torch
7
+
5
8
  import audeer
6
- import nkululeko.glob_conf as glob_conf
7
- import audonnx
8
- import numpy as np
9
9
  import audinterface
10
+ import audonnx
11
+
12
+ from nkululeko.feat_extract.featureset import Featureset
13
+ import nkululeko.glob_conf as glob_conf
10
14
 
11
15
 
12
16
  class AudModelDimSet(Featureset):
nkululeko/modelrunner.py CHANGED
@@ -39,7 +39,7 @@ class Modelrunner:
39
39
  plot_epochs = self.util.config_val("PLOT", "epochs", False)
40
40
  only_test = self.util.config_val("MODEL", "only_test", False)
41
41
  epoch_num = int(self.util.config_val("EXP", "epochs", 1))
42
- if not self.model.is_ANN() and epoch_num > 1:
42
+ if not self.model.is_ann() and epoch_num > 1:
43
43
  self.util.warn(f"setting epoch num to 1 (was {epoch_num}) if model not ANN")
44
44
  epoch_num = 1
45
45
  glob_conf.config["EXP"]["epochs"] = "1"
@@ -69,7 +69,7 @@ class Modelrunner:
69
69
  if plot_epochs:
70
70
  self.util.debug(f"plotting conf matrix to {plot_name}")
71
71
  report.plot_confmatrix(plot_name, epoch)
72
- store_models = self.util.config_val("MODEL", "save", False)
72
+ store_models = self.util.config_val("EXP", "save", False)
73
73
  plot_best_model = self.util.config_val("PLOT", "best_model", False)
74
74
  if (store_models or plot_best_model) and (
75
75
  not only_test
nkululeko/models/model.py CHANGED
@@ -1,23 +1,25 @@
1
1
  # model.py
2
- from nkululeko.utils.util import Util
3
- import pandas as pd
4
- import numpy as np
5
- import nkululeko.glob_conf as glob_conf
6
- import sklearn.utils
7
- from nkululeko.reporting.reporter import Reporter
8
2
  import ast
9
- from sklearn.model_selection import GridSearchCV
10
3
  import pickle
11
4
  import random
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+ from sklearn.model_selection import GridSearchCV
12
9
  from sklearn.model_selection import LeaveOneGroupOut
13
10
  from sklearn.model_selection import StratifiedKFold
11
+ import sklearn.utils
12
+
13
+ import nkululeko.glob_conf as glob_conf
14
+ from nkululeko.reporting.reporter import Reporter
15
+ from nkululeko.utils.util import Util
14
16
 
15
17
 
16
18
  class Model:
17
- """Generic model class for linear (non-neural) algorithms"""
19
+ """Generic model class for linear (non-neural) algorithms."""
18
20
 
19
21
  def __init__(self, df_train, df_test, feats_train, feats_test):
20
- """Constructor taking the configuration and all dataframes"""
22
+ """Constructor taking the configuration and all dataframes."""
21
23
  self.df_train, self.df_test, self.feats_train, self.feats_test = (
22
24
  df_train,
23
25
  df_test,
@@ -35,7 +37,7 @@ class Model:
35
37
  def set_model_type(self, type):
36
38
  self.model_type = type
37
39
 
38
- def is_ANN(self):
40
+ def is_ann(self):
39
41
  if self.model_type == "ann":
40
42
  return True
41
43
  else:
@@ -277,8 +279,6 @@ class Model:
277
279
  prediction = {}
278
280
  if self.util.exp_is_classification():
279
281
  # get the class probabilities
280
- if not self.get_type() == "xgb":
281
- features = [features]
282
282
  predictions = self.clf.predict_proba(features)
283
283
  # pred = self.clf.predict(features)
284
284
  for i in range(len(self.clf.classes_)):
@@ -302,7 +302,7 @@ class Model:
302
302
  self.clf = pickle.load(handle)
303
303
  except FileNotFoundError as fe:
304
304
  self.util.error(
305
- f"did you forget to store your models? needs: \n[MODEL]\nsave=True\n{fe}"
305
+ f"Did you forget to store your models? needs: \n[MODEL]\nsave=True\n{fe}"
306
306
  )
307
307
 
308
308
  def load_path(self, path, run, epoch):
@@ -25,6 +25,9 @@ class SVM_model(Model):
25
25
  class_weight=class_weight,
26
26
  ) # set up the classifier
27
27
 
28
- def set_C(self, c):
29
- """Set the C parameter"""
28
+ def set_c(self, c):
29
+ """Set the C parameter."""
30
30
  self.clf.C = c
31
+
32
+ def get_type(self):
33
+ return "svm"
nkululeko/predict.py CHANGED
@@ -28,7 +28,9 @@ def main(src_dir):
28
28
  config.read(config_file)
29
29
  # create a new experiment
30
30
  expr = Experiment(config)
31
- util = Util("predict")
31
+ module = "predict"
32
+ expr.set_module(module)
33
+ util = Util(module)
32
34
  util.debug(
33
35
  f"running {expr.name} from config {config_file}, nkululeko version"
34
36
  f" {VERSION}"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.81.3
3
+ Version: 0.81.4
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -323,6 +323,11 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
323
323
  Changelog
324
324
  =========
325
325
 
326
+ Version 0.81.4
327
+ --------------
328
+ * fixed bug in demo module
329
+ * removed [MODEL] save
330
+
326
331
  Version 0.81.3
327
332
  --------------
328
333
  * added confidence intervals to result reporting
@@ -2,22 +2,22 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
3
  nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=hx9HFHOlApn60yieWI1qr4PbrKeT3EFK1aaDMxlt5xU,39
5
+ nkululeko/constants.py,sha256=ByG14eJmwNz-UWXy8HPvxCvIp1fugWiKHNFMrPC2SL4,39
6
6
  nkululeko/demo.py,sha256=me8EdjN-zrzClVy9FEmqbTQyDDON88W8vPpWEE8T0cI,2500
7
7
  nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
8
  nkululeko/demo_predictor.py,sha256=CQL6DO7QxwmwoB_6DlgDS-pdG1KuvemYJ1NEpMjmMk8,4733
9
- nkululeko/experiment.py,sha256=NVhtywaGT5vtreJNlrezp4sq-KIN_gxOjUChvBa7Z38,29575
9
+ nkululeko/experiment.py,sha256=vND46up3AQgFGkCmcVFXfMzdiFCM5cVuhKD499BlldY,29575
10
10
  nkululeko/explore.py,sha256=5c89hGpjt5mRMN7w2Ajjnr2VjoFF0hOFs0O1BQruw80,2250
11
11
  nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
12
12
  nkululeko/feature_extractor.py,sha256=tKv1b1-o7xNMgBavTR8VY8_H5HKoJEnnosS-KcjmOEU,7281
13
13
  nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,3474
14
14
  nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
15
15
  nkululeko/glob_conf.py,sha256=iHiVSxDYgmYwdx6z0HuGUMSWrfZfufPHxHb60q2dLRY,453
16
- nkululeko/modelrunner.py,sha256=cU6FHbpI2mrG0BY7pn5UgFFpYh3u-v_GH7q73Kknhug,9337
16
+ nkululeko/modelrunner.py,sha256=GuYsmUGSmJ0QxXxR8k0TZ47IDMtdGIMbm5nMq4Ix6tU,9335
17
17
  nkululeko/multidb.py,sha256=4ceCu9LFrMGlrcgtz4pWuOQb2KA3jR5uo3FjZgAEBD4,5732
18
18
  nkululeko/nkululeko.py,sha256=Ty8cdusXUec9BHml8Gsp1r7DXuvIBMFXUckMpzILBnQ,1966
19
19
  nkululeko/plots.py,sha256=K88ZRPFGX_r03BT742H06Dde20xZYdltv7dxjgUiAFA,23025
20
- nkululeko/predict.py,sha256=dRXX-sQVESa7cNi_56S6UkUOa_pV1g_K4xYtYVM1SJs,1876
20
+ nkululeko/predict.py,sha256=KCEE3dX58xguwqW8rgLnL5hJOMfN0vr7yAd39P9MFoQ,1924
21
21
  nkululeko/resample.py,sha256=Yzfr_rInG9afPZFnEjiQ3EKRdMSwyYKVQwt9-yNGJn8,2233
22
22
  nkululeko/runmanager.py,sha256=JNBm7JJN8QU8qEqfWr4eS6rkPnBWoVdIUTynHctCPpw,7461
23
23
  nkululeko/scaler.py,sha256=4nkIqoajkIkuTPK0Z02ifMN_awl6fP_i-GBYdoGYgGM,4101
@@ -43,14 +43,14 @@ nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvd
43
43
  nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
44
44
  nkululeko/autopredict/estimate_snr.py,sha256=kJbvkt2alMN5ouS03USheU7hJ2l7U9JF0s9AtNT1Vx0,4818
45
45
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
- nkululeko/data/dataset.py,sha256=n6v_vVdA0EsZ-NaTgnYfPlCT4QCcD02mJJb-oD7SaSU,27265
46
+ nkululeko/data/dataset.py,sha256=Fzu2x74T3sxP9q154Htx88EIllUuN2nOiaj_0k97H3I,27295
47
47
  nkululeko/data/dataset_csv.py,sha256=v3lSjF23EVjoP460QOfhdcqbWAlBQWlBOuaYujZoS4s,3407
48
48
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
49
  nkululeko/feat_extract/feats_agender.py,sha256=_lAL6IxJDJH2bhIvd7yarTqQryx7FjbQXAgY0mJP-KI,3192
50
50
  nkululeko/feat_extract/feats_agender_agender.py,sha256=5dA7YA-YGxODovMC7ynMk3bnpPjfs0ApvSfjqvoSZY0,3346
51
51
  nkululeko/feat_extract/feats_analyser.py,sha256=_5oz4y-NZCEBgfNP2GZ9WNqQR50Hbykm0TvDVomWP0U,11399
52
52
  nkululeko/feat_extract/feats_audmodel.py,sha256=TRCkLqPgnyWN-OAcO69pPZF2FIbBy5ERb5ZY22qh6iA,3108
53
- nkululeko/feat_extract/feats_audmodel_dim.py,sha256=yg39CSR0b54AJyOAlXO3M1ohyY9Rbrjf18pllsoQ03g,3078
53
+ nkululeko/feat_extract/feats_audmodel_dim.py,sha256=jv3bNX4tK2IIeG4JbuwZh03NF8gr225Z1Ejfo0-T0LA,3094
54
54
  nkululeko/feat_extract/feats_clap.py,sha256=v82mbjdjGDSKUUBggttw7jW0oka22fWAmfUf-4VmaDU,3379
55
55
  nkululeko/feat_extract/feats_hubert.py,sha256=uL-9mgQHuGPQi1nuUaw6aNU9DscsO89uJAmBdmnCegM,5205
56
56
  nkululeko/feat_extract/feats_import.py,sha256=m7Yh1sj7C1yrDDbZAqS75oMMF5rAtO7XC_sdWdQN5Iw,1598
@@ -72,7 +72,7 @@ nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
72
72
  nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
73
73
  nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
74
74
  nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
- nkululeko/models/model.py,sha256=8gjRsjSYLWZvfcyTCWhbZ741rkHhx8lxCS2NlSOLP1Y,11648
75
+ nkululeko/models/model.py,sha256=oAdKq2wY5lYKfpZkQwO46ojYRsj_Z-FR56oR1uHAWI0,11569
76
76
  nkululeko/models/model_bayes.py,sha256=wI7-sCwibqXMCHviu349TYjgJXXNXym-Z6ZM83uxlFQ,378
77
77
  nkululeko/models/model_cnn.py,sha256=j4NTp7quWqInzOPfpiMrTcfMbXkOsdlFF9ns0tW_ld4,9726
78
78
  nkululeko/models/model_gmm.py,sha256=onovzGBeguwZ-upXtuDLaBw9sd6fDDQslVBOrz1Z8TE,645
@@ -81,7 +81,7 @@ nkululeko/models/model_knn_reg.py,sha256=Fbuk6Ku6eyrbbMEk7rB5dwfhvQOMsdZk6HI_0T0
81
81
  nkululeko/models/model_lin_reg.py,sha256=NBTnY2ULuhUBt5ArYQwskZ2Vq4BBDGkqd9SYBFl7Ql4,392
82
82
  nkululeko/models/model_mlp.py,sha256=lYhGrkqEj6fa6a_tcPrqEoorOpM7t7bjSfFLKEV6pu4,9107
83
83
  nkululeko/models/model_mlp_regression.py,sha256=NP1yEsqvpDcDBWWzDq7W4SHnXC1kE4fAo4A9aBCq3cY,10083
84
- nkululeko/models/model_svm.py,sha256=dqDQbfRCtlW3RNqpHDGVsj3ikc131gKURHj5VzAcCr0,867
84
+ nkululeko/models/model_svm.py,sha256=QqwRjfG9I5y-57CcJAMUSbvYzV0DOlDcpDK5f4yQ_qw,914
85
85
  nkululeko/models/model_svr.py,sha256=p-Mb4Bn54yOe1upuHQKNpfj4ttOmQnm9pCB7ECkJkJQ,699
86
86
  nkululeko/models/model_tree.py,sha256=soXjV523eRvRZ-jbX7X_3S73Wto1B9bm7ZzzDmgYzTc,390
87
87
  nkululeko/models/model_tree_reg.py,sha256=QxkQEz3LOuCLkXw5xH9IwFg4IcTL3Y5RK03qKe4TtGQ,397
@@ -101,8 +101,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
101
101
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
102
102
  nkululeko/utils/stats.py,sha256=29otJpUp1VqbtDKmlLkPPzBmVfTFiHZ70rUdR4860rM,2788
103
103
  nkululeko/utils/util.py,sha256=_Z6OMJ3f-8TdETW9eqJYY5hwNRS5XCt9azzRnqoTTZE,12330
104
- nkululeko-0.81.3.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
105
- nkululeko-0.81.3.dist-info/METADATA,sha256=72Q5q8KeaEP3I0TrVzswdI4g0Fc0hnCG-kPFZke8YM8,34664
106
- nkululeko-0.81.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
107
- nkululeko-0.81.3.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
108
- nkululeko-0.81.3.dist-info/RECORD,,
104
+ nkululeko-0.81.4.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
105
+ nkululeko-0.81.4.dist-info/METADATA,sha256=WRyf1kOFHimg9QhI6iQ4xzPRE70EEkKM5kwMepF0K3Y,34745
106
+ nkululeko-0.81.4.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
107
+ nkululeko-0.81.4.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
108
+ nkululeko-0.81.4.dist-info/RECORD,,