nkululeko 0.77.0__py3-none-any.whl → 0.77.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/augment.py +1 -1
- nkululeko/augmenting/augmenter.py +1 -1
- nkululeko/augmenting/randomsplicer.py +1 -1
- nkululeko/augmenting/resampler.py +4 -9
- nkululeko/autopredict/ap_age.py +2 -4
- nkululeko/autopredict/ap_arousal.py +2 -4
- nkululeko/autopredict/ap_dominance.py +2 -4
- nkululeko/autopredict/ap_gender.py +2 -4
- nkululeko/autopredict/ap_mos.py +2 -4
- nkululeko/autopredict/ap_pesq.py +2 -4
- nkululeko/autopredict/ap_sdr.py +2 -4
- nkululeko/autopredict/ap_snr.py +2 -4
- nkululeko/autopredict/ap_stoi.py +2 -4
- nkululeko/autopredict/ap_valence.py +2 -4
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +1 -1
- nkululeko/demo.py +4 -10
- nkululeko/demo_predictor.py +1 -1
- nkululeko/experiment.py +1 -1
- nkululeko/explore.py +6 -13
- nkululeko/export.py +14 -25
- nkululeko/feat_extract/feats_analyser.py +110 -18
- nkululeko/feat_extract/feats_clap.py +4 -10
- nkululeko/feat_extract/feats_import.py +2 -4
- nkululeko/feat_extract/feats_mld.py +4 -9
- nkululeko/feat_extract/feats_mos.py +5 -13
- nkululeko/feat_extract/feats_oxbow.py +5 -12
- nkululeko/feat_extract/feats_snr.py +3 -7
- nkululeko/feat_extract/feats_squim.py +5 -13
- nkululeko/feat_extract/feats_trill.py +5 -13
- nkululeko/feat_extract/featureset.py +2 -4
- nkululeko/feat_extract/feinberg_praat.py +1 -1
- nkululeko/feature_extractor.py +1 -1
- nkululeko/file_checker.py +5 -5
- nkululeko/filter_data.py +6 -16
- nkululeko/modelrunner.py +1 -1
- nkululeko/models/model.py +1 -1
- nkululeko/models/model_cnn.py +1 -1
- nkululeko/models/model_mlp.py +1 -1
- nkululeko/models/model_mlp_regression.py +1 -1
- nkululeko/nkululeko.py +5 -13
- nkululeko/plots.py +8 -4
- nkululeko/predict.py +5 -13
- nkululeko/reporter.py +1 -1
- nkululeko/reporting/latex_writer.py +7 -2
- nkululeko/reporting/report.py +2 -1
- nkululeko/resample.py +5 -13
- nkululeko/runmanager.py +1 -1
- nkululeko/scaler.py +1 -1
- nkululeko/segment.py +1 -1
- nkululeko/segmenting/seg_silero.py +3 -5
- nkululeko/test.py +4 -10
- nkululeko/test_predictor.py +1 -1
- nkululeko/utils/stats.py +8 -0
- {nkululeko-0.77.0.dist-info → nkululeko-0.77.1.dist-info}/METADATA +6 -1
- nkululeko-0.77.1.dist-info/RECORD +104 -0
- nkululeko/balancer.py +0 -1
- nkululeko-0.77.0.dist-info/RECORD +0 -105
- /nkululeko/{util.py → utils/util.py} +0 -0
- {nkululeko-0.77.0.dist-info → nkululeko-0.77.1.dist-info}/LICENSE +0 -0
- {nkululeko-0.77.0.dist-info → nkululeko-0.77.1.dist-info}/WHEEL +0 -0
- {nkululeko-0.77.0.dist-info → nkululeko-0.77.1.dist-info}/top_level.txt +0 -0
nkululeko/models/model_cnn.py
CHANGED
@@ -16,7 +16,7 @@ from sklearn.metrics import recall_score
|
|
16
16
|
from collections import OrderedDict
|
17
17
|
from PIL import Image
|
18
18
|
|
19
|
-
from nkululeko.util import Util
|
19
|
+
from nkululeko.utils.util import Util
|
20
20
|
import nkululeko.glob_conf as glob_conf
|
21
21
|
from nkululeko.models.model import Model
|
22
22
|
from nkululeko.reporter import Reporter
|
nkululeko/models/model_mlp.py
CHANGED
nkululeko/nkululeko.py
CHANGED
@@ -5,17 +5,13 @@ import os.path
|
|
5
5
|
import configparser
|
6
6
|
import argparse
|
7
7
|
import nkululeko.experiment as exp
|
8
|
-
from nkululeko.util import Util
|
8
|
+
from nkululeko.utils.util import Util
|
9
9
|
from nkululeko.constants import VERSION
|
10
10
|
|
11
11
|
|
12
12
|
def main(src_dir):
|
13
|
-
parser = argparse.ArgumentParser(
|
14
|
-
|
15
|
-
)
|
16
|
-
parser.add_argument(
|
17
|
-
"--config", default="exp.ini", help="The base configuration"
|
18
|
-
)
|
13
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
14
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
19
15
|
args = parser.parse_args()
|
20
16
|
if args.config is not None:
|
21
17
|
config_file = args.config
|
@@ -49,9 +45,7 @@ def main(src_dir):
|
|
49
45
|
|
50
46
|
# split into train and test
|
51
47
|
expr.fill_train_and_tests()
|
52
|
-
util.debug(
|
53
|
-
f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}"
|
54
|
-
)
|
48
|
+
util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
|
55
49
|
|
56
50
|
# extract features
|
57
51
|
expr.extract_feats()
|
@@ -69,6 +63,4 @@ def main(src_dir):
|
|
69
63
|
|
70
64
|
if __name__ == "__main__":
|
71
65
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
72
|
-
main(
|
73
|
-
cwd
|
74
|
-
) # use this if you want to state the config file path on command line
|
66
|
+
main(cwd) # use this if you want to state the config file path on command line
|
nkululeko/plots.py
CHANGED
@@ -6,7 +6,7 @@ import seaborn as sns
|
|
6
6
|
import numpy as np
|
7
7
|
import ast
|
8
8
|
from scipy import stats
|
9
|
-
from nkululeko.util import Util
|
9
|
+
from nkululeko.utils.util import Util
|
10
10
|
import nkululeko.utils.stats as su
|
11
11
|
import nkululeko.glob_conf as glob_conf
|
12
12
|
from nkululeko.reporting.report_item import ReportItem
|
@@ -456,8 +456,10 @@ class Plots:
|
|
456
456
|
return tsne_data
|
457
457
|
|
458
458
|
def plot_feature(self, title, feature, label, df_labels, df_features):
|
459
|
+
# remove fullstops in the name
|
460
|
+
feature_name = feature.replace(".", "-")
|
459
461
|
fig_dir = self.util.get_path("fig_dir") + "../" # one up because of the runs
|
460
|
-
filename = f"{fig_dir}feat_dist_{title}_{
|
462
|
+
filename = f"{fig_dir}feat_dist_{title}_{feature_name}.{self.format}"
|
461
463
|
if self.util.is_categorical(df_labels[label]):
|
462
464
|
df_plot = pd.DataFrame(
|
463
465
|
{label: df_labels[label], feature: df_features[feature]}
|
@@ -475,11 +477,13 @@ class Plots:
|
|
475
477
|
plt.savefig(filename)
|
476
478
|
fig.clear()
|
477
479
|
plt.close(fig)
|
480
|
+
caption = f"Feature plot for feature {feature}"
|
481
|
+
content = caption
|
478
482
|
glob_conf.report.add_item(
|
479
483
|
ReportItem(
|
480
484
|
Header.HEADER_EXPLORE,
|
481
|
-
|
482
|
-
|
485
|
+
caption,
|
486
|
+
content,
|
483
487
|
filename,
|
484
488
|
)
|
485
489
|
)
|
nkululeko/predict.py
CHANGED
@@ -3,19 +3,15 @@
|
|
3
3
|
|
4
4
|
from nkululeko.experiment import Experiment
|
5
5
|
import configparser
|
6
|
-
from nkululeko.util import Util
|
6
|
+
from nkululeko.utils.util import Util
|
7
7
|
from nkululeko.constants import VERSION
|
8
8
|
import argparse
|
9
9
|
import os
|
10
10
|
|
11
11
|
|
12
12
|
def main(src_dir):
|
13
|
-
parser = argparse.ArgumentParser(
|
14
|
-
|
15
|
-
)
|
16
|
-
parser.add_argument(
|
17
|
-
"--config", default="exp.ini", help="The base configuration"
|
18
|
-
)
|
13
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
14
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
19
15
|
args = parser.parse_args()
|
20
16
|
if args.config is not None:
|
21
17
|
config_file = args.config
|
@@ -43,9 +39,7 @@ def main(src_dir):
|
|
43
39
|
|
44
40
|
# split into train and test
|
45
41
|
expr.fill_train_and_tests()
|
46
|
-
util.debug(
|
47
|
-
f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}"
|
48
|
-
)
|
42
|
+
util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
|
49
43
|
|
50
44
|
# process the data
|
51
45
|
df = expr.autopredict()
|
@@ -61,6 +55,4 @@ def main(src_dir):
|
|
61
55
|
|
62
56
|
if __name__ == "__main__":
|
63
57
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
64
|
-
main(
|
65
|
-
cwd
|
66
|
-
) # use this if you want to state the config file path on command line
|
58
|
+
main(cwd) # use this if you want to state the config file path on command line
|
nkululeko/reporter.py
CHANGED
@@ -21,7 +21,7 @@ import nkululeko.glob_conf as glob_conf
|
|
21
21
|
from nkululeko.reporting.report_item import ReportItem
|
22
22
|
from nkululeko.result import Result
|
23
23
|
from nkululeko.reporting.defines import Header
|
24
|
-
from nkululeko.util import Util
|
24
|
+
from nkululeko.utils.util import Util
|
25
25
|
|
26
26
|
|
27
27
|
class Reporter:
|
@@ -6,7 +6,7 @@ print out report as latex file and pdf
|
|
6
6
|
from pylatex import Document, Section, Subsection, Command, Figure
|
7
7
|
from pylatex.utils import italic, NoEscape
|
8
8
|
from nkululeko.reporting.report_item import ReportItem
|
9
|
-
from nkululeko.util import Util
|
9
|
+
from nkululeko.utils.util import Util
|
10
10
|
|
11
11
|
|
12
12
|
class LatexWriter:
|
@@ -34,8 +34,13 @@ class LatexWriter:
|
|
34
34
|
# self.doc.append(f"See figure: {reference}")
|
35
35
|
|
36
36
|
def finish_doc(self):
|
37
|
+
from subprocess import CalledProcessError
|
38
|
+
|
37
39
|
target_filename = self.util.config_val("REPORT", "latex", "nkululeko_latex")
|
38
40
|
target_dir = self.util.get_exp_dir()
|
39
41
|
path = "/".join([target_dir, target_filename])
|
40
42
|
self.util.debug(f"Generated latex report to {path}")
|
41
|
-
|
43
|
+
try:
|
44
|
+
self.doc.generate_pdf(path, clean_tex=False)
|
45
|
+
except CalledProcessError as e:
|
46
|
+
self.util.debug(f"Error while generating PDF file: {e}")
|
nkululeko/reporting/report.py
CHANGED
@@ -4,10 +4,11 @@ report.py
|
|
4
4
|
Collector class for report items collected during module processing.
|
5
5
|
|
6
6
|
"""
|
7
|
-
from nkululeko.util import Util
|
7
|
+
from nkululeko.utils.util import Util
|
8
8
|
from nkululeko.reporting.report_item import ReportItem
|
9
9
|
from nkululeko.reporting.latex_writer import LatexWriter
|
10
10
|
|
11
|
+
|
11
12
|
class Report:
|
12
13
|
def __init__(self):
|
13
14
|
self.report_items = {}
|
nkululeko/resample.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3
3
|
|
4
4
|
from nkululeko.experiment import Experiment
|
5
5
|
import configparser
|
6
|
-
from nkululeko.util import Util
|
6
|
+
from nkululeko.utils.util import Util
|
7
7
|
from nkululeko.constants import VERSION
|
8
8
|
import argparse
|
9
9
|
import os
|
@@ -12,12 +12,8 @@ from nkululeko.augmenting.resampler import Resampler
|
|
12
12
|
|
13
13
|
|
14
14
|
def main(src_dir):
|
15
|
-
parser = argparse.ArgumentParser(
|
16
|
-
|
17
|
-
)
|
18
|
-
parser.add_argument(
|
19
|
-
"--config", default="exp.ini", help="The base configuration"
|
20
|
-
)
|
15
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
16
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
21
17
|
args = parser.parse_args()
|
22
18
|
if args.config is not None:
|
23
19
|
config_file = args.config
|
@@ -50,9 +46,7 @@ def main(src_dir):
|
|
50
46
|
|
51
47
|
# split into train and test
|
52
48
|
expr.fill_train_and_tests()
|
53
|
-
util.debug(
|
54
|
-
f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}"
|
55
|
-
)
|
49
|
+
util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
|
56
50
|
|
57
51
|
sample_selection = util.config_val("RESAMPLE", "sample_selection", "all")
|
58
52
|
if sample_selection == "all":
|
@@ -74,6 +68,4 @@ def main(src_dir):
|
|
74
68
|
|
75
69
|
if __name__ == "__main__":
|
76
70
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
77
|
-
main(
|
78
|
-
cwd
|
79
|
-
) # use this if you want to state the config file path on command line
|
71
|
+
main(cwd) # use this if you want to state the config file path on command line
|
nkululeko/runmanager.py
CHANGED
nkululeko/scaler.py
CHANGED
nkululeko/segment.py
CHANGED
@@ -6,7 +6,7 @@ import os
|
|
6
6
|
import pandas as pd
|
7
7
|
import configparser
|
8
8
|
from nkululeko.experiment import Experiment
|
9
|
-
from nkululeko.util import Util
|
9
|
+
from nkululeko.utils.util import Util
|
10
10
|
from nkululeko.constants import VERSION
|
11
11
|
import nkululeko.glob_conf as glob_conf
|
12
12
|
from nkululeko.reporting.report_item import ReportItem
|
@@ -7,11 +7,11 @@ segment a dataset with the Silero segmenter
|
|
7
7
|
|
8
8
|
import torch
|
9
9
|
import pandas as pd
|
10
|
-
from tqdm import tqdm
|
10
|
+
from tqdm import tqdm
|
11
11
|
import audformat
|
12
12
|
from audformat.utils import to_filewise_index
|
13
13
|
from audformat import segmented_index
|
14
|
-
from nkululeko.util import Util
|
14
|
+
from nkululeko.utils.util import Util
|
15
15
|
|
16
16
|
# from nkululeko.constants import SAMPLING_RATE
|
17
17
|
|
@@ -44,9 +44,7 @@ class Silero_segmenter:
|
|
44
44
|
SAMPLING_RATE = 16000
|
45
45
|
if self.no_testing:
|
46
46
|
min_length = float(self.util.config_val("SEGMENT", "min_length", 2))
|
47
|
-
max_length = float(
|
48
|
-
self.util.config_val("SEGMENT", "max_length", 10)
|
49
|
-
)
|
47
|
+
max_length = float(self.util.config_val("SEGMENT", "max_length", 10))
|
50
48
|
else:
|
51
49
|
min_length = 2
|
52
50
|
max_length = 10
|
nkululeko/test.py
CHANGED
@@ -3,19 +3,15 @@
|
|
3
3
|
|
4
4
|
from nkululeko.experiment import Experiment
|
5
5
|
import configparser
|
6
|
-
from nkululeko.util import Util
|
6
|
+
from nkululeko.utils.util import Util
|
7
7
|
from nkululeko.constants import VERSION
|
8
8
|
import argparse
|
9
9
|
import os
|
10
10
|
|
11
11
|
|
12
12
|
def main(src_dir):
|
13
|
-
parser = argparse.ArgumentParser(
|
14
|
-
|
15
|
-
)
|
16
|
-
parser.add_argument(
|
17
|
-
"--config", default="exp.ini", help="The base configuration"
|
18
|
-
)
|
13
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
14
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
19
15
|
parser.add_argument(
|
20
16
|
"--outfile",
|
21
17
|
default="my_results.csv",
|
@@ -54,6 +50,4 @@ def main(src_dir):
|
|
54
50
|
|
55
51
|
if __name__ == "__main__":
|
56
52
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
57
|
-
main(
|
58
|
-
cwd
|
59
|
-
) # use this if you want to state the config file path on command line
|
53
|
+
main(cwd) # use this if you want to state the config file path on command line
|
nkululeko/test_predictor.py
CHANGED
nkululeko/utils/stats.py
CHANGED
@@ -85,3 +85,11 @@ def cohens_D_to_string(val):
|
|
85
85
|
else:
|
86
86
|
rval = "large effect"
|
87
87
|
return f"Cohen's d: {rval}"
|
88
|
+
|
89
|
+
|
90
|
+
def normalize(values):
|
91
|
+
"""Do a z-transformation of a distribution, so that mean = 0 and variance = 1"""
|
92
|
+
from sklearn.preprocessing import StandardScaler
|
93
|
+
|
94
|
+
scaler = StandardScaler()
|
95
|
+
return scaler.fit_transform(values)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.77.
|
3
|
+
Version: 0.77.1
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -309,6 +309,11 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
309
309
|
Changelog
|
310
310
|
=========
|
311
311
|
|
312
|
+
Version 0.77.1
|
313
|
+
--------------
|
314
|
+
* added permutation algorithm to compute feature importance
|
315
|
+
* shifted util.py to utils
|
316
|
+
|
312
317
|
Version 0.77.0
|
313
318
|
--------------
|
314
319
|
* added more latex report output
|
@@ -0,0 +1,104 @@
|
|
1
|
+
nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
2
|
+
nkululeko/augment.py,sha256=IZFawvv5GgSfK0QsrQfVkIfEm0kjoK4DWj8vP9GnU8M,2686
|
3
|
+
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
4
|
+
nkululeko/constants.py,sha256=rnEDMLKd0n74AGnMGQoidO0S-qk4TOQTN8rGc_3kp8E,39
|
5
|
+
nkululeko/demo.py,sha256=FFR8qHMCY8kKKRWDTa8xA7A8mWeYalRKYNtV5rjGg44,1915
|
6
|
+
nkululeko/demo_predictor.py,sha256=j4ySWWcIxW7ZAIBH86m9BfRFokzrUNkRD6fpsvAQGTw,2629
|
7
|
+
nkululeko/experiment.py,sha256=3kgZ59U5XnTrZWv3o9vdB1bcUScKBiP_oE2FPGXmjc0,28720
|
8
|
+
nkululeko/explore.py,sha256=pfciOL66e0T4Bk0RTkwDyE6pK_baSUdjMo2Ybpst3L4,2202
|
9
|
+
nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
|
10
|
+
nkululeko/feature_extractor.py,sha256=tKv1b1-o7xNMgBavTR8VY8_H5HKoJEnnosS-KcjmOEU,7281
|
11
|
+
nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,3474
|
12
|
+
nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
|
13
|
+
nkululeko/glob_conf.py,sha256=6MZe83QCgHD_zB79Sl9m6UJQASwfqJlyb-1nqrQ_6Iw,381
|
14
|
+
nkululeko/modelrunner.py,sha256=KZPoalwtl9k2SCVPhpaAjUGtPafzjUxhtYSGc75OUwk,9037
|
15
|
+
nkululeko/nkululeko.py,sha256=MyjjbCg8qgLHHpvwJOEHBGNCDKf0GTv7gnXX27L56R4,1724
|
16
|
+
nkululeko/plots.py,sha256=l-bxUoChkCIMsLPK4hMZyIWfuPNN_n-3g8Usc4sJ85A,21262
|
17
|
+
nkululeko/predict.py,sha256=dRXX-sQVESa7cNi_56S6UkUOa_pV1g_K4xYtYVM1SJs,1876
|
18
|
+
nkululeko/reporter.py,sha256=wrtWbU_UKDwhKQNMi7Q_Ix5N_UTzTagRwZikgUGk1c8,11606
|
19
|
+
nkululeko/resample.py,sha256=C2S3aOTwlx5iYah_hs0JARHBC8Cq4Z5cH_mnDMb5RKk,2185
|
20
|
+
nkululeko/result.py,sha256=HeiOrrqf9W2yxMryN33zgEmQejNWRxNmm589AYt6-eM,499
|
21
|
+
nkululeko/runmanager.py,sha256=HjAesq19ZbDg5imMOjhqnt063W7JGggm6bY06h6bfM8,7085
|
22
|
+
nkululeko/scaler.py,sha256=HVXMjmzDAj87K9O4aPU6aeqBk-ACVzQBTHOf1RwDCaM,3055
|
23
|
+
nkululeko/segment.py,sha256=DfJYZsCEH41gwKyjpMgv8kWUzfVkmC0wWTbgHOL4i4g,4787
|
24
|
+
nkululeko/syllable_nuclei.py,sha256=Sky-C__MeUDaxqHnDl2TGLLYOYvsahD35TUjWGeG31k,10047
|
25
|
+
nkululeko/test.py,sha256=cRtOn_d3Fh2kZmnT4nnQeGzZTRtpr5jRhowykOwunME,1421
|
26
|
+
nkululeko/test_predictor.py,sha256=8eyHJ_YNIwR2OfICkqo7zF2f7UP8nL0nzCwC-8XnkZY,2409
|
27
|
+
nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
28
|
+
nkululeko/augmenting/augmenter.py,sha256=hk5jkFGdmCg2IgE4UQPsv0kFdgefO5pSrq9QjCjA5Io,2306
|
29
|
+
nkululeko/augmenting/randomsplicer.py,sha256=OIBmfzyx1vhKl1cUQGlQw-CWZwsCV8XG9miITb41CT0,2395
|
30
|
+
nkululeko/augmenting/randomsplicing.py,sha256=ldym9vZNsZIU5BAAaJVaOmAgmVHNs4a5i5K3bW-WAQU,1791
|
31
|
+
nkululeko/augmenting/resampler.py,sha256=cRrn27w_f2I6aN0CftlTuHT2edi7pTREh3Yc6BxhcGU,3335
|
32
|
+
nkululeko/autopredict/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
33
|
+
nkululeko/autopredict/ap_age.py,sha256=2Wn5E-Jd49sTn40WqaMcYtUEl4zEq3OY75XmjOpdxsA,1095
|
34
|
+
nkululeko/autopredict/ap_arousal.py,sha256=ymt0diu4v1osw3VxJbSglsVKDAJYRzebQ2TTfFMKKxk,1024
|
35
|
+
nkululeko/autopredict/ap_dominance.py,sha256=CIMjbHpYfJBV_F2y0Hen5U7WastuArDOkBmXY437efs,1039
|
36
|
+
nkululeko/autopredict/ap_gender.py,sha256=gVCMYHpcVp56xWIeI4HA0MJLLINRgvzrKC_wladnbiE,1008
|
37
|
+
nkululeko/autopredict/ap_mos.py,sha256=tmFBIKO0lW19fciH9syLnOLI699I_WU0yn1axdo6iEw,1104
|
38
|
+
nkululeko/autopredict/ap_pesq.py,sha256=3Zvl47jyCLv7NXwbaDlOhltVcpskcHoU8CcjCJWGkMc,1137
|
39
|
+
nkululeko/autopredict/ap_sdr.py,sha256=qpgvJGl0NYMa8o7zHS4qU4dfY1Ey_R1p-0T8BnX3uNs,1185
|
40
|
+
nkululeko/autopredict/ap_snr.py,sha256=xHb7mmGfa4wF1r0GK7dIZ1d9m4cEz0LcpK0n3sLF9pQ,1107
|
41
|
+
nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvdLRA,1184
|
42
|
+
nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
|
43
|
+
nkululeko/autopredict/estimate_snr.py,sha256=kJbvkt2alMN5ouS03USheU7hJ2l7U9JF0s9AtNT1Vx0,4818
|
44
|
+
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
45
|
+
nkululeko/data/dataset.py,sha256=-HLten8BFwb2T03CqSNaU4h98UbrXIkqlX7J8H95b6Y,27035
|
46
|
+
nkululeko/data/dataset_csv.py,sha256=9ysujWHQnOHLWtJxGtvdpHE3c_sM_l9svFYWYCpamVs,3094
|
47
|
+
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
48
|
+
nkululeko/feat_extract/feats_agender.py,sha256=sDfsvSC2zt1JLn5rmB7bdck1JmXIIol3oIwN90TossM,2867
|
49
|
+
nkululeko/feat_extract/feats_agender_agender.py,sha256=UYATYWE-zCt9F1qA4xQbYZ2qM7DT2nwGxk7vSiyhit4,2953
|
50
|
+
nkululeko/feat_extract/feats_analyser.py,sha256=d3CKceTwT-wVtk1Zyeow3nFyTevBwfaWsmzEh-fXGZ4,10007
|
51
|
+
nkululeko/feat_extract/feats_audmodel.py,sha256=sZD8NBC3qId4ygzBvW5RvKVgCC1zxvO_cyFazYOEwCk,2901
|
52
|
+
nkululeko/feat_extract/feats_audmodel_dim.py,sha256=z48s-FXokREnir_dNMl8fNI5PLCXzOhvmjgfCjTDjh8,2817
|
53
|
+
nkululeko/feat_extract/feats_clap.py,sha256=v82mbjdjGDSKUUBggttw7jW0oka22fWAmfUf-4VmaDU,3379
|
54
|
+
nkululeko/feat_extract/feats_hubert.py,sha256=uL-9mgQHuGPQi1nuUaw6aNU9DscsO89uJAmBdmnCegM,5205
|
55
|
+
nkululeko/feat_extract/feats_import.py,sha256=SqTuNdbInOO_oXucSlwCTfNz6OUCNyJfUrGX_cS9Mn0,2054
|
56
|
+
nkululeko/feat_extract/feats_mld.py,sha256=Vvu7GZOkn7Vda8eIOXqHjg78zegkFe3vTUaCXyVM0eA,2021
|
57
|
+
nkululeko/feat_extract/feats_mos.py,sha256=XZI7U99QcSuzd1v5pVAo0JwdcrXrRICUNt_K5G6eRPU,4149
|
58
|
+
nkululeko/feat_extract/feats_opensmile.py,sha256=yDRGSiUQV3K3oLxVqq8Cxj5bkc-RiLzDYbAGKC9I5vc,4140
|
59
|
+
nkululeko/feat_extract/feats_oxbow.py,sha256=7W26NbEJnSckZzedolsIW1PJPSdCHhuh8YM19kOxaMA,4734
|
60
|
+
nkululeko/feat_extract/feats_praat.py,sha256=dqPhAUceze_6LN6vivXJFT2PPDXZKjmzYx0XnYKYGE8,3039
|
61
|
+
nkululeko/feat_extract/feats_snr.py,sha256=T2ID_AtlSg8QA086ys4gg83Z4MzMTThhGToGEpHU8eo,2771
|
62
|
+
nkululeko/feat_extract/feats_spectra.py,sha256=PLKoc_S3v3wibodUCiOnFFdF87U2rk2sfndRo2mmG64,3656
|
63
|
+
nkululeko/feat_extract/feats_spkrec.py,sha256=VK4ma3uWzM0YZStsgRTirfkbzjWIfRWSgsYI038QlRY,4803
|
64
|
+
nkululeko/feat_extract/feats_squim.py,sha256=cbaXMX4DtjxQ6sRDYy_OWPku6I2wStwGeSZTYQ8Yr9M,4309
|
65
|
+
nkululeko/feat_extract/feats_trill.py,sha256=X9a6Z5rmZtvHDjmQXqQ2nzWjm3O9Dna1t9OZuf8RiKQ,2888
|
66
|
+
nkululeko/feat_extract/feats_wav2vec2.py,sha256=r-HQ-oV6x9Ioe00gNMCTEI5iZuMyHvSUyKFDK_iXrdA,4728
|
67
|
+
nkululeko/feat_extract/feats_wavlm.py,sha256=QoLQNYLFJ8BgEyx0lVgb48HHH9LYUOX7pJtKbgNLk1I,4509
|
68
|
+
nkululeko/feat_extract/featureset.py,sha256=-ynkdor8iX7BFx10aIbB3LfwxrrzPoBGz9kXwyAJO9M,1375
|
69
|
+
nkululeko/feat_extract/feinberg_praat.py,sha256=-pgY8Koq7dFaz-99cjkNqsQn1bsKgPInEuwrfmR0ebA,21253
|
70
|
+
nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
71
|
+
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
72
|
+
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
73
|
+
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
74
|
+
nkululeko/models/model.py,sha256=7hrPyqWdgQ5TbQKZTcr-XwK83070IZdWy5Ek7FeeVpQ,11311
|
75
|
+
nkululeko/models/model_bayes.py,sha256=N-pWe888RyweS-p7AjfqJjjHgqn9LKr_XgpfhS4mk20,441
|
76
|
+
nkululeko/models/model_cnn.py,sha256=ObNSQpADBx3X5m31KPUw0U8q7ztAcc56uBVE2-QSjYo,9249
|
77
|
+
nkululeko/models/model_gmm.py,sha256=onovzGBeguwZ-upXtuDLaBw9sd6fDDQslVBOrz1Z8TE,645
|
78
|
+
nkululeko/models/model_knn.py,sha256=5tGqiPo2JTw9VLmD-MXNZKFJ5RTLA6uv_blJDJ9lScA,573
|
79
|
+
nkululeko/models/model_knn_reg.py,sha256=Fbuk6Ku6eyrbbMEk7rB5dwfhvQOMsdZk6HI_0T0gYPw,580
|
80
|
+
nkululeko/models/model_mlp.py,sha256=0Fm1wZd69HoNTrsi3MpS5cOm2Cd7wJALSxoUcr3ELak,8494
|
81
|
+
nkululeko/models/model_mlp_regression.py,sha256=nFJwch23tUTCxAlgi3YkT-6KSPPLAE7wFK2zF2gg3F4,9457
|
82
|
+
nkululeko/models/model_svm.py,sha256=J1d8mf5T4QHtilkUTBkhegVB_0D2kRY0BiBGz-LUJmw,554
|
83
|
+
nkululeko/models/model_svr.py,sha256=au5AtzjEpaY9_7Fz6CQoIZ3s6OAvLUxjAXuqHF9dRbk,514
|
84
|
+
nkululeko/models/model_tree.py,sha256=soXjV523eRvRZ-jbX7X_3S73Wto1B9bm7ZzzDmgYzTc,390
|
85
|
+
nkululeko/models/model_tree_reg.py,sha256=QxkQEz3LOuCLkXw5xH9IwFg4IcTL3Y5RK03qKe4TtGQ,397
|
86
|
+
nkululeko/models/model_xgb.py,sha256=tzcksyGP9-XQGOBqt5gYSrQZsbtbcm5qwSkjnxsIX3I,221
|
87
|
+
nkululeko/models/model_xgr.py,sha256=yY6wZV8jdiQCIYQCjYSb8gE0jjeiY44eh3rERe2HDvg,227
|
88
|
+
nkululeko/reporting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
89
|
+
nkululeko/reporting/defines.py,sha256=IsY1YgKRMaABpylVKjBJgJ5bNCEbGCVA_E6pivraqSU,648
|
90
|
+
nkululeko/reporting/latex_writer.py,sha256=qiCRSmB4KOD_za4oHu5x-PhwjZohzfo8wecMOwlXZwc,1886
|
91
|
+
nkululeko/reporting/report.py,sha256=W0rcigDdjBvxZQ3pZja_gvToILYvaZ1BFtnN2qFRfYI,1060
|
92
|
+
nkululeko/reporting/report_item.py,sha256=siWeGNgo4bAE46YBMNcsdf3jTMTy76BO9Fi6DTvDig4,533
|
93
|
+
nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
94
|
+
nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=pmLHuXsaqvcdYxB4PSW9l1mbQWZZBJFhi_CGabqydas,1947
|
95
|
+
nkululeko/segmenting/seg_silero.py,sha256=lLytS38KzARS17omwv8VBw-zz60RVSXGSvZ5EvWlcWQ,3301
|
96
|
+
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
97
|
+
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
98
|
+
nkululeko/utils/stats.py,sha256=29otJpUp1VqbtDKmlLkPPzBmVfTFiHZ70rUdR4860rM,2788
|
99
|
+
nkululeko/utils/util.py,sha256=CY7vfFFa2XnWexq0HoIUIMxxwJ_JkATa2eQplyfqOX4,11293
|
100
|
+
nkululeko-0.77.1.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
101
|
+
nkululeko-0.77.1.dist-info/METADATA,sha256=sTdBab1r2GxsamQQWDxym-LjXyYpH4Wl_qpmmU-o_jw,30112
|
102
|
+
nkululeko-0.77.1.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
103
|
+
nkululeko-0.77.1.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
104
|
+
nkululeko-0.77.1.dist-info/RECORD,,
|
nkululeko/balancer.py
DELETED
@@ -1 +0,0 @@
|
|
1
|
-
# balancer
|
@@ -1,105 +0,0 @@
|
|
1
|
-
nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
2
|
-
nkululeko/augment.py,sha256=1kzUjscTPDrFxkR_HwnhPoB3SQQaKs5zQdWN9hRE6p4,2680
|
3
|
-
nkululeko/balancer.py,sha256=WslJxQwMNnVYgZXF1y0ueS5zilRPQJZDhUG72Csb4Gw,11
|
4
|
-
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
5
|
-
nkululeko/constants.py,sha256=_B_oj2D9FM0xuAaUg9zx8z-TUm3P4bSrEFYM9KyWh8k,39
|
6
|
-
nkululeko/demo.py,sha256=6CmLxH_0QJIMazPPg7IZur7ciNdqby6yOlh-6zu6YE0,1951
|
7
|
-
nkululeko/demo_predictor.py,sha256=z4t8IlwRsc-MrE83JlZ9KupOsW-Xalziu89nQD1FbCA,2623
|
8
|
-
nkululeko/experiment.py,sha256=BrroQ8qc8BTUgHsg7YnjZiK3uegPYCQ3UavrYkcrdZE,28714
|
9
|
-
nkululeko/explore.py,sha256=1OdBEYU5LYsuLTaW6WpDTciiGVpZQmZ-PYYiBd1HJtI,2251
|
10
|
-
nkululeko/export.py,sha256=XqY7nFnta_hRFWeoqEwfCDz6BpCtPNNIs8r76o5g9rQ,4690
|
11
|
-
nkululeko/feature_extractor.py,sha256=US5zFJ_DqReF9Q7Ynqo1qtamFPMYrgfs_I4VwIYSY8A,7275
|
12
|
-
nkululeko/file_checker.py,sha256=56OMU-r0m4q__s9hdzhYjdicwoApRXjuWd_SPD4Vq9c,3458
|
13
|
-
nkululeko/filter_data.py,sha256=JpvE7lfGEtDG8fDmnxYW6F6gLMENySy1vkfrVyyxX6k,7350
|
14
|
-
nkululeko/glob_conf.py,sha256=6MZe83QCgHD_zB79Sl9m6UJQASwfqJlyb-1nqrQ_6Iw,381
|
15
|
-
nkululeko/modelrunner.py,sha256=QL2eOsrqCTOB9h2uHM5WE1j_ifhN3Xbm34K1RAezITM,9031
|
16
|
-
nkululeko/nkululeko.py,sha256=CKuW2Lh6ioA4IndsxtmXdWromnKr9McJF74LMmgcd_0,1774
|
17
|
-
nkululeko/plots.py,sha256=lu35ZoWElDJj4qpS3-llhIy6IoSGQf4WDvj-wY_PbXA,21106
|
18
|
-
nkululeko/predict.py,sha256=kMrQTnQx3_yWh9JVUB_R6DxIo9jkbOrfT2ZGbONoHNs,1926
|
19
|
-
nkululeko/reporter.py,sha256=e-_HzbAIL1SmfI0sq0cNwpa5z1glPNUCoaQNCOIjFlM,11600
|
20
|
-
nkululeko/resample.py,sha256=7O9q8T_vsEExTiWO6lCt5I-ZGdYrRSPJ3CVzhksyAPE,2235
|
21
|
-
nkululeko/result.py,sha256=HeiOrrqf9W2yxMryN33zgEmQejNWRxNmm589AYt6-eM,499
|
22
|
-
nkululeko/runmanager.py,sha256=rB_p5TPq-g5p3mp4x7Ezl2VHyry899HvDNUudYf19t8,7079
|
23
|
-
nkululeko/scaler.py,sha256=8zHZ0CnEvBLa5WdNCKxqUPO20NJftSasKObxyWhBn_0,3049
|
24
|
-
nkululeko/segment.py,sha256=5NoDeNC5Nw5fVtDOyj581b62b9Fl5PbGs-vVrBCtnpU,4781
|
25
|
-
nkululeko/syllable_nuclei.py,sha256=Sky-C__MeUDaxqHnDl2TGLLYOYvsahD35TUjWGeG31k,10047
|
26
|
-
nkululeko/test.py,sha256=Z00CQrJ6Pp9zycKSLrCFjzew-_AXll3pud2o0xur_KY,1457
|
27
|
-
nkululeko/test_predictor.py,sha256=mO-jm1ViTtZY8QfWhJLyEboU1nn_CfKQ9c7-dgUxMp0,2403
|
28
|
-
nkululeko/util.py,sha256=CY7vfFFa2XnWexq0HoIUIMxxwJ_JkATa2eQplyfqOX4,11293
|
29
|
-
nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
30
|
-
nkululeko/augmenting/augmenter.py,sha256=oodHgKO4DzHIGSryMLGQvDc9DYcQ6_XNajXSW813wNo,2300
|
31
|
-
nkululeko/augmenting/randomsplicer.py,sha256=pgrTdwnd-I1CBbMx-do7QC5eJwx4z88bkqKzagl45OI,2389
|
32
|
-
nkululeko/augmenting/randomsplicing.py,sha256=ldym9vZNsZIU5BAAaJVaOmAgmVHNs4a5i5K3bW-WAQU,1791
|
33
|
-
nkululeko/augmenting/resampler.py,sha256=Bz-QMrcmH8eUgT_klIpQAgueVesPx72Erqr9fTFN5Ls,3413
|
34
|
-
nkululeko/autopredict/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
35
|
-
nkululeko/autopredict/ap_age.py,sha256=uk6HEfGCkCZkB8Reu6ta_8orVWb4M7lX0SIfvFfF3Hs,1111
|
36
|
-
nkululeko/autopredict/ap_arousal.py,sha256=_lTuw38O2sA_6E8s8yH1cTEqnjMpPfPkp_DcwCOzGDo,1040
|
37
|
-
nkululeko/autopredict/ap_dominance.py,sha256=QIzm714Qx_oko_wHGAnbqFzUHioUjniVdlEvB-aZzmE,1055
|
38
|
-
nkululeko/autopredict/ap_gender.py,sha256=9FINzhq2RnczUp_RVNMJuLs5nVEw1shvMMHHLLoZZfk,1024
|
39
|
-
nkululeko/autopredict/ap_mos.py,sha256=shIcEnpc1yLjNCyC9XMLfxg6m_SZB-6OwhjFVszrAA8,1120
|
40
|
-
nkululeko/autopredict/ap_pesq.py,sha256=C9s-pIRWmCmgkpqKjXHgAwbSxAwMCWc8CcUEhk2XEwM,1153
|
41
|
-
nkululeko/autopredict/ap_sdr.py,sha256=NzSUprhS_tjk-95jww5CP90myTj13HABGZjC1kxSYhU,1201
|
42
|
-
nkululeko/autopredict/ap_snr.py,sha256=2HezZBRZKEiQyDorybHRQ9jcIk0cSqpR0TMdl4dsCiA,1123
|
43
|
-
nkululeko/autopredict/ap_stoi.py,sha256=KbGe5D0-uCtulhXA-IEMtkUcAYNeaIBsa5TpZvEXuM0,1200
|
44
|
-
nkululeko/autopredict/ap_valence.py,sha256=qDsgfb8dF-gM080aP9fDedHC63Yw5cgtlnSqb-0M_Jw,1040
|
45
|
-
nkululeko/autopredict/estimate_snr.py,sha256=kJbvkt2alMN5ouS03USheU7hJ2l7U9JF0s9AtNT1Vx0,4818
|
46
|
-
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47
|
-
nkululeko/data/dataset.py,sha256=goQbKysUB4bHDMAqp1Z01BGJwHIH5uIa1upAGm_zQTI,27029
|
48
|
-
nkululeko/data/dataset_csv.py,sha256=9ysujWHQnOHLWtJxGtvdpHE3c_sM_l9svFYWYCpamVs,3094
|
49
|
-
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
50
|
-
nkululeko/feat_extract/feats_agender.py,sha256=sDfsvSC2zt1JLn5rmB7bdck1JmXIIol3oIwN90TossM,2867
|
51
|
-
nkululeko/feat_extract/feats_agender_agender.py,sha256=UYATYWE-zCt9F1qA4xQbYZ2qM7DT2nwGxk7vSiyhit4,2953
|
52
|
-
nkululeko/feat_extract/feats_analyser.py,sha256=ZdjDMTZbO7qeEG-4U_3iH3T7aJUNuUiKKI1dPu4d0yQ,6055
|
53
|
-
nkululeko/feat_extract/feats_audmodel.py,sha256=sZD8NBC3qId4ygzBvW5RvKVgCC1zxvO_cyFazYOEwCk,2901
|
54
|
-
nkululeko/feat_extract/feats_audmodel_dim.py,sha256=z48s-FXokREnir_dNMl8fNI5PLCXzOhvmjgfCjTDjh8,2817
|
55
|
-
nkululeko/feat_extract/feats_clap.py,sha256=wJ_89eku6Y3uBc1747U7gwRSuIQEk4nWr_gOxq3Nby4,3455
|
56
|
-
nkululeko/feat_extract/feats_hubert.py,sha256=uL-9mgQHuGPQi1nuUaw6aNU9DscsO89uJAmBdmnCegM,5205
|
57
|
-
nkululeko/feat_extract/feats_import.py,sha256=ESM8ttqFoPTMabjT-GaTrhqZ3t-NI4KBrwptYtZic2I,2070
|
58
|
-
nkululeko/feat_extract/feats_mld.py,sha256=RbRAaTTTfdIQeoDrGRsVUr5O-GVG443zbjdCyecwROM,2083
|
59
|
-
nkululeko/feat_extract/feats_mos.py,sha256=Bly7p6B0Guj4MQBdX_0G994lO5VUcmy5LLbXTSKi29Q,4247
|
60
|
-
nkululeko/feat_extract/feats_opensmile.py,sha256=yDRGSiUQV3K3oLxVqq8Cxj5bkc-RiLzDYbAGKC9I5vc,4140
|
61
|
-
nkululeko/feat_extract/feats_oxbow.py,sha256=N7uThvewVlH8HqSda-s_7UAtgXZkMwCOwUrsqeVHyLk,4830
|
62
|
-
nkululeko/feat_extract/feats_praat.py,sha256=dqPhAUceze_6LN6vivXJFT2PPDXZKjmzYx0XnYKYGE8,3039
|
63
|
-
nkululeko/feat_extract/feats_snr.py,sha256=zsxwRAzt3C-0B3EqT4p4zDaDVueMyyk8uxcaaa_ITso,2817
|
64
|
-
nkululeko/feat_extract/feats_spectra.py,sha256=PLKoc_S3v3wibodUCiOnFFdF87U2rk2sfndRo2mmG64,3656
|
65
|
-
nkululeko/feat_extract/feats_spkrec.py,sha256=VK4ma3uWzM0YZStsgRTirfkbzjWIfRWSgsYI038QlRY,4803
|
66
|
-
nkululeko/feat_extract/feats_squim.py,sha256=8MaQ5lKfRqTJAub5VqEO9VziEVgMVTVe36CHkIQhGt4,4423
|
67
|
-
nkululeko/feat_extract/feats_trill.py,sha256=vP7OKQCU8miz-NM9xEwP7kt-RL73uODcyqtUAkXM5Es,2994
|
68
|
-
nkululeko/feat_extract/feats_wav2vec2.py,sha256=r-HQ-oV6x9Ioe00gNMCTEI5iZuMyHvSUyKFDK_iXrdA,4728
|
69
|
-
nkululeko/feat_extract/feats_wavlm.py,sha256=QoLQNYLFJ8BgEyx0lVgb48HHH9LYUOX7pJtKbgNLk1I,4509
|
70
|
-
nkululeko/feat_extract/featureset.py,sha256=Xed_qbXFFasyKEyRpgCyZM3vYLqX0-O9RXnjN7hpUbY,1399
|
71
|
-
nkululeko/feat_extract/feinberg_praat.py,sha256=od8dV1ZRHytww70OwWK9Wm-M6nccOkT6CfaN3FJwRCY,21247
|
72
|
-
nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
73
|
-
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
74
|
-
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
75
|
-
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
76
|
-
nkululeko/models/model.py,sha256=9zOiH3swe5R1vS0RioEoojahBUEBCl9TxV3Msy6gQes,11305
|
77
|
-
nkululeko/models/model_bayes.py,sha256=N-pWe888RyweS-p7AjfqJjjHgqn9LKr_XgpfhS4mk20,441
|
78
|
-
nkululeko/models/model_cnn.py,sha256=Omu7xPPeft3GwqZMySd2xF4IAm7WrzTAVjAnI_DsD6A,9243
|
79
|
-
nkululeko/models/model_gmm.py,sha256=onovzGBeguwZ-upXtuDLaBw9sd6fDDQslVBOrz1Z8TE,645
|
80
|
-
nkululeko/models/model_knn.py,sha256=5tGqiPo2JTw9VLmD-MXNZKFJ5RTLA6uv_blJDJ9lScA,573
|
81
|
-
nkululeko/models/model_knn_reg.py,sha256=Fbuk6Ku6eyrbbMEk7rB5dwfhvQOMsdZk6HI_0T0gYPw,580
|
82
|
-
nkululeko/models/model_mlp.py,sha256=YLbaC-4fDUeaozoUC4hT4oFlxyXfgkE3GtoR3wpp4Ho,8488
|
83
|
-
nkululeko/models/model_mlp_regression.py,sha256=UXkMCHmLT-wl2aed8QmgJcvAebwRduUvdTLSzFsT1v4,9451
|
84
|
-
nkululeko/models/model_svm.py,sha256=J1d8mf5T4QHtilkUTBkhegVB_0D2kRY0BiBGz-LUJmw,554
|
85
|
-
nkululeko/models/model_svr.py,sha256=au5AtzjEpaY9_7Fz6CQoIZ3s6OAvLUxjAXuqHF9dRbk,514
|
86
|
-
nkululeko/models/model_tree.py,sha256=soXjV523eRvRZ-jbX7X_3S73Wto1B9bm7ZzzDmgYzTc,390
|
87
|
-
nkululeko/models/model_tree_reg.py,sha256=QxkQEz3LOuCLkXw5xH9IwFg4IcTL3Y5RK03qKe4TtGQ,397
|
88
|
-
nkululeko/models/model_xgb.py,sha256=tzcksyGP9-XQGOBqt5gYSrQZsbtbcm5qwSkjnxsIX3I,221
|
89
|
-
nkululeko/models/model_xgr.py,sha256=yY6wZV8jdiQCIYQCjYSb8gE0jjeiY44eh3rERe2HDvg,227
|
90
|
-
nkululeko/reporting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
91
|
-
nkululeko/reporting/defines.py,sha256=IsY1YgKRMaABpylVKjBJgJ5bNCEbGCVA_E6pivraqSU,648
|
92
|
-
nkululeko/reporting/latex_writer.py,sha256=QsXFxTIuRCqs26juGXsCsYSaO7rBStR22bNBIzQZj-M,1703
|
93
|
-
nkululeko/reporting/report.py,sha256=Cg6FcwD7RbyI9CMB677oKFsDY9l5xNn1BGcnJqEYcVM,1053
|
94
|
-
nkululeko/reporting/report_item.py,sha256=siWeGNgo4bAE46YBMNcsdf3jTMTy76BO9Fi6DTvDig4,533
|
95
|
-
nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
96
|
-
nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=pmLHuXsaqvcdYxB4PSW9l1mbQWZZBJFhi_CGabqydas,1947
|
97
|
-
nkululeko/segmenting/seg_silero.py,sha256=So2D5eOVoeXwJSpmyA9PSAmnylLCeWuLR2Dg-cVB3bk,3327
|
98
|
-
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
99
|
-
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
100
|
-
nkululeko/utils/stats.py,sha256=zoZkrbELuukf9eKWh-EmzxKGjzJWQuCM18-2f_aIBz4,2554
|
101
|
-
nkululeko-0.77.0.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
102
|
-
nkululeko-0.77.0.dist-info/METADATA,sha256=sCJ8g_LIXwLnk3r7lgpKuqzmfcydEfL7a5QDvWsZrlE,29994
|
103
|
-
nkululeko-0.77.0.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
104
|
-
nkululeko-0.77.0.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
105
|
-
nkululeko-0.77.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|