nkululeko 0.81.0__py3-none-any.whl → 0.81.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +4 -1
- nkululeko/demo_predictor.py +7 -3
- nkululeko/feat_extract/feinberg_praat.py +2 -2
- nkululeko/models/model.py +7 -2
- nkululeko/models/model_mlp_regression.py +1 -1
- nkululeko/models/model_svm.py +10 -1
- nkululeko/models/model_svr.py +3 -1
- nkululeko/models/model_xgb.py +3 -0
- nkululeko/utils/util.py +4 -5
- {nkululeko-0.81.0.dist-info → nkululeko-0.81.2.dist-info}/METADATA +11 -1
- {nkululeko-0.81.0.dist-info → nkululeko-0.81.2.dist-info}/RECORD +15 -15
- {nkululeko-0.81.0.dist-info → nkululeko-0.81.2.dist-info}/LICENSE +0 -0
- {nkululeko-0.81.0.dist-info → nkululeko-0.81.2.dist-info}/WHEEL +0 -0
- {nkululeko-0.81.0.dist-info → nkululeko-0.81.2.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.81.
|
1
|
+
VERSION="0.81.2"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -162,7 +162,10 @@ class Dataset:
|
|
162
162
|
if column not in [self.target, "age", "speaker", "gender"]:
|
163
163
|
df[column] = df_target[column]
|
164
164
|
except audformat.core.errors.BadKeyError:
|
165
|
-
|
165
|
+
if not self.is_labeled:
|
166
|
+
self.util.error(
|
167
|
+
f"Giving up: no target ({self.target}) column found"
|
168
|
+
)
|
166
169
|
|
167
170
|
if self.is_labeled:
|
168
171
|
# remember the target in case they get labelencoded later
|
nkululeko/demo_predictor.py
CHANGED
@@ -1,3 +1,4 @@
|
|
1
|
+
import os
|
1
2
|
import pandas as pd
|
2
3
|
import numpy as np
|
3
4
|
import audiofile
|
@@ -52,13 +53,16 @@ class Demo_predictor:
|
|
52
53
|
file_list.append(line)
|
53
54
|
for file_name in file_list:
|
54
55
|
test_folder = glob_conf.config["DATA"]["test_folder"]
|
55
|
-
file_path = test_folder
|
56
|
+
file_path = os.path.join(test_folder, file_name.strip())
|
56
57
|
sig, sr = audiofile.read(file_path)
|
57
58
|
print(f"predicting file {file_path}")
|
58
59
|
res_dict = self.predict_signal(sig, sr)
|
59
|
-
df_tmp = pd.DataFrame(res_dict, index=[
|
60
|
+
df_tmp = pd.DataFrame(res_dict, index=[file_name.strip()])
|
60
61
|
df_res = pd.concat([df_res, df_tmp], ignore_index=False)
|
61
62
|
df_res = df_res.set_index(df_res.index.rename("file"))
|
63
|
+
# save only filename and prediction (df_tmp) by default
|
64
|
+
# drop other columns
|
65
|
+
# df_res = df_res[["predicted"]]
|
62
66
|
if self.outfile is not None:
|
63
67
|
df_res.to_csv(self.outfile)
|
64
68
|
else:
|
@@ -94,7 +98,7 @@ class Demo_predictor:
|
|
94
98
|
return result_dict
|
95
99
|
else:
|
96
100
|
# experiment is regression and returns one estimation
|
97
|
-
dict_2["predicted"] = result_dict
|
101
|
+
dict_2["predicted"] = result_dict
|
98
102
|
print(dict_2)
|
99
103
|
return dict_2
|
100
104
|
|
@@ -294,8 +294,8 @@ def compute_features(file_index):
|
|
294
294
|
f4_median,
|
295
295
|
) = measureFormants(sound, 75, 300)
|
296
296
|
# file_list.append(wave_file) # make an ID list
|
297
|
-
except statistics.StatisticsError as
|
298
|
-
print(f"error on file {wave_file}: {
|
297
|
+
except (statistics.StatisticsError, parselmouth.PraatError) as errors:
|
298
|
+
print(f"error on file {wave_file}: {errors}")
|
299
299
|
|
300
300
|
duration_list.append(duration) # make duration list
|
301
301
|
mean_F0_list.append(meanF0) # make a mean F0 list
|
nkululeko/models/model.py
CHANGED
@@ -269,19 +269,24 @@ class Model:
|
|
269
269
|
)
|
270
270
|
return report
|
271
271
|
|
272
|
+
def get_type(self):
|
273
|
+
return "generic"
|
274
|
+
|
272
275
|
def predict_sample(self, features):
|
273
276
|
"""Predict one sample"""
|
274
277
|
prediction = {}
|
275
278
|
if self.util.exp_is_classification():
|
276
279
|
# get the class probabilities
|
277
|
-
|
280
|
+
if not self.get_type() == "xgb":
|
281
|
+
features = [features]
|
282
|
+
predictions = self.clf.predict_proba(features)
|
278
283
|
# pred = self.clf.predict(features)
|
279
284
|
for i in range(len(self.clf.classes_)):
|
280
285
|
cat = self.clf.classes_[i]
|
281
286
|
prediction[cat] = predictions[0][i]
|
282
287
|
else:
|
283
288
|
predictions = self.clf.predict(features)
|
284
|
-
prediction
|
289
|
+
prediction = predictions[0]
|
285
290
|
return prediction
|
286
291
|
|
287
292
|
def store(self):
|
nkululeko/models/model_svm.py
CHANGED
@@ -12,8 +12,17 @@ class SVM_model(Model):
|
|
12
12
|
def __init__(self, df_train, df_test, feats_train, feats_test):
|
13
13
|
super().__init__(df_train, df_test, feats_train, feats_test)
|
14
14
|
c = float(self.util.config_val("MODEL", "C_val", "0.001"))
|
15
|
+
if eval(self.util.config_val("MODEL", "class_weight", "False")):
|
16
|
+
class_weight = "balanced"
|
17
|
+
else:
|
18
|
+
class_weight = None
|
19
|
+
kernel = self.util.config_val("MODEL", "kernel", "rbf")
|
15
20
|
self.clf = svm.SVC(
|
16
|
-
kernel=
|
21
|
+
kernel=kernel,
|
22
|
+
C=c,
|
23
|
+
gamma="scale",
|
24
|
+
probability=True,
|
25
|
+
class_weight=class_weight,
|
17
26
|
) # set up the classifier
|
18
27
|
|
19
28
|
def set_C(self, c):
|
nkululeko/models/model_svr.py
CHANGED
@@ -12,7 +12,9 @@ class SVR_model(Model):
|
|
12
12
|
def __init__(self, df_train, df_test, feats_train, feats_test):
|
13
13
|
super().__init__(df_train, df_test, feats_train, feats_test)
|
14
14
|
c = float(self.util.config_val("MODEL", "C_val", "0.001"))
|
15
|
-
|
15
|
+
# kernel{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable, default=’rbf’
|
16
|
+
kernel = self.util.config_val("MODEL", "kernel", "rbf")
|
17
|
+
self.clf = svm.SVR(kernel=kernel, C=c) # set up the classifier
|
16
18
|
|
17
19
|
def set_C(self, c):
|
18
20
|
"""Set the C parameter"""
|
nkululeko/models/model_xgb.py
CHANGED
nkululeko/utils/util.py
CHANGED
@@ -175,10 +175,6 @@ class Util:
|
|
175
175
|
mt = f'{self.config["MODEL"]["type"]}'
|
176
176
|
ft = "_".join(ast.literal_eval(self.config["FEATS"]["type"]))
|
177
177
|
ft += "_"
|
178
|
-
set = self.config_val("FEATS", "set", False)
|
179
|
-
set_string = ""
|
180
|
-
if set:
|
181
|
-
set_string += set
|
182
178
|
layer_string = ""
|
183
179
|
layer_s = self.config_val("MODEL", "layers", False)
|
184
180
|
if layer_s:
|
@@ -186,16 +182,19 @@ class Util:
|
|
186
182
|
sorted_layers = sorted(layers.items(), key=lambda x: x[1])
|
187
183
|
for l in sorted_layers:
|
188
184
|
layer_string += f"{str(l[1])}-"
|
189
|
-
return_string = f"{mt}_{ft}{
|
185
|
+
return_string = f"{mt}_{ft}{layer_string[:-1]}"
|
190
186
|
options = [
|
191
187
|
["MODEL", "C_val"],
|
188
|
+
["MODEL", "kernel"],
|
192
189
|
["MODEL", "drop"],
|
190
|
+
["MODEL", "class_weight"],
|
193
191
|
["MODEL", "loss"],
|
194
192
|
["MODEL", "logo"],
|
195
193
|
["MODEL", "learning_rate"],
|
196
194
|
["MODEL", "k_fold_cross"],
|
197
195
|
["FEATS", "balancing"],
|
198
196
|
["FEATS", "scale"],
|
197
|
+
["FEATS", "set"],
|
199
198
|
["FEATS", "wav2vec2.layer"],
|
200
199
|
]
|
201
200
|
for option in options:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.81.
|
3
|
+
Version: 0.81.2
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -321,6 +321,16 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
321
321
|
Changelog
|
322
322
|
=========
|
323
323
|
|
324
|
+
Version 0.81.2
|
325
|
+
--------------
|
326
|
+
* added a parselmouth.Praat error if pitch out of range
|
327
|
+
* changed file path for demo_predictor
|
328
|
+
|
329
|
+
Version 0.81.1
|
330
|
+
--------------
|
331
|
+
* fixed bugs in demo module
|
332
|
+
* made kernel for SVM/SVR configurable
|
333
|
+
|
324
334
|
Version 0.81.0
|
325
335
|
--------------
|
326
336
|
* added test selection to test module
|
@@ -2,10 +2,10 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
|
3
3
|
nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
|
4
4
|
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=zujT9J62h5BIBCxzigDt23S5plsfoyutXsGMdK_xkAM,39
|
6
6
|
nkululeko/demo.py,sha256=me8EdjN-zrzClVy9FEmqbTQyDDON88W8vPpWEE8T0cI,2500
|
7
7
|
nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
|
8
|
-
nkululeko/demo_predictor.py,sha256=
|
8
|
+
nkululeko/demo_predictor.py,sha256=CQL6DO7QxwmwoB_6DlgDS-pdG1KuvemYJ1NEpMjmMk8,4733
|
9
9
|
nkululeko/experiment.py,sha256=NVhtywaGT5vtreJNlrezp4sq-KIN_gxOjUChvBa7Z38,29575
|
10
10
|
nkululeko/explore.py,sha256=5c89hGpjt5mRMN7w2Ajjnr2VjoFF0hOFs0O1BQruw80,2250
|
11
11
|
nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
|
@@ -45,7 +45,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvd
|
|
45
45
|
nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
|
46
46
|
nkululeko/autopredict/estimate_snr.py,sha256=kJbvkt2alMN5ouS03USheU7hJ2l7U9JF0s9AtNT1Vx0,4818
|
47
47
|
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
48
|
-
nkululeko/data/dataset.py,sha256=
|
48
|
+
nkululeko/data/dataset.py,sha256=n6v_vVdA0EsZ-NaTgnYfPlCT4QCcD02mJJb-oD7SaSU,27265
|
49
49
|
nkululeko/data/dataset_csv.py,sha256=v3lSjF23EVjoP460QOfhdcqbWAlBQWlBOuaYujZoS4s,3407
|
50
50
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
51
51
|
nkululeko/feat_extract/feats_agender.py,sha256=_lAL6IxJDJH2bhIvd7yarTqQryx7FjbQXAgY0mJP-KI,3192
|
@@ -69,12 +69,12 @@ nkululeko/feat_extract/feats_trill.py,sha256=PpygJK_W6QoBNeSah9npQPiQlJxLWFn6TSO
|
|
69
69
|
nkululeko/feat_extract/feats_wav2vec2.py,sha256=sFf-WkLUgKUQsFxGO9m2hS3uYoGkv95mZavCEZyWFGA,5072
|
70
70
|
nkululeko/feat_extract/feats_wavlm.py,sha256=RhI0oWIsknnxTVmdnNS_xJO1NnUUR0CUNDWH1yTpNLk,4683
|
71
71
|
nkululeko/feat_extract/featureset.py,sha256=-ynkdor8iX7BFx10aIbB3LfwxrrzPoBGz9kXwyAJO9M,1375
|
72
|
-
nkululeko/feat_extract/feinberg_praat.py,sha256
|
72
|
+
nkululeko/feat_extract/feinberg_praat.py,sha256=7V1VhVMu4QrXkdcXpmqCbpStXfpmOHtfx5GzxXWukz8,21287
|
73
73
|
nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
74
74
|
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
75
75
|
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
76
76
|
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
77
|
-
nkululeko/models/model.py,sha256=
|
77
|
+
nkululeko/models/model.py,sha256=SZ2HQ3KiF5fcmrTcvko1E95EQQeFIaPCG90DvZVHbBA,11638
|
78
78
|
nkululeko/models/model_bayes.py,sha256=wI7-sCwibqXMCHviu349TYjgJXXNXym-Z6ZM83uxlFQ,378
|
79
79
|
nkululeko/models/model_cnn.py,sha256=iyXeRsAMVeRST1j_D2AUngE02CtVkg6vWwQc1BOaBl0,9716
|
80
80
|
nkululeko/models/model_gmm.py,sha256=onovzGBeguwZ-upXtuDLaBw9sd6fDDQslVBOrz1Z8TE,645
|
@@ -82,12 +82,12 @@ nkululeko/models/model_knn.py,sha256=5tGqiPo2JTw9VLmD-MXNZKFJ5RTLA6uv_blJDJ9lScA
|
|
82
82
|
nkululeko/models/model_knn_reg.py,sha256=Fbuk6Ku6eyrbbMEk7rB5dwfhvQOMsdZk6HI_0T0gYPw,580
|
83
83
|
nkululeko/models/model_lin_reg.py,sha256=NBTnY2ULuhUBt5ArYQwskZ2Vq4BBDGkqd9SYBFl7Ql4,392
|
84
84
|
nkululeko/models/model_mlp.py,sha256=IjiiupLxm5ddb73-eU5Ad79Gb6enurR1fgGY-7NkbFc,9097
|
85
|
-
nkululeko/models/model_mlp_regression.py,sha256=
|
86
|
-
nkululeko/models/model_svm.py,sha256
|
87
|
-
nkululeko/models/model_svr.py,sha256=
|
85
|
+
nkululeko/models/model_mlp_regression.py,sha256=F0SaU1qAjnGmTTg-ti1s-XmFYVUYxSV0TJw0_jMxlKU,10054
|
86
|
+
nkululeko/models/model_svm.py,sha256=dqDQbfRCtlW3RNqpHDGVsj3ikc131gKURHj5VzAcCr0,867
|
87
|
+
nkululeko/models/model_svr.py,sha256=p-Mb4Bn54yOe1upuHQKNpfj4ttOmQnm9pCB7ECkJkJQ,699
|
88
88
|
nkululeko/models/model_tree.py,sha256=soXjV523eRvRZ-jbX7X_3S73Wto1B9bm7ZzzDmgYzTc,390
|
89
89
|
nkululeko/models/model_tree_reg.py,sha256=QxkQEz3LOuCLkXw5xH9IwFg4IcTL3Y5RK03qKe4TtGQ,397
|
90
|
-
nkululeko/models/model_xgb.py,sha256=
|
90
|
+
nkululeko/models/model_xgb.py,sha256=yPJFD2jxOGcPDKuBeqJSmh83eKrfbnD_n722i6g39_g,267
|
91
91
|
nkululeko/models/model_xgr.py,sha256=yY6wZV8jdiQCIYQCjYSb8gE0jjeiY44eh3rERe2HDvg,227
|
92
92
|
nkululeko/reporting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
93
93
|
nkululeko/reporting/defines.py,sha256=IsY1YgKRMaABpylVKjBJgJ5bNCEbGCVA_E6pivraqSU,648
|
@@ -100,9 +100,9 @@ nkululeko/segmenting/seg_silero.py,sha256=lLytS38KzARS17omwv8VBw-zz60RVSXGSvZ5Ev
|
|
100
100
|
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
101
101
|
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
102
102
|
nkululeko/utils/stats.py,sha256=29otJpUp1VqbtDKmlLkPPzBmVfTFiHZ70rUdR4860rM,2788
|
103
|
-
nkululeko/utils/util.py,sha256=
|
104
|
-
nkululeko-0.81.
|
105
|
-
nkululeko-0.81.
|
106
|
-
nkululeko-0.81.
|
107
|
-
nkululeko-0.81.
|
108
|
-
nkululeko-0.81.
|
103
|
+
nkululeko/utils/util.py,sha256=_Z6OMJ3f-8TdETW9eqJYY5hwNRS5XCt9azzRnqoTTZE,12330
|
104
|
+
nkululeko-0.81.2.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
105
|
+
nkululeko-0.81.2.dist-info/METADATA,sha256=-Oo7DH0SM9gF8F0c65DLjGIt6rnUUPF_Ah_OgJrxDRA,34523
|
106
|
+
nkululeko-0.81.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
107
|
+
nkululeko-0.81.2.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
108
|
+
nkululeko-0.81.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|