nkululeko 0.77.4__py3-none-any.whl → 0.77.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/aug_train.py +12 -9
- nkululeko/augmenting/augmenter.py +10 -2
- nkululeko/augmenting/randomsplicer.py +11 -2
- nkululeko/constants.py +1 -1
- nkululeko/experiment.py +2 -2
- nkululeko/feat_extract/feats_analyser.py +4 -1
- nkululeko/models/model.py +2 -2
- nkululeko/models/model_cnn.py +1 -1
- nkululeko/models/model_mlp.py +1 -1
- nkululeko/nkululeko.py +15 -12
- nkululeko/plots.py +1 -1
- nkululeko/utils/util.py +17 -5
- {nkululeko-0.77.4.dist-info → nkululeko-0.77.6.dist-info}/METADATA +11 -1
- {nkululeko-0.77.4.dist-info → nkululeko-0.77.6.dist-info}/RECORD +17 -17
- {nkululeko-0.77.4.dist-info → nkululeko-0.77.6.dist-info}/LICENSE +0 -0
- {nkululeko-0.77.4.dist-info → nkululeko-0.77.6.dist-info}/WHEEL +0 -0
- {nkululeko-0.77.4.dist-info → nkululeko-0.77.6.dist-info}/top_level.txt +0 -0
nkululeko/aug_train.py
CHANGED
@@ -11,15 +11,7 @@ import nkululeko.glob_conf as glob_conf
|
|
11
11
|
from nkululeko.augment import doit as augment
|
12
12
|
|
13
13
|
|
14
|
-
def
|
15
|
-
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
16
|
-
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
17
|
-
args = parser.parse_args()
|
18
|
-
if args.config is not None:
|
19
|
-
config_file = args.config
|
20
|
-
else:
|
21
|
-
config_file = f"{src_dir}/exp.ini"
|
22
|
-
|
14
|
+
def doit(config_file):
|
23
15
|
# test if the configuration file exists
|
24
16
|
if not os.path.isfile(config_file):
|
25
17
|
print(f"ERROR: no such file: {config_file}")
|
@@ -87,6 +79,17 @@ def main(src_dir):
|
|
87
79
|
print("DONE")
|
88
80
|
|
89
81
|
|
82
|
+
def main(src_dir):
|
83
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
84
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
85
|
+
args = parser.parse_args()
|
86
|
+
if args.config is not None:
|
87
|
+
config_file = args.config
|
88
|
+
else:
|
89
|
+
config_file = f"{src_dir}/exp.ini"
|
90
|
+
doit(config_file)
|
91
|
+
|
92
|
+
|
90
93
|
if __name__ == "__main__":
|
91
94
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
92
95
|
main(cwd) # use this if you want to state the config file path on command line
|
@@ -60,7 +60,15 @@ class Augmenter:
|
|
60
60
|
audiofile.write(new_full_name, signal=sig_aug, sampling_rate=sr)
|
61
61
|
index_map[f] = new_full_name
|
62
62
|
df_ret = self.df.copy()
|
63
|
-
|
64
|
-
|
63
|
+
|
64
|
+
file_index = df_ret.index.to_series().map(lambda x: index_map[x[0]]).values
|
65
|
+
# workaround because i just couldn't get this easier...
|
66
|
+
arrays = [
|
67
|
+
file_index,
|
68
|
+
list(df_ret.index.get_level_values(1)),
|
69
|
+
list(df_ret.index.get_level_values(2)),
|
70
|
+
]
|
71
|
+
new_index = pd.MultiIndex.from_arrays(arrays, names=("file", "start", "end"))
|
72
|
+
df_ret = df_ret.set_index(new_index)
|
65
73
|
|
66
74
|
return df_ret
|
@@ -68,6 +68,15 @@ class Randomsplicer:
|
|
68
68
|
index_map[f] = new_full_name
|
69
69
|
|
70
70
|
df_ret = self.df.copy()
|
71
|
-
|
72
|
-
|
71
|
+
|
72
|
+
file_index = df_ret.index.to_series().map(lambda x: index_map[x[0]]).values
|
73
|
+
# workaround because i just couldn't get this easier...
|
74
|
+
arrays = [
|
75
|
+
file_index,
|
76
|
+
list(df_ret.index.get_level_values(1)),
|
77
|
+
list(df_ret.index.get_level_values(2)),
|
78
|
+
]
|
79
|
+
new_index = pd.MultiIndex.from_arrays(arrays, names=("file", "start", "end"))
|
80
|
+
df_ret = df_ret.set_index(new_index)
|
81
|
+
|
73
82
|
return df_ret
|
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.77.
|
1
|
+
VERSION="0.77.6"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/experiment.py
CHANGED
@@ -261,11 +261,11 @@ class Experiment:
|
|
261
261
|
if type(test_cats) == np.ndarray:
|
262
262
|
self.util.debug(f"Categories test (nd.array): {test_cats}")
|
263
263
|
else:
|
264
|
-
self.util.debug(f"Categories test (list): {test_cats
|
264
|
+
self.util.debug(f"Categories test (list): {list(test_cats)}")
|
265
265
|
if type(train_cats) == np.ndarray:
|
266
266
|
self.util.debug(f"Categories train (nd.array): {train_cats}")
|
267
267
|
else:
|
268
|
-
self.util.debug(f"Categories train (list): {train_cats
|
268
|
+
self.util.debug(f"Categories train (list): {list(train_cats)}")
|
269
269
|
|
270
270
|
# encode the labels as numbers
|
271
271
|
self.label_encoder = LabelEncoder()
|
@@ -7,7 +7,6 @@ from sklearn.tree import DecisionTreeClassifier
|
|
7
7
|
from sklearn.linear_model import LinearRegression
|
8
8
|
from sklearn.tree import DecisionTreeRegressor
|
9
9
|
import matplotlib.pyplot as plt
|
10
|
-
from xgboost import XGBClassifier, XGBRegressor
|
11
10
|
from nkululeko.utils.util import Util
|
12
11
|
from nkululeko.utils.stats import normalize
|
13
12
|
from nkululeko.plots import Plots
|
@@ -126,6 +125,8 @@ class FeatureAnalyser:
|
|
126
125
|
plots = Plots()
|
127
126
|
plots.plot_tree(model, self.features)
|
128
127
|
elif model_s == "xgb":
|
128
|
+
from xgboost import XGBClassifier
|
129
|
+
|
129
130
|
model = XGBClassifier(enable_categorical=True, tree_method="hist")
|
130
131
|
self.labels = self.labels.astype("category")
|
131
132
|
result_importances[model_s] = self._get_importance(
|
@@ -171,6 +172,8 @@ class FeatureAnalyser:
|
|
171
172
|
model, permutation
|
172
173
|
)
|
173
174
|
elif model_s == "xgr":
|
175
|
+
from xgboost import XGBClassifier
|
176
|
+
|
174
177
|
model = XGBRegressor()
|
175
178
|
result_importances[model_s] = self._get_importance(
|
176
179
|
model, permutation
|
nkululeko/models/model.py
CHANGED
@@ -137,11 +137,11 @@ class Model:
|
|
137
137
|
groups=annos["fold"],
|
138
138
|
):
|
139
139
|
train_x = feats.iloc[train_index].to_numpy()
|
140
|
-
train_y = targets[train_index]
|
140
|
+
train_y = targets.iloc[train_index]
|
141
141
|
self.clf.fit(train_x, train_y)
|
142
142
|
|
143
143
|
truth_x = feats.iloc[test_index].to_numpy()
|
144
|
-
truth_y = targets[test_index]
|
144
|
+
truth_y = targets.iloc[test_index]
|
145
145
|
predict_y = self.clf.predict(truth_x)
|
146
146
|
report = Reporter(truth_y.astype(float), predict_y, self.run, self.epoch)
|
147
147
|
result = report.get_result().get_test_result()
|
nkululeko/models/model_cnn.py
CHANGED
@@ -113,7 +113,7 @@ class CNN_model(Model):
|
|
113
113
|
img_path = self.df_feats.iloc[idx, 0]
|
114
114
|
image = Image.open(img_path)
|
115
115
|
# Get emotion label
|
116
|
-
label = self.df_labels[self.target][idx]
|
116
|
+
label = self.df_labels[self.target].iloc[idx]
|
117
117
|
if self.transform:
|
118
118
|
image = self.transform(image)
|
119
119
|
return image, label
|
nkululeko/models/model_mlp.py
CHANGED
@@ -115,7 +115,7 @@ class MLP_model(Model):
|
|
115
115
|
def get_loader(self, df_x, df_y, shuffle):
|
116
116
|
data = []
|
117
117
|
for i in range(len(df_x)):
|
118
|
-
data.append([df_x.values[i], df_y[self.target][i]])
|
118
|
+
data.append([df_x.values[i], df_y[self.target].iloc[i]])
|
119
119
|
return torch.utils.data.DataLoader(
|
120
120
|
data, shuffle=shuffle, batch_size=self.batch_size
|
121
121
|
)
|
nkululeko/nkululeko.py
CHANGED
@@ -9,15 +9,7 @@ from nkululeko.utils.util import Util
|
|
9
9
|
from nkululeko.constants import VERSION
|
10
10
|
|
11
11
|
|
12
|
-
def
|
13
|
-
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
14
|
-
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
15
|
-
args = parser.parse_args()
|
16
|
-
if args.config is not None:
|
17
|
-
config_file = args.config
|
18
|
-
else:
|
19
|
-
config_file = f"{src_dir}/exp.ini"
|
20
|
-
|
12
|
+
def doit(config_file):
|
21
13
|
# test if the configuration file exists
|
22
14
|
if not os.path.isfile(config_file):
|
23
15
|
print(f"ERROR: no such file: {config_file}")
|
@@ -54,11 +46,22 @@ def main(src_dir):
|
|
54
46
|
expr.init_runmanager()
|
55
47
|
|
56
48
|
# run the experiment
|
57
|
-
expr.run()
|
58
|
-
|
49
|
+
reports = expr.run()
|
50
|
+
result = reports[-1].result.test
|
59
51
|
expr.store_report()
|
60
|
-
|
61
52
|
print("DONE")
|
53
|
+
return result
|
54
|
+
|
55
|
+
|
56
|
+
def main(src_dir):
|
57
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
58
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
59
|
+
args = parser.parse_args()
|
60
|
+
if args.config is not None:
|
61
|
+
config_file = args.config
|
62
|
+
else:
|
63
|
+
config_file = f"{src_dir}/exp.ini"
|
64
|
+
doit(config_file)
|
62
65
|
|
63
66
|
|
64
67
|
if __name__ == "__main__":
|
nkululeko/plots.py
CHANGED
@@ -279,7 +279,7 @@ class Plots:
|
|
279
279
|
res_pval = int(res_pval[1] * 1000) / 1000
|
280
280
|
caption = f"{ylab} {df.shape[0]}. P-val chi2: {res_pval}"
|
281
281
|
ax = (
|
282
|
-
df.groupby(col1)[col2]
|
282
|
+
df.groupby(col1, observed=False)[col2]
|
283
283
|
.value_counts()
|
284
284
|
.unstack()
|
285
285
|
.plot(kind="bar", stacked=True, title=caption, rot=0)
|
nkululeko/utils/util.py
CHANGED
@@ -11,9 +11,24 @@ import audformat
|
|
11
11
|
|
12
12
|
class Util:
|
13
13
|
# a list of words that need not to be warned upon if default values are used
|
14
|
-
stopvals = [
|
14
|
+
stopvals = [
|
15
|
+
"all",
|
16
|
+
False,
|
17
|
+
"False",
|
18
|
+
"classification",
|
19
|
+
"png",
|
20
|
+
"audio_path",
|
21
|
+
"kde",
|
22
|
+
"pkl",
|
23
|
+
"eGeMAPSv02",
|
24
|
+
"functionals",
|
25
|
+
]
|
15
26
|
|
16
27
|
def __init__(self, caller=None, has_config=True):
|
28
|
+
if caller is not None:
|
29
|
+
self.caller = caller
|
30
|
+
else:
|
31
|
+
self.caller = ""
|
17
32
|
if has_config:
|
18
33
|
import nkululeko.glob_conf as glob_conf
|
19
34
|
|
@@ -25,10 +40,7 @@ class Util:
|
|
25
40
|
self.error(f"no such file: {self.got_data_roots}")
|
26
41
|
self.data_roots = configparser.ConfigParser()
|
27
42
|
self.data_roots.read(self.got_data_roots)
|
28
|
-
|
29
|
-
self.caller = caller
|
30
|
-
else:
|
31
|
-
self.caller = ""
|
43
|
+
self.debug(f"getting data roots from {self.got_data_roots}")
|
32
44
|
|
33
45
|
def get_path(self, entry):
|
34
46
|
"""
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.77.
|
3
|
+
Version: 0.77.6
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -19,6 +19,7 @@ Requires-Dist: audinterface
|
|
19
19
|
Requires-Dist: audiofile
|
20
20
|
Requires-Dist: audiomentations
|
21
21
|
Requires-Dist: audonnx
|
22
|
+
Requires-Dist: cylimiter
|
22
23
|
Requires-Dist: datasets
|
23
24
|
Requires-Dist: imageio
|
24
25
|
Requires-Dist: imbalanced-learn
|
@@ -188,6 +189,7 @@ Here is an overview of the interfaces:
|
|
188
189
|
* **nkululeko.test**: predict a series of files with the current best model
|
189
190
|
* **nkululeko.explore**: perform data exploration
|
190
191
|
* **nkululeko.augment**: augment the current training data
|
192
|
+
* **nkululeko.aug_train**: augment the current training data and do a training including this data
|
191
193
|
* **nkululeko.predict**: predict features like SNR, MOS, arousal/valence, age/gender, with DNN models
|
192
194
|
* **nkululeko.segment**: segment a database based on VAD (voice activity detection)
|
193
195
|
* **nkululeko.resample**: check on all sampling rates and change to 16kHz
|
@@ -309,6 +311,14 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
309
311
|
Changelog
|
310
312
|
=========
|
311
313
|
|
314
|
+
Version 0.77.6
|
315
|
+
--------------
|
316
|
+
* added functions to call modules with config file path directly
|
317
|
+
|
318
|
+
Version 0.77.5
|
319
|
+
--------------
|
320
|
+
* fixed augmentation bug for python version 10
|
321
|
+
|
312
322
|
Version 0.77.4
|
313
323
|
--------------
|
314
324
|
* made traditional augmentations (audiomentation module) configurable
|
@@ -1,11 +1,11 @@
|
|
1
1
|
nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
2
|
-
nkululeko/aug_train.py,sha256=
|
2
|
+
nkululeko/aug_train.py,sha256=Z8AYr1E-zjRVrB7uRF_eKTvc0vYXVYGuy3BtzjSIL64,3022
|
3
3
|
nkululeko/augment.py,sha256=sHWG4Jmb4BjnaaXXnRYMP7Jkk0qlaZ2ohsArP8uW_d8,3003
|
4
4
|
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=p_G6aEcoN8S7E9aX4sOtHKmywY_uhLXbm6h0iJqfjuY,39
|
6
6
|
nkululeko/demo.py,sha256=FFR8qHMCY8kKKRWDTa8xA7A8mWeYalRKYNtV5rjGg44,1915
|
7
7
|
nkululeko/demo_predictor.py,sha256=j4ySWWcIxW7ZAIBH86m9BfRFokzrUNkRD6fpsvAQGTw,2629
|
8
|
-
nkululeko/experiment.py,sha256=
|
8
|
+
nkululeko/experiment.py,sha256=natQpQ_lETWoSea8rTM77g2G_xO_1KXNkES5eYU6GdM,28649
|
9
9
|
nkululeko/explore.py,sha256=pfciOL66e0T4Bk0RTkwDyE6pK_baSUdjMo2Ybpst3L4,2202
|
10
10
|
nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
|
11
11
|
nkululeko/feature_extractor.py,sha256=tKv1b1-o7xNMgBavTR8VY8_H5HKoJEnnosS-KcjmOEU,7281
|
@@ -13,8 +13,8 @@ nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,347
|
|
13
13
|
nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
|
14
14
|
nkululeko/glob_conf.py,sha256=6MZe83QCgHD_zB79Sl9m6UJQASwfqJlyb-1nqrQ_6Iw,381
|
15
15
|
nkululeko/modelrunner.py,sha256=TQW08f72-GjBEIFTE3_8B8qMCWvTJUqJ1fveygmYnXI,9278
|
16
|
-
nkululeko/nkululeko.py,sha256=
|
17
|
-
nkululeko/plots.py,sha256=
|
16
|
+
nkululeko/nkululeko.py,sha256=5EfguOjCMt3xDttBJOw-B9upwOHcrN4z3yGKZH5OtoU,1833
|
17
|
+
nkululeko/plots.py,sha256=Ci8brbxGXsCp1lnJdGkPUXoyWA6qUqUUwuxKOYEaqR8,21278
|
18
18
|
nkululeko/predict.py,sha256=dRXX-sQVESa7cNi_56S6UkUOa_pV1g_K4xYtYVM1SJs,1876
|
19
19
|
nkululeko/reporter.py,sha256=wrtWbU_UKDwhKQNMi7Q_Ix5N_UTzTagRwZikgUGk1c8,11606
|
20
20
|
nkululeko/resample.py,sha256=C2S3aOTwlx5iYah_hs0JARHBC8Cq4Z5cH_mnDMb5RKk,2185
|
@@ -26,8 +26,8 @@ nkululeko/syllable_nuclei.py,sha256=Sky-C__MeUDaxqHnDl2TGLLYOYvsahD35TUjWGeG31k,
|
|
26
26
|
nkululeko/test.py,sha256=cRtOn_d3Fh2kZmnT4nnQeGzZTRtpr5jRhowykOwunME,1421
|
27
27
|
nkululeko/test_predictor.py,sha256=8eyHJ_YNIwR2OfICkqo7zF2f7UP8nL0nzCwC-8XnkZY,2409
|
28
28
|
nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
29
|
-
nkululeko/augmenting/augmenter.py,sha256=
|
30
|
-
nkululeko/augmenting/randomsplicer.py,sha256=
|
29
|
+
nkululeko/augmenting/augmenter.py,sha256=XAt0dpmlnKxqyysqCgV3rcz-pRIvOz7rU7dmGDCVAzs,2905
|
30
|
+
nkululeko/augmenting/randomsplicer.py,sha256=Z5rxdKKUpuncLWuTS6xVfVKUeVbeiYU_dLRHQ5fcg4Y,2669
|
31
31
|
nkululeko/augmenting/randomsplicing.py,sha256=ldym9vZNsZIU5BAAaJVaOmAgmVHNs4a5i5K3bW-WAQU,1791
|
32
32
|
nkululeko/augmenting/resampler.py,sha256=cRrn27w_f2I6aN0CftlTuHT2edi7pTREh3Yc6BxhcGU,3335
|
33
33
|
nkululeko/autopredict/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -48,7 +48,7 @@ nkululeko/data/dataset_csv.py,sha256=9ysujWHQnOHLWtJxGtvdpHE3c_sM_l9svFYWYCpamVs
|
|
48
48
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
49
49
|
nkululeko/feat_extract/feats_agender.py,sha256=sDfsvSC2zt1JLn5rmB7bdck1JmXIIol3oIwN90TossM,2867
|
50
50
|
nkululeko/feat_extract/feats_agender_agender.py,sha256=UYATYWE-zCt9F1qA4xQbYZ2qM7DT2nwGxk7vSiyhit4,2953
|
51
|
-
nkululeko/feat_extract/feats_analyser.py,sha256=
|
51
|
+
nkululeko/feat_extract/feats_analyser.py,sha256=nD2-7K4c0hFJvVCfmpsoU-SnePyb4m_JIPsf0uTzE0M,11397
|
52
52
|
nkululeko/feat_extract/feats_audmodel.py,sha256=sZD8NBC3qId4ygzBvW5RvKVgCC1zxvO_cyFazYOEwCk,2901
|
53
53
|
nkululeko/feat_extract/feats_audmodel_dim.py,sha256=z48s-FXokREnir_dNMl8fNI5PLCXzOhvmjgfCjTDjh8,2817
|
54
54
|
nkululeko/feat_extract/feats_clap.py,sha256=v82mbjdjGDSKUUBggttw7jW0oka22fWAmfUf-4VmaDU,3379
|
@@ -72,14 +72,14 @@ nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
|
|
72
72
|
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
73
73
|
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
74
74
|
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
75
|
-
nkululeko/models/model.py,sha256=
|
75
|
+
nkululeko/models/model.py,sha256=jg6t-0fXCPQv0cQZjyye4OZlkwf-iAN8HBikTHU1MBA,11321
|
76
76
|
nkululeko/models/model_bayes.py,sha256=wI7-sCwibqXMCHviu349TYjgJXXNXym-Z6ZM83uxlFQ,378
|
77
|
-
nkululeko/models/model_cnn.py,sha256=
|
77
|
+
nkululeko/models/model_cnn.py,sha256=B02NPo6a_4SwLbnzd25drQZqUpC15ecXGrb1rXv5VOE,9254
|
78
78
|
nkululeko/models/model_gmm.py,sha256=onovzGBeguwZ-upXtuDLaBw9sd6fDDQslVBOrz1Z8TE,645
|
79
79
|
nkululeko/models/model_knn.py,sha256=5tGqiPo2JTw9VLmD-MXNZKFJ5RTLA6uv_blJDJ9lScA,573
|
80
80
|
nkululeko/models/model_knn_reg.py,sha256=Fbuk6Ku6eyrbbMEk7rB5dwfhvQOMsdZk6HI_0T0gYPw,580
|
81
81
|
nkululeko/models/model_lin_reg.py,sha256=NBTnY2ULuhUBt5ArYQwskZ2Vq4BBDGkqd9SYBFl7Ql4,392
|
82
|
-
nkululeko/models/model_mlp.py,sha256=
|
82
|
+
nkululeko/models/model_mlp.py,sha256=hgAy1WtTw1nUFxjOmfEDBzpe7IF2APsICIip_si6nv8,8499
|
83
83
|
nkululeko/models/model_mlp_regression.py,sha256=nFJwch23tUTCxAlgi3YkT-6KSPPLAE7wFK2zF2gg3F4,9457
|
84
84
|
nkululeko/models/model_svm.py,sha256=J1d8mf5T4QHtilkUTBkhegVB_0D2kRY0BiBGz-LUJmw,554
|
85
85
|
nkululeko/models/model_svr.py,sha256=au5AtzjEpaY9_7Fz6CQoIZ3s6OAvLUxjAXuqHF9dRbk,514
|
@@ -98,9 +98,9 @@ nkululeko/segmenting/seg_silero.py,sha256=lLytS38KzARS17omwv8VBw-zz60RVSXGSvZ5Ev
|
|
98
98
|
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
99
99
|
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
100
100
|
nkululeko/utils/stats.py,sha256=29otJpUp1VqbtDKmlLkPPzBmVfTFiHZ70rUdR4860rM,2788
|
101
|
-
nkululeko/utils/util.py,sha256=
|
102
|
-
nkululeko-0.77.
|
103
|
-
nkululeko-0.77.
|
104
|
-
nkululeko-0.77.
|
105
|
-
nkululeko-0.77.
|
106
|
-
nkululeko-0.77.
|
101
|
+
nkululeko/utils/util.py,sha256=lpaM7_KnLjquFFtMPH6swdisF1kqSHBLpHh3CzgGtLw,11625
|
102
|
+
nkululeko-0.77.6.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
103
|
+
nkululeko-0.77.6.dist-info/METADATA,sha256=jVeWsnVWyiRsVCYFxbyK_UYgqyLsDNNKTXg_XaQIK7A,30662
|
104
|
+
nkululeko-0.77.6.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
105
|
+
nkululeko-0.77.6.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
106
|
+
nkululeko-0.77.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|