nkululeko 0.66.9__py3-none-any.whl → 0.66.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/feat_extract/feats_praat.py +27 -27
- nkululeko/feat_extract/feats_wav2vec2.py +4 -4
- {nkululeko-0.66.9.dist-info → nkululeko-0.66.12.dist-info}/METADATA +33 -4
- {nkululeko-0.66.9.dist-info → nkululeko-0.66.12.dist-info}/RECORD +8 -8
- {nkululeko-0.66.9.dist-info → nkululeko-0.66.12.dist-info}/LICENSE +0 -0
- {nkululeko-0.66.9.dist-info → nkululeko-0.66.12.dist-info}/WHEEL +0 -0
- {nkululeko-0.66.9.dist-info → nkululeko-0.66.12.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.66.
|
1
|
+
VERSION="0.66.12"
|
2
2
|
SAMPLING_RATE = 16000
|
@@ -59,30 +59,30 @@ class Praatset(Featureset):
|
|
59
59
|
feats = None
|
60
60
|
return feats
|
61
61
|
|
62
|
-
def filter(self):
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
62
|
+
# def filter(self):
|
63
|
+
# # use only the features that are indexed in the target dataframes
|
64
|
+
# self.df = self.df[self.df.index.isin(self.data_df.index)]
|
65
|
+
# try:
|
66
|
+
# # use only some features
|
67
|
+
# selected_features = ast.literal_eval(
|
68
|
+
# glob_conf.config["FEATS"]["praat.features"]
|
69
|
+
# )
|
70
|
+
# self.util.debug(
|
71
|
+
# f"selecting features from Praat: {selected_features}"
|
72
|
+
# )
|
73
|
+
# sel_feats_df = pd.DataFrame()
|
74
|
+
# hit = False
|
75
|
+
# for feat in selected_features:
|
76
|
+
# try:
|
77
|
+
# sel_feats_df[feat] = self.df[feat]
|
78
|
+
# hit = True
|
79
|
+
# except KeyError:
|
80
|
+
# pass
|
81
|
+
# if hit:
|
82
|
+
# self.df = sel_feats_df
|
83
|
+
# self.util.debug(
|
84
|
+
# "new feats shape after selecting Praat features:"
|
85
|
+
# f" {self.df.shape}"
|
86
|
+
# )
|
87
|
+
# except KeyError:
|
88
|
+
# pass
|
@@ -62,11 +62,11 @@ class Wav2vec2(Featureset):
|
|
62
62
|
), f"got {sampling_rate} instead of 16000"
|
63
63
|
emb = self.get_embeddings(signal, sampling_rate, file)
|
64
64
|
emb_series[idx] = emb
|
65
|
-
print(f"emb_series shape: {emb_series.shape}")
|
65
|
+
# print(f"emb_series shape: {emb_series.shape}")
|
66
66
|
self.df = pd.DataFrame(
|
67
67
|
emb_series.values.tolist(), index=self.data_df.index
|
68
68
|
)
|
69
|
-
print(f"df shape: {self.df.shape}")
|
69
|
+
# print(f"df shape: {self.df.shape}")
|
70
70
|
self.df.to_pickle(storage)
|
71
71
|
try:
|
72
72
|
glob_conf.config["DATA"]["needs_feature_extraction"] = "false"
|
@@ -77,7 +77,7 @@ class Wav2vec2(Featureset):
|
|
77
77
|
self.df = pd.read_pickle(storage)
|
78
78
|
if self.df.isnull().values.any():
|
79
79
|
nanrows = self.df.columns[self.df.isna().any()].tolist()
|
80
|
-
print(nanrows)
|
80
|
+
# print(nanrows)
|
81
81
|
self.util.error(
|
82
82
|
f"got nan: {self.df.shape} {self.df.isnull().sum().sum()}"
|
83
83
|
)
|
@@ -103,7 +103,7 @@ class Wav2vec2(Featureset):
|
|
103
103
|
except RuntimeError as re:
|
104
104
|
print(str(re))
|
105
105
|
self.util.error(f"couldn't extract file: {file}")
|
106
|
-
print(f"y flattened shape: {y.ravel().shape}")
|
106
|
+
# print(f"y flattened shape: {y.ravel().shape}")
|
107
107
|
return y.ravel()
|
108
108
|
|
109
109
|
def extract_sample(self, signal, sr):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.66.
|
3
|
+
Version: 0.66.12
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -24,6 +24,7 @@ Requires-Dist: imageio
|
|
24
24
|
Requires-Dist: laion-clap
|
25
25
|
Requires-Dist: matplotlib
|
26
26
|
Requires-Dist: numpy
|
27
|
+
Requires-Dist: opensmile
|
27
28
|
Requires-Dist: pandas
|
28
29
|
Requires-Dist: praat-parselmouth
|
29
30
|
Requires-Dist: pylatex
|
@@ -33,8 +34,6 @@ Requires-Dist: seaborn
|
|
33
34
|
Requires-Dist: sounddevice
|
34
35
|
Requires-Dist: tensorflow
|
35
36
|
Requires-Dist: tensorflow-hub
|
36
|
-
Requires-Dist: torch
|
37
|
-
Requires-Dist: torchvision
|
38
37
|
Requires-Dist: transformers
|
39
38
|
Requires-Dist: umap-learn
|
40
39
|
Requires-Dist: xgboost
|
@@ -107,6 +106,23 @@ Create and activate a virtual Python environment and simply run
|
|
107
106
|
```
|
108
107
|
pip install nkululeko
|
109
108
|
```
|
109
|
+
We excluded some packages from the automatic installation because they might depend on your computer and some of them are only needed in special cases. So if the error
|
110
|
+
```
|
111
|
+
module x not found
|
112
|
+
```
|
113
|
+
appears, please try
|
114
|
+
```
|
115
|
+
pip install x
|
116
|
+
```
|
117
|
+
For many packages you will need the missing torch package.
|
118
|
+
If you don't have a GPU (which is probably true if you don't know what that is), please use
|
119
|
+
```
|
120
|
+
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
121
|
+
```
|
122
|
+
else, you can use the default:
|
123
|
+
```
|
124
|
+
pip install torch torchvision torchaudio
|
125
|
+
```
|
110
126
|
|
111
127
|
Some examples for *ini*-files (which you use to control nkululeko) are in the [tests folder](https://github.com/felixbur/nkululeko/tree/main/tests).
|
112
128
|
|
@@ -184,7 +200,8 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
|
|
184
200
|
* [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
|
185
201
|
* [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
|
186
202
|
* [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
|
187
|
-
|
203
|
+
* [Generate a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
|
204
|
+
|
188
205
|
The framework is targeted at the speech domain and supports experiments where different classifiers are combined with different feature extractors.
|
189
206
|
|
190
207
|
Here's a rough UML-like sketch of the framework (and [here's the real one done with pyreverse](meta/images/classes.png)).
|
@@ -256,6 +273,18 @@ Nkululeko can be used under the [MIT license](https://choosealicense.com/license
|
|
256
273
|
Changelog
|
257
274
|
=========
|
258
275
|
|
276
|
+
Version 0.66.12
|
277
|
+
---------------
|
278
|
+
* fixed bug that prevented Praat features to be selected
|
279
|
+
|
280
|
+
Version 0.66.11
|
281
|
+
---------------
|
282
|
+
* removed torch from automatic install. depends on cpu/gpu machine
|
283
|
+
|
284
|
+
Version 0.66.10
|
285
|
+
---------------
|
286
|
+
* Removed print statements from feats_wav2vec2
|
287
|
+
|
259
288
|
Version 0.66.9
|
260
289
|
--------------
|
261
290
|
* Version that should install without requiring opensmile which seems not to be supported by all Apple processors (arm CPU (Apple M1))
|
@@ -52,7 +52,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
52
52
|
nkululeko/augment.py,sha256=lZcqCLNTLfC6G47ZjLYQXGcyPFJkmnOUDJOpn6aIJvE,1819
|
53
53
|
nkululeko/balancer.py,sha256=WslJxQwMNnVYgZXF1y0ueS5zilRPQJZDhUG72Csb4Gw,11
|
54
54
|
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
55
|
-
nkululeko/constants.py,sha256=
|
55
|
+
nkululeko/constants.py,sha256=ISElIr9WDa0ZzCuRRCTogJugUc2qNwP8PDF5y_-yZIU,39
|
56
56
|
nkululeko/demo.py,sha256=6CmLxH_0QJIMazPPg7IZur7ciNdqby6yOlh-6zu6YE0,1951
|
57
57
|
nkululeko/demo_predictor.py,sha256=5PknI8SniGBRMzZOrmBOfPTV71rBbI1JCTnA6lXz6IU,2334
|
58
58
|
nkululeko/experiment.py,sha256=qyOYAGX4VHTYa2HAfXUknaFcCcda-zNQEXeF4vTK9SM,27753
|
@@ -109,12 +109,12 @@ nkululeko/feat_extract/feats_mld.py,sha256=RbRAaTTTfdIQeoDrGRsVUr5O-GVG443zbjdCy
|
|
109
109
|
nkululeko/feat_extract/feats_mos.py,sha256=Bly7p6B0Guj4MQBdX_0G994lO5VUcmy5LLbXTSKi29Q,4247
|
110
110
|
nkululeko/feat_extract/feats_opensmile.py,sha256=yDRGSiUQV3K3oLxVqq8Cxj5bkc-RiLzDYbAGKC9I5vc,4140
|
111
111
|
nkululeko/feat_extract/feats_oxbow.py,sha256=N7uThvewVlH8HqSda-s_7UAtgXZkMwCOwUrsqeVHyLk,4830
|
112
|
-
nkululeko/feat_extract/feats_praat.py,sha256=
|
112
|
+
nkululeko/feat_extract/feats_praat.py,sha256=z0lhNY5CzBzH2-6REfYGcpv-yTSEozjGO6cWW_LX01Y,3366
|
113
113
|
nkululeko/feat_extract/feats_snr.py,sha256=zsxwRAzt3C-0B3EqT4p4zDaDVueMyyk8uxcaaa_ITso,2817
|
114
114
|
nkululeko/feat_extract/feats_spkrec.py,sha256=VK4ma3uWzM0YZStsgRTirfkbzjWIfRWSgsYI038QlRY,4803
|
115
115
|
nkululeko/feat_extract/feats_squim.py,sha256=8MaQ5lKfRqTJAub5VqEO9VziEVgMVTVe36CHkIQhGt4,4423
|
116
116
|
nkululeko/feat_extract/feats_trill.py,sha256=vP7OKQCU8miz-NM9xEwP7kt-RL73uODcyqtUAkXM5Es,2994
|
117
|
-
nkululeko/feat_extract/feats_wav2vec2.py,sha256=
|
117
|
+
nkululeko/feat_extract/feats_wav2vec2.py,sha256=2-sIFEuX-YgdJb_mSXBh2dZPUKYQRHYD-C2KIkfP-v4,4674
|
118
118
|
nkululeko/feat_extract/feats_wavlm.py,sha256=kZdDF8pi9MvNHQL0R3qAUdF1wmwBfMavGwUvg6TLkZ0,4503
|
119
119
|
nkululeko/feat_extract/featureset.py,sha256=Xed_qbXFFasyKEyRpgCyZM3vYLqX0-O9RXnjN7hpUbY,1399
|
120
120
|
nkululeko/feat_extract/feinberg_praat.py,sha256=RSZwaNaqBhV1uxSPVjbNVEoxiFZa3bUGQ-rbEHlE_IQ,20838
|
@@ -188,8 +188,8 @@ venv/bin/rst2s5.py,sha256=3b_hQ121ckoct-GaA8bjRdc5h-DJABWWGjekfPeTT7c,696
|
|
188
188
|
venv/bin/rst2xetex.py,sha256=IseBv9Q5aIen6HFoEzQdYfJWWVOjezCOfIN8NhV551I,932
|
189
189
|
venv/bin/rst2xml.py,sha256=m04pWyvIrvr_vRMYcvvx9C48cmkBViljg6AjtNxCq4Q,661
|
190
190
|
venv/bin/rstpep2html.py,sha256=Zv0nb3HsKpML4-Swd0l236b14YheAiCpP13gNda0XnQ,729
|
191
|
-
nkululeko-0.66.
|
192
|
-
nkululeko-0.66.
|
193
|
-
nkululeko-0.66.
|
194
|
-
nkululeko-0.66.
|
195
|
-
nkululeko-0.66.
|
191
|
+
nkululeko-0.66.12.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
192
|
+
nkululeko-0.66.12.dist-info/METADATA,sha256=77cpxNMeVsgUAS3qec836kbMYw53NMBf-vBsF0hfGaY,25846
|
193
|
+
nkululeko-0.66.12.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
194
|
+
nkululeko-0.66.12.dist-info/top_level.txt,sha256=jYrm4xE8UZKgyAiSrbRO_0eOoOwJ0pt4R5e8PFyseZI,40
|
195
|
+
nkululeko-0.66.12.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|