nkululeko 0.81.3__py3-none-any.whl → 0.81.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +2 -2
- nkululeko/experiment.py +2 -2
- nkululeko/feat_extract/feats_audmodel_dim.py +8 -4
- nkululeko/modelrunner.py +2 -2
- nkululeko/models/model.py +13 -13
- nkululeko/models/model_svm.py +5 -2
- nkululeko/predict.py +3 -1
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.4.dist-info}/METADATA +6 -1
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.4.dist-info}/RECORD +13 -13
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.4.dist-info}/LICENSE +0 -0
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.4.dist-info}/WHEEL +0 -0
- {nkululeko-0.81.3.dist-info → nkululeko-0.81.4.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.81.
|
1
|
+
VERSION="0.81.4"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -96,8 +96,8 @@ class Dataset:
|
|
96
96
|
"""Load the dataframe with files, speakers and task labels"""
|
97
97
|
# store the dataframe
|
98
98
|
store = self.util.get_path("store")
|
99
|
-
store_file = f"{store}{self.name}"
|
100
99
|
store_format = self.util.config_val("FEATS", "store_format", "pkl")
|
100
|
+
store_file = f"{store}{self.name}.{store_format}"
|
101
101
|
self.root = self._load_db()
|
102
102
|
if not self.start_fresh and os.path.isfile(store_file):
|
103
103
|
self.util.debug(f"{self.name}: reusing previously stored file {store_file}")
|
@@ -241,7 +241,7 @@ class Dataset:
|
|
241
241
|
# store the dataframe
|
242
242
|
store = self.util.get_path("store")
|
243
243
|
store_format = self.util.config_val("FEATS", "store_format", "pkl")
|
244
|
-
store_file = f"{store}{self.name}"
|
244
|
+
store_file = f"{store}{self.name}.{store_format}"
|
245
245
|
self.util.write_store(self.df, store_file, store_format)
|
246
246
|
|
247
247
|
def _get_df_for_lists(self, db, df_files):
|
nkululeko/experiment.py
CHANGED
@@ -685,7 +685,7 @@ class Experiment:
|
|
685
685
|
glob_conf.set_labels(self.labels)
|
686
686
|
|
687
687
|
def save(self, filename):
|
688
|
-
if self.runmgr.modelrunner.model.
|
688
|
+
if self.runmgr.modelrunner.model.is_ann():
|
689
689
|
self.runmgr.modelrunner.model = None
|
690
690
|
self.util.warn(
|
691
691
|
f"Save experiment: Can't pickle the learning model so saving without it."
|
@@ -708,7 +708,7 @@ class Experiment:
|
|
708
708
|
def save_onnx(self, filename):
|
709
709
|
# export the model to onnx
|
710
710
|
model = self.runmgr.get_best_model()
|
711
|
-
if model.
|
711
|
+
if model.is_ann():
|
712
712
|
print("converting to onnx from torch")
|
713
713
|
else:
|
714
714
|
from skl2onnx import to_onnx
|
@@ -1,12 +1,16 @@
|
|
1
1
|
# feats_audmodel_dim.py
|
2
|
-
from nkululeko.feat_extract.featureset import Featureset
|
3
2
|
import os
|
3
|
+
|
4
|
+
import numpy as np
|
4
5
|
import pandas as pd
|
6
|
+
import torch
|
7
|
+
|
5
8
|
import audeer
|
6
|
-
import nkululeko.glob_conf as glob_conf
|
7
|
-
import audonnx
|
8
|
-
import numpy as np
|
9
9
|
import audinterface
|
10
|
+
import audonnx
|
11
|
+
|
12
|
+
from nkululeko.feat_extract.featureset import Featureset
|
13
|
+
import nkululeko.glob_conf as glob_conf
|
10
14
|
|
11
15
|
|
12
16
|
class AudModelDimSet(Featureset):
|
nkululeko/modelrunner.py
CHANGED
@@ -39,7 +39,7 @@ class Modelrunner:
|
|
39
39
|
plot_epochs = self.util.config_val("PLOT", "epochs", False)
|
40
40
|
only_test = self.util.config_val("MODEL", "only_test", False)
|
41
41
|
epoch_num = int(self.util.config_val("EXP", "epochs", 1))
|
42
|
-
if not self.model.
|
42
|
+
if not self.model.is_ann() and epoch_num > 1:
|
43
43
|
self.util.warn(f"setting epoch num to 1 (was {epoch_num}) if model not ANN")
|
44
44
|
epoch_num = 1
|
45
45
|
glob_conf.config["EXP"]["epochs"] = "1"
|
@@ -69,7 +69,7 @@ class Modelrunner:
|
|
69
69
|
if plot_epochs:
|
70
70
|
self.util.debug(f"plotting conf matrix to {plot_name}")
|
71
71
|
report.plot_confmatrix(plot_name, epoch)
|
72
|
-
store_models = self.util.config_val("
|
72
|
+
store_models = self.util.config_val("EXP", "save", False)
|
73
73
|
plot_best_model = self.util.config_val("PLOT", "best_model", False)
|
74
74
|
if (store_models or plot_best_model) and (
|
75
75
|
not only_test
|
nkululeko/models/model.py
CHANGED
@@ -1,23 +1,25 @@
|
|
1
1
|
# model.py
|
2
|
-
from nkululeko.utils.util import Util
|
3
|
-
import pandas as pd
|
4
|
-
import numpy as np
|
5
|
-
import nkululeko.glob_conf as glob_conf
|
6
|
-
import sklearn.utils
|
7
|
-
from nkululeko.reporting.reporter import Reporter
|
8
2
|
import ast
|
9
|
-
from sklearn.model_selection import GridSearchCV
|
10
3
|
import pickle
|
11
4
|
import random
|
5
|
+
|
6
|
+
import numpy as np
|
7
|
+
import pandas as pd
|
8
|
+
from sklearn.model_selection import GridSearchCV
|
12
9
|
from sklearn.model_selection import LeaveOneGroupOut
|
13
10
|
from sklearn.model_selection import StratifiedKFold
|
11
|
+
import sklearn.utils
|
12
|
+
|
13
|
+
import nkululeko.glob_conf as glob_conf
|
14
|
+
from nkululeko.reporting.reporter import Reporter
|
15
|
+
from nkululeko.utils.util import Util
|
14
16
|
|
15
17
|
|
16
18
|
class Model:
|
17
|
-
"""Generic model class for linear (non-neural) algorithms"""
|
19
|
+
"""Generic model class for linear (non-neural) algorithms."""
|
18
20
|
|
19
21
|
def __init__(self, df_train, df_test, feats_train, feats_test):
|
20
|
-
"""Constructor taking the configuration and all dataframes"""
|
22
|
+
"""Constructor taking the configuration and all dataframes."""
|
21
23
|
self.df_train, self.df_test, self.feats_train, self.feats_test = (
|
22
24
|
df_train,
|
23
25
|
df_test,
|
@@ -35,7 +37,7 @@ class Model:
|
|
35
37
|
def set_model_type(self, type):
|
36
38
|
self.model_type = type
|
37
39
|
|
38
|
-
def
|
40
|
+
def is_ann(self):
|
39
41
|
if self.model_type == "ann":
|
40
42
|
return True
|
41
43
|
else:
|
@@ -277,8 +279,6 @@ class Model:
|
|
277
279
|
prediction = {}
|
278
280
|
if self.util.exp_is_classification():
|
279
281
|
# get the class probabilities
|
280
|
-
if not self.get_type() == "xgb":
|
281
|
-
features = [features]
|
282
282
|
predictions = self.clf.predict_proba(features)
|
283
283
|
# pred = self.clf.predict(features)
|
284
284
|
for i in range(len(self.clf.classes_)):
|
@@ -302,7 +302,7 @@ class Model:
|
|
302
302
|
self.clf = pickle.load(handle)
|
303
303
|
except FileNotFoundError as fe:
|
304
304
|
self.util.error(
|
305
|
-
f"
|
305
|
+
f"Did you forget to store your models? needs: \n[MODEL]\nsave=True\n{fe}"
|
306
306
|
)
|
307
307
|
|
308
308
|
def load_path(self, path, run, epoch):
|
nkululeko/models/model_svm.py
CHANGED
nkululeko/predict.py
CHANGED
@@ -28,7 +28,9 @@ def main(src_dir):
|
|
28
28
|
config.read(config_file)
|
29
29
|
# create a new experiment
|
30
30
|
expr = Experiment(config)
|
31
|
-
|
31
|
+
module = "predict"
|
32
|
+
expr.set_module(module)
|
33
|
+
util = Util(module)
|
32
34
|
util.debug(
|
33
35
|
f"running {expr.name} from config {config_file}, nkululeko version"
|
34
36
|
f" {VERSION}"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.81.
|
3
|
+
Version: 0.81.4
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -323,6 +323,11 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
323
323
|
Changelog
|
324
324
|
=========
|
325
325
|
|
326
|
+
Version 0.81.4
|
327
|
+
--------------
|
328
|
+
* fixed bug in demo module
|
329
|
+
* removed [MODEL] save
|
330
|
+
|
326
331
|
Version 0.81.3
|
327
332
|
--------------
|
328
333
|
* added confidence intervals to result reporting
|
@@ -2,22 +2,22 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
|
3
3
|
nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
|
4
4
|
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=ByG14eJmwNz-UWXy8HPvxCvIp1fugWiKHNFMrPC2SL4,39
|
6
6
|
nkululeko/demo.py,sha256=me8EdjN-zrzClVy9FEmqbTQyDDON88W8vPpWEE8T0cI,2500
|
7
7
|
nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
|
8
8
|
nkululeko/demo_predictor.py,sha256=CQL6DO7QxwmwoB_6DlgDS-pdG1KuvemYJ1NEpMjmMk8,4733
|
9
|
-
nkululeko/experiment.py,sha256=
|
9
|
+
nkululeko/experiment.py,sha256=vND46up3AQgFGkCmcVFXfMzdiFCM5cVuhKD499BlldY,29575
|
10
10
|
nkululeko/explore.py,sha256=5c89hGpjt5mRMN7w2Ajjnr2VjoFF0hOFs0O1BQruw80,2250
|
11
11
|
nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
|
12
12
|
nkululeko/feature_extractor.py,sha256=tKv1b1-o7xNMgBavTR8VY8_H5HKoJEnnosS-KcjmOEU,7281
|
13
13
|
nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,3474
|
14
14
|
nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
|
15
15
|
nkululeko/glob_conf.py,sha256=iHiVSxDYgmYwdx6z0HuGUMSWrfZfufPHxHb60q2dLRY,453
|
16
|
-
nkululeko/modelrunner.py,sha256=
|
16
|
+
nkululeko/modelrunner.py,sha256=GuYsmUGSmJ0QxXxR8k0TZ47IDMtdGIMbm5nMq4Ix6tU,9335
|
17
17
|
nkululeko/multidb.py,sha256=4ceCu9LFrMGlrcgtz4pWuOQb2KA3jR5uo3FjZgAEBD4,5732
|
18
18
|
nkululeko/nkululeko.py,sha256=Ty8cdusXUec9BHml8Gsp1r7DXuvIBMFXUckMpzILBnQ,1966
|
19
19
|
nkululeko/plots.py,sha256=K88ZRPFGX_r03BT742H06Dde20xZYdltv7dxjgUiAFA,23025
|
20
|
-
nkululeko/predict.py,sha256=
|
20
|
+
nkululeko/predict.py,sha256=KCEE3dX58xguwqW8rgLnL5hJOMfN0vr7yAd39P9MFoQ,1924
|
21
21
|
nkululeko/resample.py,sha256=Yzfr_rInG9afPZFnEjiQ3EKRdMSwyYKVQwt9-yNGJn8,2233
|
22
22
|
nkululeko/runmanager.py,sha256=JNBm7JJN8QU8qEqfWr4eS6rkPnBWoVdIUTynHctCPpw,7461
|
23
23
|
nkululeko/scaler.py,sha256=4nkIqoajkIkuTPK0Z02ifMN_awl6fP_i-GBYdoGYgGM,4101
|
@@ -43,14 +43,14 @@ nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvd
|
|
43
43
|
nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
|
44
44
|
nkululeko/autopredict/estimate_snr.py,sha256=kJbvkt2alMN5ouS03USheU7hJ2l7U9JF0s9AtNT1Vx0,4818
|
45
45
|
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
46
|
-
nkululeko/data/dataset.py,sha256=
|
46
|
+
nkululeko/data/dataset.py,sha256=Fzu2x74T3sxP9q154Htx88EIllUuN2nOiaj_0k97H3I,27295
|
47
47
|
nkululeko/data/dataset_csv.py,sha256=v3lSjF23EVjoP460QOfhdcqbWAlBQWlBOuaYujZoS4s,3407
|
48
48
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
49
49
|
nkululeko/feat_extract/feats_agender.py,sha256=_lAL6IxJDJH2bhIvd7yarTqQryx7FjbQXAgY0mJP-KI,3192
|
50
50
|
nkululeko/feat_extract/feats_agender_agender.py,sha256=5dA7YA-YGxODovMC7ynMk3bnpPjfs0ApvSfjqvoSZY0,3346
|
51
51
|
nkululeko/feat_extract/feats_analyser.py,sha256=_5oz4y-NZCEBgfNP2GZ9WNqQR50Hbykm0TvDVomWP0U,11399
|
52
52
|
nkululeko/feat_extract/feats_audmodel.py,sha256=TRCkLqPgnyWN-OAcO69pPZF2FIbBy5ERb5ZY22qh6iA,3108
|
53
|
-
nkululeko/feat_extract/feats_audmodel_dim.py,sha256=
|
53
|
+
nkululeko/feat_extract/feats_audmodel_dim.py,sha256=jv3bNX4tK2IIeG4JbuwZh03NF8gr225Z1Ejfo0-T0LA,3094
|
54
54
|
nkululeko/feat_extract/feats_clap.py,sha256=v82mbjdjGDSKUUBggttw7jW0oka22fWAmfUf-4VmaDU,3379
|
55
55
|
nkululeko/feat_extract/feats_hubert.py,sha256=uL-9mgQHuGPQi1nuUaw6aNU9DscsO89uJAmBdmnCegM,5205
|
56
56
|
nkululeko/feat_extract/feats_import.py,sha256=m7Yh1sj7C1yrDDbZAqS75oMMF5rAtO7XC_sdWdQN5Iw,1598
|
@@ -72,7 +72,7 @@ nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
|
|
72
72
|
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
73
73
|
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
74
74
|
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
75
|
-
nkululeko/models/model.py,sha256=
|
75
|
+
nkululeko/models/model.py,sha256=oAdKq2wY5lYKfpZkQwO46ojYRsj_Z-FR56oR1uHAWI0,11569
|
76
76
|
nkululeko/models/model_bayes.py,sha256=wI7-sCwibqXMCHviu349TYjgJXXNXym-Z6ZM83uxlFQ,378
|
77
77
|
nkululeko/models/model_cnn.py,sha256=j4NTp7quWqInzOPfpiMrTcfMbXkOsdlFF9ns0tW_ld4,9726
|
78
78
|
nkululeko/models/model_gmm.py,sha256=onovzGBeguwZ-upXtuDLaBw9sd6fDDQslVBOrz1Z8TE,645
|
@@ -81,7 +81,7 @@ nkululeko/models/model_knn_reg.py,sha256=Fbuk6Ku6eyrbbMEk7rB5dwfhvQOMsdZk6HI_0T0
|
|
81
81
|
nkululeko/models/model_lin_reg.py,sha256=NBTnY2ULuhUBt5ArYQwskZ2Vq4BBDGkqd9SYBFl7Ql4,392
|
82
82
|
nkululeko/models/model_mlp.py,sha256=lYhGrkqEj6fa6a_tcPrqEoorOpM7t7bjSfFLKEV6pu4,9107
|
83
83
|
nkululeko/models/model_mlp_regression.py,sha256=NP1yEsqvpDcDBWWzDq7W4SHnXC1kE4fAo4A9aBCq3cY,10083
|
84
|
-
nkululeko/models/model_svm.py,sha256=
|
84
|
+
nkululeko/models/model_svm.py,sha256=QqwRjfG9I5y-57CcJAMUSbvYzV0DOlDcpDK5f4yQ_qw,914
|
85
85
|
nkululeko/models/model_svr.py,sha256=p-Mb4Bn54yOe1upuHQKNpfj4ttOmQnm9pCB7ECkJkJQ,699
|
86
86
|
nkululeko/models/model_tree.py,sha256=soXjV523eRvRZ-jbX7X_3S73Wto1B9bm7ZzzDmgYzTc,390
|
87
87
|
nkululeko/models/model_tree_reg.py,sha256=QxkQEz3LOuCLkXw5xH9IwFg4IcTL3Y5RK03qKe4TtGQ,397
|
@@ -101,8 +101,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
101
101
|
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
102
102
|
nkululeko/utils/stats.py,sha256=29otJpUp1VqbtDKmlLkPPzBmVfTFiHZ70rUdR4860rM,2788
|
103
103
|
nkululeko/utils/util.py,sha256=_Z6OMJ3f-8TdETW9eqJYY5hwNRS5XCt9azzRnqoTTZE,12330
|
104
|
-
nkululeko-0.81.
|
105
|
-
nkululeko-0.81.
|
106
|
-
nkululeko-0.81.
|
107
|
-
nkululeko-0.81.
|
108
|
-
nkululeko-0.81.
|
104
|
+
nkululeko-0.81.4.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
105
|
+
nkululeko-0.81.4.dist-info/METADATA,sha256=WRyf1kOFHimg9QhI6iQ4xzPRE70EEkKM5kwMepF0K3Y,34745
|
106
|
+
nkululeko-0.81.4.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
107
|
+
nkululeko-0.81.4.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
108
|
+
nkululeko-0.81.4.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|