nkululeko 0.66.9__py3-none-any.whl → 0.66.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.66.9"
1
+ VERSION="0.66.12"
2
2
  SAMPLING_RATE = 16000
@@ -59,30 +59,30 @@ class Praatset(Featureset):
59
59
  feats = None
60
60
  return feats
61
61
 
62
- def filter(self):
63
- # use only the features that are indexed in the target dataframes
64
- self.df = self.df[self.df.index.isin(self.data_df.index)]
65
- try:
66
- # use only some features
67
- selected_features = ast.literal_eval(
68
- glob_conf.config["FEATS"]["praat.features"]
69
- )
70
- self.util.debug(
71
- f"selecting features from Praat: {selected_features}"
72
- )
73
- sel_feats_df = pd.DataFrame()
74
- hit = False
75
- for feat in selected_features:
76
- try:
77
- sel_feats_df[feat] = self.df[feat]
78
- hit = True
79
- except KeyError:
80
- pass
81
- if hit:
82
- self.df = sel_feats_df
83
- self.util.debug(
84
- "new feats shape after selecting Praat features:"
85
- f" {self.df.shape}"
86
- )
87
- except KeyError:
88
- pass
62
+ # def filter(self):
63
+ # # use only the features that are indexed in the target dataframes
64
+ # self.df = self.df[self.df.index.isin(self.data_df.index)]
65
+ # try:
66
+ # # use only some features
67
+ # selected_features = ast.literal_eval(
68
+ # glob_conf.config["FEATS"]["praat.features"]
69
+ # )
70
+ # self.util.debug(
71
+ # f"selecting features from Praat: {selected_features}"
72
+ # )
73
+ # sel_feats_df = pd.DataFrame()
74
+ # hit = False
75
+ # for feat in selected_features:
76
+ # try:
77
+ # sel_feats_df[feat] = self.df[feat]
78
+ # hit = True
79
+ # except KeyError:
80
+ # pass
81
+ # if hit:
82
+ # self.df = sel_feats_df
83
+ # self.util.debug(
84
+ # "new feats shape after selecting Praat features:"
85
+ # f" {self.df.shape}"
86
+ # )
87
+ # except KeyError:
88
+ # pass
@@ -62,11 +62,11 @@ class Wav2vec2(Featureset):
62
62
  ), f"got {sampling_rate} instead of 16000"
63
63
  emb = self.get_embeddings(signal, sampling_rate, file)
64
64
  emb_series[idx] = emb
65
- print(f"emb_series shape: {emb_series.shape}")
65
+ # print(f"emb_series shape: {emb_series.shape}")
66
66
  self.df = pd.DataFrame(
67
67
  emb_series.values.tolist(), index=self.data_df.index
68
68
  )
69
- print(f"df shape: {self.df.shape}")
69
+ # print(f"df shape: {self.df.shape}")
70
70
  self.df.to_pickle(storage)
71
71
  try:
72
72
  glob_conf.config["DATA"]["needs_feature_extraction"] = "false"
@@ -77,7 +77,7 @@ class Wav2vec2(Featureset):
77
77
  self.df = pd.read_pickle(storage)
78
78
  if self.df.isnull().values.any():
79
79
  nanrows = self.df.columns[self.df.isna().any()].tolist()
80
- print(nanrows)
80
+ # print(nanrows)
81
81
  self.util.error(
82
82
  f"got nan: {self.df.shape} {self.df.isnull().sum().sum()}"
83
83
  )
@@ -103,7 +103,7 @@ class Wav2vec2(Featureset):
103
103
  except RuntimeError as re:
104
104
  print(str(re))
105
105
  self.util.error(f"couldn't extract file: {file}")
106
- print(f"y flattened shape: {y.ravel().shape}")
106
+ # print(f"y flattened shape: {y.ravel().shape}")
107
107
  return y.ravel()
108
108
 
109
109
  def extract_sample(self, signal, sr):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.66.9
3
+ Version: 0.66.12
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -24,6 +24,7 @@ Requires-Dist: imageio
24
24
  Requires-Dist: laion-clap
25
25
  Requires-Dist: matplotlib
26
26
  Requires-Dist: numpy
27
+ Requires-Dist: opensmile
27
28
  Requires-Dist: pandas
28
29
  Requires-Dist: praat-parselmouth
29
30
  Requires-Dist: pylatex
@@ -33,8 +34,6 @@ Requires-Dist: seaborn
33
34
  Requires-Dist: sounddevice
34
35
  Requires-Dist: tensorflow
35
36
  Requires-Dist: tensorflow-hub
36
- Requires-Dist: torch
37
- Requires-Dist: torchvision
38
37
  Requires-Dist: transformers
39
38
  Requires-Dist: umap-learn
40
39
  Requires-Dist: xgboost
@@ -107,6 +106,23 @@ Create and activate a virtual Python environment and simply run
107
106
  ```
108
107
  pip install nkululeko
109
108
  ```
109
+ We excluded some packages from the automatic installation because they might depend on your computer and some of them are only needed in special cases. So if the error
110
+ ```
111
+ module x not found
112
+ ```
113
+ appears, please try
114
+ ```
115
+ pip install x
116
+ ```
117
+ For many packages you will need the missing torch package.
118
+ If you don't have a GPU (which is probably true if you don't know what that is), please use
119
+ ```
120
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
121
+ ```
122
+ else, you can use the default:
123
+ ```
124
+ pip install torch torchvision torchaudio
125
+ ```
110
126
 
111
127
  Some examples for *ini*-files (which you use to control nkululeko) are in the [tests folder](https://github.com/felixbur/nkululeko/tree/main/tests).
112
128
 
@@ -184,7 +200,8 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
184
200
  * [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
185
201
  * [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
186
202
  * [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
187
-
203
+ * [Generate a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
204
+
188
205
  The framework is targeted at the speech domain and supports experiments where different classifiers are combined with different feature extractors.
189
206
 
190
207
  Here's a rough UML-like sketch of the framework (and [here's the real one done with pyreverse](meta/images/classes.png)).
@@ -256,6 +273,18 @@ Nkululeko can be used under the [MIT license](https://choosealicense.com/license
256
273
  Changelog
257
274
  =========
258
275
 
276
+ Version 0.66.12
277
+ ---------------
278
+ * fixed bug that prevented Praat features to be selected
279
+
280
+ Version 0.66.11
281
+ ---------------
282
+ * removed torch from automatic install. depends on cpu/gpu machine
283
+
284
+ Version 0.66.10
285
+ ---------------
286
+ * Removed print statements from feats_wav2vec2
287
+
259
288
  Version 0.66.9
260
289
  --------------
261
290
  * Version that should install without requiring opensmile which seems not to be supported by all Apple processors (arm CPU (Apple M1))
@@ -52,7 +52,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
52
52
  nkululeko/augment.py,sha256=lZcqCLNTLfC6G47ZjLYQXGcyPFJkmnOUDJOpn6aIJvE,1819
53
53
  nkululeko/balancer.py,sha256=WslJxQwMNnVYgZXF1y0ueS5zilRPQJZDhUG72Csb4Gw,11
54
54
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
55
- nkululeko/constants.py,sha256=mVFKnBuqiT-7oVbDJxamYlcz9u8e4x72EB12qTVkS4k,38
55
+ nkululeko/constants.py,sha256=ISElIr9WDa0ZzCuRRCTogJugUc2qNwP8PDF5y_-yZIU,39
56
56
  nkululeko/demo.py,sha256=6CmLxH_0QJIMazPPg7IZur7ciNdqby6yOlh-6zu6YE0,1951
57
57
  nkululeko/demo_predictor.py,sha256=5PknI8SniGBRMzZOrmBOfPTV71rBbI1JCTnA6lXz6IU,2334
58
58
  nkululeko/experiment.py,sha256=qyOYAGX4VHTYa2HAfXUknaFcCcda-zNQEXeF4vTK9SM,27753
@@ -109,12 +109,12 @@ nkululeko/feat_extract/feats_mld.py,sha256=RbRAaTTTfdIQeoDrGRsVUr5O-GVG443zbjdCy
109
109
  nkululeko/feat_extract/feats_mos.py,sha256=Bly7p6B0Guj4MQBdX_0G994lO5VUcmy5LLbXTSKi29Q,4247
110
110
  nkululeko/feat_extract/feats_opensmile.py,sha256=yDRGSiUQV3K3oLxVqq8Cxj5bkc-RiLzDYbAGKC9I5vc,4140
111
111
  nkululeko/feat_extract/feats_oxbow.py,sha256=N7uThvewVlH8HqSda-s_7UAtgXZkMwCOwUrsqeVHyLk,4830
112
- nkululeko/feat_extract/feats_praat.py,sha256=C-v6bXlqMpamu3-ShK2W8X2O12Ov4JaaZbcxW6igXwE,3312
112
+ nkululeko/feat_extract/feats_praat.py,sha256=z0lhNY5CzBzH2-6REfYGcpv-yTSEozjGO6cWW_LX01Y,3366
113
113
  nkululeko/feat_extract/feats_snr.py,sha256=zsxwRAzt3C-0B3EqT4p4zDaDVueMyyk8uxcaaa_ITso,2817
114
114
  nkululeko/feat_extract/feats_spkrec.py,sha256=VK4ma3uWzM0YZStsgRTirfkbzjWIfRWSgsYI038QlRY,4803
115
115
  nkululeko/feat_extract/feats_squim.py,sha256=8MaQ5lKfRqTJAub5VqEO9VziEVgMVTVe36CHkIQhGt4,4423
116
116
  nkululeko/feat_extract/feats_trill.py,sha256=vP7OKQCU8miz-NM9xEwP7kt-RL73uODcyqtUAkXM5Es,2994
117
- nkululeko/feat_extract/feats_wav2vec2.py,sha256=34ThEU85Zv0IKIjSSKofjYgP7VnetE6MJWdAf2Cd8h4,4666
117
+ nkululeko/feat_extract/feats_wav2vec2.py,sha256=2-sIFEuX-YgdJb_mSXBh2dZPUKYQRHYD-C2KIkfP-v4,4674
118
118
  nkululeko/feat_extract/feats_wavlm.py,sha256=kZdDF8pi9MvNHQL0R3qAUdF1wmwBfMavGwUvg6TLkZ0,4503
119
119
  nkululeko/feat_extract/featureset.py,sha256=Xed_qbXFFasyKEyRpgCyZM3vYLqX0-O9RXnjN7hpUbY,1399
120
120
  nkululeko/feat_extract/feinberg_praat.py,sha256=RSZwaNaqBhV1uxSPVjbNVEoxiFZa3bUGQ-rbEHlE_IQ,20838
@@ -188,8 +188,8 @@ venv/bin/rst2s5.py,sha256=3b_hQ121ckoct-GaA8bjRdc5h-DJABWWGjekfPeTT7c,696
188
188
  venv/bin/rst2xetex.py,sha256=IseBv9Q5aIen6HFoEzQdYfJWWVOjezCOfIN8NhV551I,932
189
189
  venv/bin/rst2xml.py,sha256=m04pWyvIrvr_vRMYcvvx9C48cmkBViljg6AjtNxCq4Q,661
190
190
  venv/bin/rstpep2html.py,sha256=Zv0nb3HsKpML4-Swd0l236b14YheAiCpP13gNda0XnQ,729
191
- nkululeko-0.66.9.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
192
- nkululeko-0.66.9.dist-info/METADATA,sha256=z23M4OeHQ5oVOs_Xo0Eyk_CDH7g3r1VqyVOlgJE8M3c,24910
193
- nkululeko-0.66.9.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
194
- nkululeko-0.66.9.dist-info/top_level.txt,sha256=jYrm4xE8UZKgyAiSrbRO_0eOoOwJ0pt4R5e8PFyseZI,40
195
- nkululeko-0.66.9.dist-info/RECORD,,
191
+ nkululeko-0.66.12.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
192
+ nkululeko-0.66.12.dist-info/METADATA,sha256=77cpxNMeVsgUAS3qec836kbMYw53NMBf-vBsF0hfGaY,25846
193
+ nkululeko-0.66.12.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
194
+ nkululeko-0.66.12.dist-info/top_level.txt,sha256=jYrm4xE8UZKgyAiSrbRO_0eOoOwJ0pt4R5e8PFyseZI,40
195
+ nkululeko-0.66.12.dist-info/RECORD,,