nkululeko 0.81.1__py3-none-any.whl → 0.81.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.81.1"
1
+ VERSION="0.81.2"
2
2
  SAMPLING_RATE = 16000
nkululeko/data/dataset.py CHANGED
@@ -162,7 +162,10 @@ class Dataset:
162
162
  if column not in [self.target, "age", "speaker", "gender"]:
163
163
  df[column] = df_target[column]
164
164
  except audformat.core.errors.BadKeyError:
165
- pass
165
+ if not self.is_labeled:
166
+ self.util.error(
167
+ f"Giving up: no target ({self.target}) column found"
168
+ )
166
169
 
167
170
  if self.is_labeled:
168
171
  # remember the target in case they get labelencoded later
@@ -1,3 +1,4 @@
1
+ import os
1
2
  import pandas as pd
2
3
  import numpy as np
3
4
  import audiofile
@@ -52,13 +53,16 @@ class Demo_predictor:
52
53
  file_list.append(line)
53
54
  for file_name in file_list:
54
55
  test_folder = glob_conf.config["DATA"]["test_folder"]
55
- file_path = test_folder + file_name.strip()
56
+ file_path = os.path.join(test_folder, file_name.strip())
56
57
  sig, sr = audiofile.read(file_path)
57
58
  print(f"predicting file {file_path}")
58
59
  res_dict = self.predict_signal(sig, sr)
59
- df_tmp = pd.DataFrame(res_dict, index=[file_path])
60
+ df_tmp = pd.DataFrame(res_dict, index=[file_name.strip()])
60
61
  df_res = pd.concat([df_res, df_tmp], ignore_index=False)
61
62
  df_res = df_res.set_index(df_res.index.rename("file"))
63
+ # save only filename and prediction (df_tmp) by default
64
+ # drop other columns
65
+ # df_res = df_res[["predicted"]]
62
66
  if self.outfile is not None:
63
67
  df_res.to_csv(self.outfile)
64
68
  else:
@@ -294,8 +294,8 @@ def compute_features(file_index):
294
294
  f4_median,
295
295
  ) = measureFormants(sound, 75, 300)
296
296
  # file_list.append(wave_file) # make an ID list
297
- except statistics.StatisticsError as se:
298
- print(f"error on file {wave_file}: {se}")
297
+ except (statistics.StatisticsError, parselmouth.PraatError) as errors:
298
+ print(f"error on file {wave_file}: {errors}")
299
299
 
300
300
  duration_list.append(duration) # make duration list
301
301
  mean_F0_list.append(meanF0) # make a mean F0 list
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.81.1
3
+ Version: 0.81.2
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -321,6 +321,11 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
321
321
  Changelog
322
322
  =========
323
323
 
324
+ Version 0.81.2
325
+ --------------
326
+ * added a parselmouth.Praat error if pitch out of range
327
+ * changed file path for demo_predictor
328
+
324
329
  Version 0.81.1
325
330
  --------------
326
331
  * fixed bugs in demo module
@@ -2,10 +2,10 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
3
  nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=RvKhbdiXgMWPEGsu9K-720UZN1yr_OIkzNBtd1auR4c,39
5
+ nkululeko/constants.py,sha256=zujT9J62h5BIBCxzigDt23S5plsfoyutXsGMdK_xkAM,39
6
6
  nkululeko/demo.py,sha256=me8EdjN-zrzClVy9FEmqbTQyDDON88W8vPpWEE8T0cI,2500
7
7
  nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
- nkululeko/demo_predictor.py,sha256=oWbVEl9KkYVl2ckFOL2IvYVTZNGklqM6f_n0rP6Am0M,4544
8
+ nkululeko/demo_predictor.py,sha256=CQL6DO7QxwmwoB_6DlgDS-pdG1KuvemYJ1NEpMjmMk8,4733
9
9
  nkululeko/experiment.py,sha256=NVhtywaGT5vtreJNlrezp4sq-KIN_gxOjUChvBa7Z38,29575
10
10
  nkululeko/explore.py,sha256=5c89hGpjt5mRMN7w2Ajjnr2VjoFF0hOFs0O1BQruw80,2250
11
11
  nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
@@ -45,7 +45,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvd
45
45
  nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
46
46
  nkululeko/autopredict/estimate_snr.py,sha256=kJbvkt2alMN5ouS03USheU7hJ2l7U9JF0s9AtNT1Vx0,4818
47
47
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
- nkululeko/data/dataset.py,sha256=t0f_i1UhHE7U9LDzDmqzqKFZaVskwVCs-Bz_jxnyZno,27110
48
+ nkululeko/data/dataset.py,sha256=n6v_vVdA0EsZ-NaTgnYfPlCT4QCcD02mJJb-oD7SaSU,27265
49
49
  nkululeko/data/dataset_csv.py,sha256=v3lSjF23EVjoP460QOfhdcqbWAlBQWlBOuaYujZoS4s,3407
50
50
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  nkululeko/feat_extract/feats_agender.py,sha256=_lAL6IxJDJH2bhIvd7yarTqQryx7FjbQXAgY0mJP-KI,3192
@@ -69,7 +69,7 @@ nkululeko/feat_extract/feats_trill.py,sha256=PpygJK_W6QoBNeSah9npQPiQlJxLWFn6TSO
69
69
  nkululeko/feat_extract/feats_wav2vec2.py,sha256=sFf-WkLUgKUQsFxGO9m2hS3uYoGkv95mZavCEZyWFGA,5072
70
70
  nkululeko/feat_extract/feats_wavlm.py,sha256=RhI0oWIsknnxTVmdnNS_xJO1NnUUR0CUNDWH1yTpNLk,4683
71
71
  nkululeko/feat_extract/featureset.py,sha256=-ynkdor8iX7BFx10aIbB3LfwxrrzPoBGz9kXwyAJO9M,1375
72
- nkululeko/feat_extract/feinberg_praat.py,sha256=-pgY8Koq7dFaz-99cjkNqsQn1bsKgPInEuwrfmR0ebA,21253
72
+ nkululeko/feat_extract/feinberg_praat.py,sha256=7V1VhVMu4QrXkdcXpmqCbpStXfpmOHtfx5GzxXWukz8,21287
73
73
  nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
74
74
  nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
75
75
  nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
@@ -101,8 +101,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
101
101
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
102
102
  nkululeko/utils/stats.py,sha256=29otJpUp1VqbtDKmlLkPPzBmVfTFiHZ70rUdR4860rM,2788
103
103
  nkululeko/utils/util.py,sha256=_Z6OMJ3f-8TdETW9eqJYY5hwNRS5XCt9azzRnqoTTZE,12330
104
- nkululeko-0.81.1.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
105
- nkululeko-0.81.1.dist-info/METADATA,sha256=Q7eR_Uif7oJ2-B8LZjw3CE2Sq4qDZqPNFhdUAGQrp5g,34397
106
- nkululeko-0.81.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
107
- nkululeko-0.81.1.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
108
- nkululeko-0.81.1.dist-info/RECORD,,
104
+ nkululeko-0.81.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
105
+ nkululeko-0.81.2.dist-info/METADATA,sha256=-Oo7DH0SM9gF8F0c65DLjGIt6rnUUPF_Ah_OgJrxDRA,34523
106
+ nkululeko-0.81.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
107
+ nkululeko-0.81.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
108
+ nkululeko-0.81.2.dist-info/RECORD,,