nkululeko 0.81.1__py3-none-any.whl → 0.81.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +4 -1
- nkululeko/demo_predictor.py +6 -2
- nkululeko/feat_extract/feinberg_praat.py +2 -2
- {nkululeko-0.81.1.dist-info → nkululeko-0.81.2.dist-info}/METADATA +6 -1
- {nkululeko-0.81.1.dist-info → nkululeko-0.81.2.dist-info}/RECORD +9 -9
- {nkululeko-0.81.1.dist-info → nkululeko-0.81.2.dist-info}/LICENSE +0 -0
- {nkululeko-0.81.1.dist-info → nkululeko-0.81.2.dist-info}/WHEEL +0 -0
- {nkululeko-0.81.1.dist-info → nkululeko-0.81.2.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.81.
|
1
|
+
VERSION="0.81.2"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -162,7 +162,10 @@ class Dataset:
|
|
162
162
|
if column not in [self.target, "age", "speaker", "gender"]:
|
163
163
|
df[column] = df_target[column]
|
164
164
|
except audformat.core.errors.BadKeyError:
|
165
|
-
|
165
|
+
if not self.is_labeled:
|
166
|
+
self.util.error(
|
167
|
+
f"Giving up: no target ({self.target}) column found"
|
168
|
+
)
|
166
169
|
|
167
170
|
if self.is_labeled:
|
168
171
|
# remember the target in case they get labelencoded later
|
nkululeko/demo_predictor.py
CHANGED
@@ -1,3 +1,4 @@
|
|
1
|
+
import os
|
1
2
|
import pandas as pd
|
2
3
|
import numpy as np
|
3
4
|
import audiofile
|
@@ -52,13 +53,16 @@ class Demo_predictor:
|
|
52
53
|
file_list.append(line)
|
53
54
|
for file_name in file_list:
|
54
55
|
test_folder = glob_conf.config["DATA"]["test_folder"]
|
55
|
-
file_path = test_folder
|
56
|
+
file_path = os.path.join(test_folder, file_name.strip())
|
56
57
|
sig, sr = audiofile.read(file_path)
|
57
58
|
print(f"predicting file {file_path}")
|
58
59
|
res_dict = self.predict_signal(sig, sr)
|
59
|
-
df_tmp = pd.DataFrame(res_dict, index=[
|
60
|
+
df_tmp = pd.DataFrame(res_dict, index=[file_name.strip()])
|
60
61
|
df_res = pd.concat([df_res, df_tmp], ignore_index=False)
|
61
62
|
df_res = df_res.set_index(df_res.index.rename("file"))
|
63
|
+
# save only filename and prediction (df_tmp) by default
|
64
|
+
# drop other columns
|
65
|
+
# df_res = df_res[["predicted"]]
|
62
66
|
if self.outfile is not None:
|
63
67
|
df_res.to_csv(self.outfile)
|
64
68
|
else:
|
@@ -294,8 +294,8 @@ def compute_features(file_index):
|
|
294
294
|
f4_median,
|
295
295
|
) = measureFormants(sound, 75, 300)
|
296
296
|
# file_list.append(wave_file) # make an ID list
|
297
|
-
except statistics.StatisticsError as
|
298
|
-
print(f"error on file {wave_file}: {
|
297
|
+
except (statistics.StatisticsError, parselmouth.PraatError) as errors:
|
298
|
+
print(f"error on file {wave_file}: {errors}")
|
299
299
|
|
300
300
|
duration_list.append(duration) # make duration list
|
301
301
|
mean_F0_list.append(meanF0) # make a mean F0 list
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.81.
|
3
|
+
Version: 0.81.2
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -321,6 +321,11 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
321
321
|
Changelog
|
322
322
|
=========
|
323
323
|
|
324
|
+
Version 0.81.2
|
325
|
+
--------------
|
326
|
+
* added a parselmouth.Praat error if pitch out of range
|
327
|
+
* changed file path for demo_predictor
|
328
|
+
|
324
329
|
Version 0.81.1
|
325
330
|
--------------
|
326
331
|
* fixed bugs in demo module
|
@@ -2,10 +2,10 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
|
3
3
|
nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
|
4
4
|
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=zujT9J62h5BIBCxzigDt23S5plsfoyutXsGMdK_xkAM,39
|
6
6
|
nkululeko/demo.py,sha256=me8EdjN-zrzClVy9FEmqbTQyDDON88W8vPpWEE8T0cI,2500
|
7
7
|
nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
|
8
|
-
nkululeko/demo_predictor.py,sha256=
|
8
|
+
nkululeko/demo_predictor.py,sha256=CQL6DO7QxwmwoB_6DlgDS-pdG1KuvemYJ1NEpMjmMk8,4733
|
9
9
|
nkululeko/experiment.py,sha256=NVhtywaGT5vtreJNlrezp4sq-KIN_gxOjUChvBa7Z38,29575
|
10
10
|
nkululeko/explore.py,sha256=5c89hGpjt5mRMN7w2Ajjnr2VjoFF0hOFs0O1BQruw80,2250
|
11
11
|
nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
|
@@ -45,7 +45,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvd
|
|
45
45
|
nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
|
46
46
|
nkululeko/autopredict/estimate_snr.py,sha256=kJbvkt2alMN5ouS03USheU7hJ2l7U9JF0s9AtNT1Vx0,4818
|
47
47
|
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
48
|
-
nkululeko/data/dataset.py,sha256=
|
48
|
+
nkululeko/data/dataset.py,sha256=n6v_vVdA0EsZ-NaTgnYfPlCT4QCcD02mJJb-oD7SaSU,27265
|
49
49
|
nkululeko/data/dataset_csv.py,sha256=v3lSjF23EVjoP460QOfhdcqbWAlBQWlBOuaYujZoS4s,3407
|
50
50
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
51
51
|
nkululeko/feat_extract/feats_agender.py,sha256=_lAL6IxJDJH2bhIvd7yarTqQryx7FjbQXAgY0mJP-KI,3192
|
@@ -69,7 +69,7 @@ nkululeko/feat_extract/feats_trill.py,sha256=PpygJK_W6QoBNeSah9npQPiQlJxLWFn6TSO
|
|
69
69
|
nkululeko/feat_extract/feats_wav2vec2.py,sha256=sFf-WkLUgKUQsFxGO9m2hS3uYoGkv95mZavCEZyWFGA,5072
|
70
70
|
nkululeko/feat_extract/feats_wavlm.py,sha256=RhI0oWIsknnxTVmdnNS_xJO1NnUUR0CUNDWH1yTpNLk,4683
|
71
71
|
nkululeko/feat_extract/featureset.py,sha256=-ynkdor8iX7BFx10aIbB3LfwxrrzPoBGz9kXwyAJO9M,1375
|
72
|
-
nkululeko/feat_extract/feinberg_praat.py,sha256
|
72
|
+
nkululeko/feat_extract/feinberg_praat.py,sha256=7V1VhVMu4QrXkdcXpmqCbpStXfpmOHtfx5GzxXWukz8,21287
|
73
73
|
nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
74
74
|
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
75
75
|
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
@@ -101,8 +101,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
101
101
|
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
102
102
|
nkululeko/utils/stats.py,sha256=29otJpUp1VqbtDKmlLkPPzBmVfTFiHZ70rUdR4860rM,2788
|
103
103
|
nkululeko/utils/util.py,sha256=_Z6OMJ3f-8TdETW9eqJYY5hwNRS5XCt9azzRnqoTTZE,12330
|
104
|
-
nkululeko-0.81.
|
105
|
-
nkululeko-0.81.
|
106
|
-
nkululeko-0.81.
|
107
|
-
nkululeko-0.81.
|
108
|
-
nkululeko-0.81.
|
104
|
+
nkululeko-0.81.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
105
|
+
nkululeko-0.81.2.dist-info/METADATA,sha256=-Oo7DH0SM9gF8F0c65DLjGIt6rnUUPF_Ah_OgJrxDRA,34523
|
106
|
+
nkululeko-0.81.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
107
|
+
nkululeko-0.81.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
108
|
+
nkululeko-0.81.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|