nkululeko 0.76.0__py3-none-any.whl → 0.77.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/augment.py +1 -1
- nkululeko/augmenting/augmenter.py +1 -1
- nkululeko/augmenting/randomsplicer.py +1 -1
- nkululeko/augmenting/resampler.py +4 -9
- nkululeko/autopredict/ap_age.py +2 -4
- nkululeko/autopredict/ap_arousal.py +2 -4
- nkululeko/autopredict/ap_dominance.py +2 -4
- nkululeko/autopredict/ap_gender.py +2 -4
- nkululeko/autopredict/ap_mos.py +2 -4
- nkululeko/autopredict/ap_pesq.py +2 -4
- nkululeko/autopredict/ap_sdr.py +2 -4
- nkululeko/autopredict/ap_snr.py +2 -4
- nkululeko/autopredict/ap_stoi.py +2 -4
- nkululeko/autopredict/ap_valence.py +2 -4
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +8 -5
- nkululeko/demo.py +4 -10
- nkululeko/demo_predictor.py +1 -1
- nkululeko/experiment.py +10 -5
- nkululeko/explore.py +6 -13
- nkululeko/export.py +14 -25
- nkululeko/feat_extract/feats_analyser.py +121 -17
- nkululeko/feat_extract/feats_clap.py +4 -10
- nkululeko/feat_extract/feats_import.py +2 -4
- nkululeko/feat_extract/feats_mld.py +4 -9
- nkululeko/feat_extract/feats_mos.py +5 -13
- nkululeko/feat_extract/feats_oxbow.py +5 -12
- nkululeko/feat_extract/feats_snr.py +3 -7
- nkululeko/feat_extract/feats_squim.py +5 -13
- nkululeko/feat_extract/feats_trill.py +5 -13
- nkululeko/feat_extract/featureset.py +2 -4
- nkululeko/feat_extract/feinberg_praat.py +1 -1
- nkululeko/feature_extractor.py +1 -1
- nkululeko/file_checker.py +5 -5
- nkululeko/filter_data.py +6 -16
- nkululeko/modelrunner.py +1 -1
- nkululeko/models/model.py +1 -1
- nkululeko/models/model_cnn.py +1 -1
- nkululeko/models/model_mlp.py +1 -1
- nkululeko/models/model_mlp_regression.py +1 -1
- nkululeko/nkululeko.py +5 -13
- nkululeko/plots.py +40 -3
- nkululeko/predict.py +5 -13
- nkululeko/reporter.py +1 -1
- nkululeko/reporting/latex_writer.py +14 -9
- nkululeko/reporting/report.py +2 -1
- nkululeko/resample.py +5 -13
- nkululeko/runmanager.py +1 -1
- nkululeko/scaler.py +1 -1
- nkululeko/segment.py +1 -1
- nkululeko/segmenting/seg_silero.py +3 -5
- nkululeko/test.py +4 -10
- nkululeko/test_predictor.py +1 -1
- nkululeko/utils/stats.py +8 -0
- {nkululeko-0.76.0.dist-info → nkululeko-0.77.1.dist-info}/METADATA +12 -1
- nkululeko-0.77.1.dist-info/RECORD +104 -0
- nkululeko/balancer.py +0 -1
- nkululeko/split/__init__.py +0 -3
- nkululeko/split/example_binning.py +0 -27
- nkululeko/split/example_trainDevTestSplit.py +0 -81
- nkululeko/split/example_trainTestSplit.py +0 -77
- nkululeko/split/split_utils.py +0 -528
- nkululeko-0.76.0.dist-info/RECORD +0 -110
- /nkululeko/{util.py → utils/util.py} +0 -0
- {nkululeko-0.76.0.dist-info → nkululeko-0.77.1.dist-info}/LICENSE +0 -0
- {nkululeko-0.76.0.dist-info → nkululeko-0.77.1.dist-info}/WHEEL +0 -0
- {nkululeko-0.76.0.dist-info → nkululeko-0.77.1.dist-info}/top_level.txt +0 -0
nkululeko/models/model.py
CHANGED
nkululeko/models/model_cnn.py
CHANGED
@@ -16,7 +16,7 @@ from sklearn.metrics import recall_score
|
|
16
16
|
from collections import OrderedDict
|
17
17
|
from PIL import Image
|
18
18
|
|
19
|
-
from nkululeko.util import Util
|
19
|
+
from nkululeko.utils.util import Util
|
20
20
|
import nkululeko.glob_conf as glob_conf
|
21
21
|
from nkululeko.models.model import Model
|
22
22
|
from nkululeko.reporter import Reporter
|
nkululeko/models/model_mlp.py
CHANGED
nkululeko/nkululeko.py
CHANGED
@@ -5,17 +5,13 @@ import os.path
|
|
5
5
|
import configparser
|
6
6
|
import argparse
|
7
7
|
import nkululeko.experiment as exp
|
8
|
-
from nkululeko.util import Util
|
8
|
+
from nkululeko.utils.util import Util
|
9
9
|
from nkululeko.constants import VERSION
|
10
10
|
|
11
11
|
|
12
12
|
def main(src_dir):
|
13
|
-
parser = argparse.ArgumentParser(
|
14
|
-
|
15
|
-
)
|
16
|
-
parser.add_argument(
|
17
|
-
"--config", default="exp.ini", help="The base configuration"
|
18
|
-
)
|
13
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
14
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
19
15
|
args = parser.parse_args()
|
20
16
|
if args.config is not None:
|
21
17
|
config_file = args.config
|
@@ -49,9 +45,7 @@ def main(src_dir):
|
|
49
45
|
|
50
46
|
# split into train and test
|
51
47
|
expr.fill_train_and_tests()
|
52
|
-
util.debug(
|
53
|
-
f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}"
|
54
|
-
)
|
48
|
+
util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
|
55
49
|
|
56
50
|
# extract features
|
57
51
|
expr.extract_feats()
|
@@ -69,6 +63,4 @@ def main(src_dir):
|
|
69
63
|
|
70
64
|
if __name__ == "__main__":
|
71
65
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
72
|
-
main(
|
73
|
-
cwd
|
74
|
-
) # use this if you want to state the config file path on command line
|
66
|
+
main(cwd) # use this if you want to state the config file path on command line
|
nkululeko/plots.py
CHANGED
@@ -6,7 +6,7 @@ import seaborn as sns
|
|
6
6
|
import numpy as np
|
7
7
|
import ast
|
8
8
|
from scipy import stats
|
9
|
-
from nkululeko.util import Util
|
9
|
+
from nkululeko.utils.util import Util
|
10
10
|
import nkululeko.utils.stats as su
|
11
11
|
import nkululeko.glob_conf as glob_conf
|
12
12
|
from nkululeko.reporting.report_item import ReportItem
|
@@ -347,9 +347,18 @@ class Plots:
|
|
347
347
|
kind="bar", ax=axes, title=f"samples ({sampl_num})"
|
348
348
|
)
|
349
349
|
# plt.tight_layout()
|
350
|
-
|
350
|
+
img_path = f"{fig_dir}{filename}.{self.format}"
|
351
|
+
plt.savefig(img_path)
|
351
352
|
fig.clear()
|
352
353
|
plt.close(fig)
|
354
|
+
glob_conf.report.add_item(
|
355
|
+
ReportItem(
|
356
|
+
Header.HEADER_EXPLORE,
|
357
|
+
f"Overview on {df.shape[0]} samples",
|
358
|
+
"",
|
359
|
+
img_path,
|
360
|
+
)
|
361
|
+
)
|
353
362
|
|
354
363
|
def scatter_plot(self, feats, label_df, label, dimred_type):
|
355
364
|
fig_dir = self.util.get_path("fig_dir") + "../" # one up because of the runs
|
@@ -401,6 +410,14 @@ class Plots:
|
|
401
410
|
plt.savefig(filename)
|
402
411
|
fig.clear()
|
403
412
|
plt.close(fig)
|
413
|
+
glob_conf.report.add_item(
|
414
|
+
ReportItem(
|
415
|
+
Header.HEADER_EXPLORE,
|
416
|
+
f"Scatter plot",
|
417
|
+
f"using {dimred_type}",
|
418
|
+
filename,
|
419
|
+
)
|
420
|
+
)
|
404
421
|
|
405
422
|
def plotTsne(self, feats, labels, filename, perplexity=30, learning_rate=200):
|
406
423
|
"""Make a TSNE plot to see whether features are useful for classification"""
|
@@ -439,8 +456,10 @@ class Plots:
|
|
439
456
|
return tsne_data
|
440
457
|
|
441
458
|
def plot_feature(self, title, feature, label, df_labels, df_features):
|
459
|
+
# remove fullstops in the name
|
460
|
+
feature_name = feature.replace(".", "-")
|
442
461
|
fig_dir = self.util.get_path("fig_dir") + "../" # one up because of the runs
|
443
|
-
filename = f"{fig_dir}feat_dist_{title}_{
|
462
|
+
filename = f"{fig_dir}feat_dist_{title}_{feature_name}.{self.format}"
|
444
463
|
if self.util.is_categorical(df_labels[label]):
|
445
464
|
df_plot = pd.DataFrame(
|
446
465
|
{label: df_labels[label], feature: df_features[feature]}
|
@@ -458,6 +477,16 @@ class Plots:
|
|
458
477
|
plt.savefig(filename)
|
459
478
|
fig.clear()
|
460
479
|
plt.close(fig)
|
480
|
+
caption = f"Feature plot for feature {feature}"
|
481
|
+
content = caption
|
482
|
+
glob_conf.report.add_item(
|
483
|
+
ReportItem(
|
484
|
+
Header.HEADER_EXPLORE,
|
485
|
+
caption,
|
486
|
+
content,
|
487
|
+
filename,
|
488
|
+
)
|
489
|
+
)
|
461
490
|
|
462
491
|
def plot_tree(self, model, features):
|
463
492
|
from sklearn import tree
|
@@ -476,3 +505,11 @@ class Plots:
|
|
476
505
|
fig.savefig(filename)
|
477
506
|
fig.clear()
|
478
507
|
plt.close(fig)
|
508
|
+
glob_conf.report.add_item(
|
509
|
+
ReportItem(
|
510
|
+
Header.HEADER_EXPLORE,
|
511
|
+
f"Tree plot",
|
512
|
+
f"for feature importance",
|
513
|
+
filename,
|
514
|
+
)
|
515
|
+
)
|
nkululeko/predict.py
CHANGED
@@ -3,19 +3,15 @@
|
|
3
3
|
|
4
4
|
from nkululeko.experiment import Experiment
|
5
5
|
import configparser
|
6
|
-
from nkululeko.util import Util
|
6
|
+
from nkululeko.utils.util import Util
|
7
7
|
from nkululeko.constants import VERSION
|
8
8
|
import argparse
|
9
9
|
import os
|
10
10
|
|
11
11
|
|
12
12
|
def main(src_dir):
|
13
|
-
parser = argparse.ArgumentParser(
|
14
|
-
|
15
|
-
)
|
16
|
-
parser.add_argument(
|
17
|
-
"--config", default="exp.ini", help="The base configuration"
|
18
|
-
)
|
13
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
14
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
19
15
|
args = parser.parse_args()
|
20
16
|
if args.config is not None:
|
21
17
|
config_file = args.config
|
@@ -43,9 +39,7 @@ def main(src_dir):
|
|
43
39
|
|
44
40
|
# split into train and test
|
45
41
|
expr.fill_train_and_tests()
|
46
|
-
util.debug(
|
47
|
-
f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}"
|
48
|
-
)
|
42
|
+
util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
|
49
43
|
|
50
44
|
# process the data
|
51
45
|
df = expr.autopredict()
|
@@ -61,6 +55,4 @@ def main(src_dir):
|
|
61
55
|
|
62
56
|
if __name__ == "__main__":
|
63
57
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
64
|
-
main(
|
65
|
-
cwd
|
66
|
-
) # use this if you want to state the config file path on command line
|
58
|
+
main(cwd) # use this if you want to state the config file path on command line
|
nkululeko/reporter.py
CHANGED
@@ -21,7 +21,7 @@ import nkululeko.glob_conf as glob_conf
|
|
21
21
|
from nkululeko.reporting.report_item import ReportItem
|
22
22
|
from nkululeko.result import Result
|
23
23
|
from nkululeko.reporting.defines import Header
|
24
|
-
from nkululeko.util import Util
|
24
|
+
from nkululeko.utils.util import Util
|
25
25
|
|
26
26
|
|
27
27
|
class Reporter:
|
@@ -6,7 +6,7 @@ print out report as latex file and pdf
|
|
6
6
|
from pylatex import Document, Section, Subsection, Command, Figure
|
7
7
|
from pylatex.utils import italic, NoEscape
|
8
8
|
from nkululeko.reporting.report_item import ReportItem
|
9
|
-
from nkululeko.util import Util
|
9
|
+
from nkululeko.utils.util import Util
|
10
10
|
|
11
11
|
|
12
12
|
class LatexWriter:
|
@@ -27,15 +27,20 @@ class LatexWriter:
|
|
27
27
|
with self.doc.create(Subsection(ri.caption)):
|
28
28
|
self.doc.append(ri.contents)
|
29
29
|
if ri.has_image:
|
30
|
-
with self.doc.create(Figure(position=
|
31
|
-
pic.add_image(ri.image, width=
|
30
|
+
with self.doc.create(Figure(position="h!")) as pic:
|
31
|
+
pic.add_image(ri.image, width="250px")
|
32
32
|
pic.add_caption(ri.caption)
|
33
|
+
# reference = pic.dumps_as_content()
|
34
|
+
# self.doc.append(f"See figure: {reference}")
|
33
35
|
|
34
36
|
def finish_doc(self):
|
35
|
-
|
36
|
-
|
37
|
-
)
|
37
|
+
from subprocess import CalledProcessError
|
38
|
+
|
39
|
+
target_filename = self.util.config_val("REPORT", "latex", "nkululeko_latex")
|
38
40
|
target_dir = self.util.get_exp_dir()
|
39
|
-
path =
|
40
|
-
self.util.debug(f
|
41
|
-
|
41
|
+
path = "/".join([target_dir, target_filename])
|
42
|
+
self.util.debug(f"Generated latex report to {path}")
|
43
|
+
try:
|
44
|
+
self.doc.generate_pdf(path, clean_tex=False)
|
45
|
+
except CalledProcessError as e:
|
46
|
+
self.util.debug(f"Error while generating PDF file: {e}")
|
nkululeko/reporting/report.py
CHANGED
@@ -4,10 +4,11 @@ report.py
|
|
4
4
|
Collector class for report items collected during module processing.
|
5
5
|
|
6
6
|
"""
|
7
|
-
from nkululeko.util import Util
|
7
|
+
from nkululeko.utils.util import Util
|
8
8
|
from nkululeko.reporting.report_item import ReportItem
|
9
9
|
from nkululeko.reporting.latex_writer import LatexWriter
|
10
10
|
|
11
|
+
|
11
12
|
class Report:
|
12
13
|
def __init__(self):
|
13
14
|
self.report_items = {}
|
nkululeko/resample.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3
3
|
|
4
4
|
from nkululeko.experiment import Experiment
|
5
5
|
import configparser
|
6
|
-
from nkululeko.util import Util
|
6
|
+
from nkululeko.utils.util import Util
|
7
7
|
from nkululeko.constants import VERSION
|
8
8
|
import argparse
|
9
9
|
import os
|
@@ -12,12 +12,8 @@ from nkululeko.augmenting.resampler import Resampler
|
|
12
12
|
|
13
13
|
|
14
14
|
def main(src_dir):
|
15
|
-
parser = argparse.ArgumentParser(
|
16
|
-
|
17
|
-
)
|
18
|
-
parser.add_argument(
|
19
|
-
"--config", default="exp.ini", help="The base configuration"
|
20
|
-
)
|
15
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
16
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
21
17
|
args = parser.parse_args()
|
22
18
|
if args.config is not None:
|
23
19
|
config_file = args.config
|
@@ -50,9 +46,7 @@ def main(src_dir):
|
|
50
46
|
|
51
47
|
# split into train and test
|
52
48
|
expr.fill_train_and_tests()
|
53
|
-
util.debug(
|
54
|
-
f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}"
|
55
|
-
)
|
49
|
+
util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
|
56
50
|
|
57
51
|
sample_selection = util.config_val("RESAMPLE", "sample_selection", "all")
|
58
52
|
if sample_selection == "all":
|
@@ -74,6 +68,4 @@ def main(src_dir):
|
|
74
68
|
|
75
69
|
if __name__ == "__main__":
|
76
70
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
77
|
-
main(
|
78
|
-
cwd
|
79
|
-
) # use this if you want to state the config file path on command line
|
71
|
+
main(cwd) # use this if you want to state the config file path on command line
|
nkululeko/runmanager.py
CHANGED
nkululeko/scaler.py
CHANGED
nkululeko/segment.py
CHANGED
@@ -6,7 +6,7 @@ import os
|
|
6
6
|
import pandas as pd
|
7
7
|
import configparser
|
8
8
|
from nkululeko.experiment import Experiment
|
9
|
-
from nkululeko.util import Util
|
9
|
+
from nkululeko.utils.util import Util
|
10
10
|
from nkululeko.constants import VERSION
|
11
11
|
import nkululeko.glob_conf as glob_conf
|
12
12
|
from nkululeko.reporting.report_item import ReportItem
|
@@ -7,11 +7,11 @@ segment a dataset with the Silero segmenter
|
|
7
7
|
|
8
8
|
import torch
|
9
9
|
import pandas as pd
|
10
|
-
from tqdm import tqdm
|
10
|
+
from tqdm import tqdm
|
11
11
|
import audformat
|
12
12
|
from audformat.utils import to_filewise_index
|
13
13
|
from audformat import segmented_index
|
14
|
-
from nkululeko.util import Util
|
14
|
+
from nkululeko.utils.util import Util
|
15
15
|
|
16
16
|
# from nkululeko.constants import SAMPLING_RATE
|
17
17
|
|
@@ -44,9 +44,7 @@ class Silero_segmenter:
|
|
44
44
|
SAMPLING_RATE = 16000
|
45
45
|
if self.no_testing:
|
46
46
|
min_length = float(self.util.config_val("SEGMENT", "min_length", 2))
|
47
|
-
max_length = float(
|
48
|
-
self.util.config_val("SEGMENT", "max_length", 10)
|
49
|
-
)
|
47
|
+
max_length = float(self.util.config_val("SEGMENT", "max_length", 10))
|
50
48
|
else:
|
51
49
|
min_length = 2
|
52
50
|
max_length = 10
|
nkululeko/test.py
CHANGED
@@ -3,19 +3,15 @@
|
|
3
3
|
|
4
4
|
from nkululeko.experiment import Experiment
|
5
5
|
import configparser
|
6
|
-
from nkululeko.util import Util
|
6
|
+
from nkululeko.utils.util import Util
|
7
7
|
from nkululeko.constants import VERSION
|
8
8
|
import argparse
|
9
9
|
import os
|
10
10
|
|
11
11
|
|
12
12
|
def main(src_dir):
|
13
|
-
parser = argparse.ArgumentParser(
|
14
|
-
|
15
|
-
)
|
16
|
-
parser.add_argument(
|
17
|
-
"--config", default="exp.ini", help="The base configuration"
|
18
|
-
)
|
13
|
+
parser = argparse.ArgumentParser(description="Call the nkululeko framework.")
|
14
|
+
parser.add_argument("--config", default="exp.ini", help="The base configuration")
|
19
15
|
parser.add_argument(
|
20
16
|
"--outfile",
|
21
17
|
default="my_results.csv",
|
@@ -54,6 +50,4 @@ def main(src_dir):
|
|
54
50
|
|
55
51
|
if __name__ == "__main__":
|
56
52
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
57
|
-
main(
|
58
|
-
cwd
|
59
|
-
) # use this if you want to state the config file path on command line
|
53
|
+
main(cwd) # use this if you want to state the config file path on command line
|
nkululeko/test_predictor.py
CHANGED
nkululeko/utils/stats.py
CHANGED
@@ -85,3 +85,11 @@ def cohens_D_to_string(val):
|
|
85
85
|
else:
|
86
86
|
rval = "large effect"
|
87
87
|
return f"Cohen's d: {rval}"
|
88
|
+
|
89
|
+
|
90
|
+
def normalize(values):
|
91
|
+
"""Do a z-transformation of a distribution, so that mean = 0 and variance = 1"""
|
92
|
+
from sklearn.preprocessing import StandardScaler
|
93
|
+
|
94
|
+
scaler = StandardScaler()
|
95
|
+
return scaler.fit_transform(values)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.77.1
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -33,6 +33,7 @@ Requires-Dist: scikit-learn
|
|
33
33
|
Requires-Dist: scipy
|
34
34
|
Requires-Dist: seaborn
|
35
35
|
Requires-Dist: sounddevice
|
36
|
+
Requires-Dist: splitutils
|
36
37
|
Requires-Dist: tensorflow
|
37
38
|
Requires-Dist: tensorflow-hub
|
38
39
|
Requires-Dist: torch
|
@@ -308,6 +309,16 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
308
309
|
Changelog
|
309
310
|
=========
|
310
311
|
|
312
|
+
Version 0.77.1
|
313
|
+
--------------
|
314
|
+
* added permutation algorithm to compute feature importance
|
315
|
+
* shifted util.py to utils
|
316
|
+
|
317
|
+
Version 0.77.0
|
318
|
+
--------------
|
319
|
+
* added more latex report output
|
320
|
+
* got splitutils from a package
|
321
|
+
|
311
322
|
Version 0.76.0
|
312
323
|
--------------
|
313
324
|
* added possibility to aggregate feature importance models
|
@@ -0,0 +1,104 @@
|
|
1
|
+
nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
2
|
+
nkululeko/augment.py,sha256=IZFawvv5GgSfK0QsrQfVkIfEm0kjoK4DWj8vP9GnU8M,2686
|
3
|
+
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
4
|
+
nkululeko/constants.py,sha256=rnEDMLKd0n74AGnMGQoidO0S-qk4TOQTN8rGc_3kp8E,39
|
5
|
+
nkululeko/demo.py,sha256=FFR8qHMCY8kKKRWDTa8xA7A8mWeYalRKYNtV5rjGg44,1915
|
6
|
+
nkululeko/demo_predictor.py,sha256=j4ySWWcIxW7ZAIBH86m9BfRFokzrUNkRD6fpsvAQGTw,2629
|
7
|
+
nkululeko/experiment.py,sha256=3kgZ59U5XnTrZWv3o9vdB1bcUScKBiP_oE2FPGXmjc0,28720
|
8
|
+
nkululeko/explore.py,sha256=pfciOL66e0T4Bk0RTkwDyE6pK_baSUdjMo2Ybpst3L4,2202
|
9
|
+
nkululeko/export.py,sha256=mHeEAAmtZuxdyebLlbSzPrHSi9OMgJHbk35d3DTxRBc,4632
|
10
|
+
nkululeko/feature_extractor.py,sha256=tKv1b1-o7xNMgBavTR8VY8_H5HKoJEnnosS-KcjmOEU,7281
|
11
|
+
nkululeko/file_checker.py,sha256=LoLnL8aHpW-axMQ46qbqrManTs5otG9ShpEZuz9iRSk,3474
|
12
|
+
nkululeko/filter_data.py,sha256=w-X2mhKdYr5DxDIz50E5yzO6Jmzk4jjDBoXsgOOVtcA,7222
|
13
|
+
nkululeko/glob_conf.py,sha256=6MZe83QCgHD_zB79Sl9m6UJQASwfqJlyb-1nqrQ_6Iw,381
|
14
|
+
nkululeko/modelrunner.py,sha256=KZPoalwtl9k2SCVPhpaAjUGtPafzjUxhtYSGc75OUwk,9037
|
15
|
+
nkululeko/nkululeko.py,sha256=MyjjbCg8qgLHHpvwJOEHBGNCDKf0GTv7gnXX27L56R4,1724
|
16
|
+
nkululeko/plots.py,sha256=l-bxUoChkCIMsLPK4hMZyIWfuPNN_n-3g8Usc4sJ85A,21262
|
17
|
+
nkululeko/predict.py,sha256=dRXX-sQVESa7cNi_56S6UkUOa_pV1g_K4xYtYVM1SJs,1876
|
18
|
+
nkululeko/reporter.py,sha256=wrtWbU_UKDwhKQNMi7Q_Ix5N_UTzTagRwZikgUGk1c8,11606
|
19
|
+
nkululeko/resample.py,sha256=C2S3aOTwlx5iYah_hs0JARHBC8Cq4Z5cH_mnDMb5RKk,2185
|
20
|
+
nkululeko/result.py,sha256=HeiOrrqf9W2yxMryN33zgEmQejNWRxNmm589AYt6-eM,499
|
21
|
+
nkululeko/runmanager.py,sha256=HjAesq19ZbDg5imMOjhqnt063W7JGggm6bY06h6bfM8,7085
|
22
|
+
nkululeko/scaler.py,sha256=HVXMjmzDAj87K9O4aPU6aeqBk-ACVzQBTHOf1RwDCaM,3055
|
23
|
+
nkululeko/segment.py,sha256=DfJYZsCEH41gwKyjpMgv8kWUzfVkmC0wWTbgHOL4i4g,4787
|
24
|
+
nkululeko/syllable_nuclei.py,sha256=Sky-C__MeUDaxqHnDl2TGLLYOYvsahD35TUjWGeG31k,10047
|
25
|
+
nkululeko/test.py,sha256=cRtOn_d3Fh2kZmnT4nnQeGzZTRtpr5jRhowykOwunME,1421
|
26
|
+
nkululeko/test_predictor.py,sha256=8eyHJ_YNIwR2OfICkqo7zF2f7UP8nL0nzCwC-8XnkZY,2409
|
27
|
+
nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
28
|
+
nkululeko/augmenting/augmenter.py,sha256=hk5jkFGdmCg2IgE4UQPsv0kFdgefO5pSrq9QjCjA5Io,2306
|
29
|
+
nkululeko/augmenting/randomsplicer.py,sha256=OIBmfzyx1vhKl1cUQGlQw-CWZwsCV8XG9miITb41CT0,2395
|
30
|
+
nkululeko/augmenting/randomsplicing.py,sha256=ldym9vZNsZIU5BAAaJVaOmAgmVHNs4a5i5K3bW-WAQU,1791
|
31
|
+
nkululeko/augmenting/resampler.py,sha256=cRrn27w_f2I6aN0CftlTuHT2edi7pTREh3Yc6BxhcGU,3335
|
32
|
+
nkululeko/autopredict/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
33
|
+
nkululeko/autopredict/ap_age.py,sha256=2Wn5E-Jd49sTn40WqaMcYtUEl4zEq3OY75XmjOpdxsA,1095
|
34
|
+
nkululeko/autopredict/ap_arousal.py,sha256=ymt0diu4v1osw3VxJbSglsVKDAJYRzebQ2TTfFMKKxk,1024
|
35
|
+
nkululeko/autopredict/ap_dominance.py,sha256=CIMjbHpYfJBV_F2y0Hen5U7WastuArDOkBmXY437efs,1039
|
36
|
+
nkululeko/autopredict/ap_gender.py,sha256=gVCMYHpcVp56xWIeI4HA0MJLLINRgvzrKC_wladnbiE,1008
|
37
|
+
nkululeko/autopredict/ap_mos.py,sha256=tmFBIKO0lW19fciH9syLnOLI699I_WU0yn1axdo6iEw,1104
|
38
|
+
nkululeko/autopredict/ap_pesq.py,sha256=3Zvl47jyCLv7NXwbaDlOhltVcpskcHoU8CcjCJWGkMc,1137
|
39
|
+
nkululeko/autopredict/ap_sdr.py,sha256=qpgvJGl0NYMa8o7zHS4qU4dfY1Ey_R1p-0T8BnX3uNs,1185
|
40
|
+
nkululeko/autopredict/ap_snr.py,sha256=xHb7mmGfa4wF1r0GK7dIZ1d9m4cEz0LcpK0n3sLF9pQ,1107
|
41
|
+
nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvdLRA,1184
|
42
|
+
nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
|
43
|
+
nkululeko/autopredict/estimate_snr.py,sha256=kJbvkt2alMN5ouS03USheU7hJ2l7U9JF0s9AtNT1Vx0,4818
|
44
|
+
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
45
|
+
nkululeko/data/dataset.py,sha256=-HLten8BFwb2T03CqSNaU4h98UbrXIkqlX7J8H95b6Y,27035
|
46
|
+
nkululeko/data/dataset_csv.py,sha256=9ysujWHQnOHLWtJxGtvdpHE3c_sM_l9svFYWYCpamVs,3094
|
47
|
+
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
48
|
+
nkululeko/feat_extract/feats_agender.py,sha256=sDfsvSC2zt1JLn5rmB7bdck1JmXIIol3oIwN90TossM,2867
|
49
|
+
nkululeko/feat_extract/feats_agender_agender.py,sha256=UYATYWE-zCt9F1qA4xQbYZ2qM7DT2nwGxk7vSiyhit4,2953
|
50
|
+
nkululeko/feat_extract/feats_analyser.py,sha256=d3CKceTwT-wVtk1Zyeow3nFyTevBwfaWsmzEh-fXGZ4,10007
|
51
|
+
nkululeko/feat_extract/feats_audmodel.py,sha256=sZD8NBC3qId4ygzBvW5RvKVgCC1zxvO_cyFazYOEwCk,2901
|
52
|
+
nkululeko/feat_extract/feats_audmodel_dim.py,sha256=z48s-FXokREnir_dNMl8fNI5PLCXzOhvmjgfCjTDjh8,2817
|
53
|
+
nkululeko/feat_extract/feats_clap.py,sha256=v82mbjdjGDSKUUBggttw7jW0oka22fWAmfUf-4VmaDU,3379
|
54
|
+
nkululeko/feat_extract/feats_hubert.py,sha256=uL-9mgQHuGPQi1nuUaw6aNU9DscsO89uJAmBdmnCegM,5205
|
55
|
+
nkululeko/feat_extract/feats_import.py,sha256=SqTuNdbInOO_oXucSlwCTfNz6OUCNyJfUrGX_cS9Mn0,2054
|
56
|
+
nkululeko/feat_extract/feats_mld.py,sha256=Vvu7GZOkn7Vda8eIOXqHjg78zegkFe3vTUaCXyVM0eA,2021
|
57
|
+
nkululeko/feat_extract/feats_mos.py,sha256=XZI7U99QcSuzd1v5pVAo0JwdcrXrRICUNt_K5G6eRPU,4149
|
58
|
+
nkululeko/feat_extract/feats_opensmile.py,sha256=yDRGSiUQV3K3oLxVqq8Cxj5bkc-RiLzDYbAGKC9I5vc,4140
|
59
|
+
nkululeko/feat_extract/feats_oxbow.py,sha256=7W26NbEJnSckZzedolsIW1PJPSdCHhuh8YM19kOxaMA,4734
|
60
|
+
nkululeko/feat_extract/feats_praat.py,sha256=dqPhAUceze_6LN6vivXJFT2PPDXZKjmzYx0XnYKYGE8,3039
|
61
|
+
nkululeko/feat_extract/feats_snr.py,sha256=T2ID_AtlSg8QA086ys4gg83Z4MzMTThhGToGEpHU8eo,2771
|
62
|
+
nkululeko/feat_extract/feats_spectra.py,sha256=PLKoc_S3v3wibodUCiOnFFdF87U2rk2sfndRo2mmG64,3656
|
63
|
+
nkululeko/feat_extract/feats_spkrec.py,sha256=VK4ma3uWzM0YZStsgRTirfkbzjWIfRWSgsYI038QlRY,4803
|
64
|
+
nkululeko/feat_extract/feats_squim.py,sha256=cbaXMX4DtjxQ6sRDYy_OWPku6I2wStwGeSZTYQ8Yr9M,4309
|
65
|
+
nkululeko/feat_extract/feats_trill.py,sha256=X9a6Z5rmZtvHDjmQXqQ2nzWjm3O9Dna1t9OZuf8RiKQ,2888
|
66
|
+
nkululeko/feat_extract/feats_wav2vec2.py,sha256=r-HQ-oV6x9Ioe00gNMCTEI5iZuMyHvSUyKFDK_iXrdA,4728
|
67
|
+
nkululeko/feat_extract/feats_wavlm.py,sha256=QoLQNYLFJ8BgEyx0lVgb48HHH9LYUOX7pJtKbgNLk1I,4509
|
68
|
+
nkululeko/feat_extract/featureset.py,sha256=-ynkdor8iX7BFx10aIbB3LfwxrrzPoBGz9kXwyAJO9M,1375
|
69
|
+
nkululeko/feat_extract/feinberg_praat.py,sha256=-pgY8Koq7dFaz-99cjkNqsQn1bsKgPInEuwrfmR0ebA,21253
|
70
|
+
nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
71
|
+
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
72
|
+
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
73
|
+
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
74
|
+
nkululeko/models/model.py,sha256=7hrPyqWdgQ5TbQKZTcr-XwK83070IZdWy5Ek7FeeVpQ,11311
|
75
|
+
nkululeko/models/model_bayes.py,sha256=N-pWe888RyweS-p7AjfqJjjHgqn9LKr_XgpfhS4mk20,441
|
76
|
+
nkululeko/models/model_cnn.py,sha256=ObNSQpADBx3X5m31KPUw0U8q7ztAcc56uBVE2-QSjYo,9249
|
77
|
+
nkululeko/models/model_gmm.py,sha256=onovzGBeguwZ-upXtuDLaBw9sd6fDDQslVBOrz1Z8TE,645
|
78
|
+
nkululeko/models/model_knn.py,sha256=5tGqiPo2JTw9VLmD-MXNZKFJ5RTLA6uv_blJDJ9lScA,573
|
79
|
+
nkululeko/models/model_knn_reg.py,sha256=Fbuk6Ku6eyrbbMEk7rB5dwfhvQOMsdZk6HI_0T0gYPw,580
|
80
|
+
nkululeko/models/model_mlp.py,sha256=0Fm1wZd69HoNTrsi3MpS5cOm2Cd7wJALSxoUcr3ELak,8494
|
81
|
+
nkululeko/models/model_mlp_regression.py,sha256=nFJwch23tUTCxAlgi3YkT-6KSPPLAE7wFK2zF2gg3F4,9457
|
82
|
+
nkululeko/models/model_svm.py,sha256=J1d8mf5T4QHtilkUTBkhegVB_0D2kRY0BiBGz-LUJmw,554
|
83
|
+
nkululeko/models/model_svr.py,sha256=au5AtzjEpaY9_7Fz6CQoIZ3s6OAvLUxjAXuqHF9dRbk,514
|
84
|
+
nkululeko/models/model_tree.py,sha256=soXjV523eRvRZ-jbX7X_3S73Wto1B9bm7ZzzDmgYzTc,390
|
85
|
+
nkululeko/models/model_tree_reg.py,sha256=QxkQEz3LOuCLkXw5xH9IwFg4IcTL3Y5RK03qKe4TtGQ,397
|
86
|
+
nkululeko/models/model_xgb.py,sha256=tzcksyGP9-XQGOBqt5gYSrQZsbtbcm5qwSkjnxsIX3I,221
|
87
|
+
nkululeko/models/model_xgr.py,sha256=yY6wZV8jdiQCIYQCjYSb8gE0jjeiY44eh3rERe2HDvg,227
|
88
|
+
nkululeko/reporting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
89
|
+
nkululeko/reporting/defines.py,sha256=IsY1YgKRMaABpylVKjBJgJ5bNCEbGCVA_E6pivraqSU,648
|
90
|
+
nkululeko/reporting/latex_writer.py,sha256=qiCRSmB4KOD_za4oHu5x-PhwjZohzfo8wecMOwlXZwc,1886
|
91
|
+
nkululeko/reporting/report.py,sha256=W0rcigDdjBvxZQ3pZja_gvToILYvaZ1BFtnN2qFRfYI,1060
|
92
|
+
nkululeko/reporting/report_item.py,sha256=siWeGNgo4bAE46YBMNcsdf3jTMTy76BO9Fi6DTvDig4,533
|
93
|
+
nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
94
|
+
nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=pmLHuXsaqvcdYxB4PSW9l1mbQWZZBJFhi_CGabqydas,1947
|
95
|
+
nkululeko/segmenting/seg_silero.py,sha256=lLytS38KzARS17omwv8VBw-zz60RVSXGSvZ5EvWlcWQ,3301
|
96
|
+
nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
97
|
+
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
98
|
+
nkululeko/utils/stats.py,sha256=29otJpUp1VqbtDKmlLkPPzBmVfTFiHZ70rUdR4860rM,2788
|
99
|
+
nkululeko/utils/util.py,sha256=CY7vfFFa2XnWexq0HoIUIMxxwJ_JkATa2eQplyfqOX4,11293
|
100
|
+
nkululeko-0.77.1.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
101
|
+
nkululeko-0.77.1.dist-info/METADATA,sha256=sTdBab1r2GxsamQQWDxym-LjXyYpH4Wl_qpmmU-o_jw,30112
|
102
|
+
nkululeko-0.77.1.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
103
|
+
nkululeko-0.77.1.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
104
|
+
nkululeko-0.77.1.dist-info/RECORD,,
|
nkululeko/balancer.py
DELETED
@@ -1 +0,0 @@
|
|
1
|
-
# balancer
|
nkululeko/split/__init__.py
DELETED
@@ -1,27 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
Code copyright by Uwe Reichel
|
3
|
-
"""
|
4
|
-
|
5
|
-
import numpy as np
|
6
|
-
from split_utils import binning, optimize_traindevtest_split
|
7
|
-
|
8
|
-
np.random.seed(42)
|
9
|
-
y = np.random.rand(10)
|
10
|
-
|
11
|
-
# intrinsic binning by equidistant percentiles
|
12
|
-
yci = binning(y, nbins=3)
|
13
|
-
|
14
|
-
# extrinsic binning by explicit lower boundaries
|
15
|
-
yce = binning(y, lower_boundaries=[0, 0.3, 0.8])
|
16
|
-
|
17
|
-
print("yci:", yci)
|
18
|
-
print("yce:", yce)
|
19
|
-
|
20
|
-
"""
|
21
|
-
yci: [0 2 2 1 0 0 0 2 1 2]
|
22
|
-
yce: [1 2 1 1 0 0 0 2 1 1]
|
23
|
-
|
24
|
-
now yci or yce can be used for stratification, e.g.
|
25
|
-
stratify_on = {"target": yci, ...}
|
26
|
-
... = optimize_traindevtest_split(..., y=y, stratify_on=stratify_on, ...)
|
27
|
-
"""
|