nkululeko 0.65.4__py3-none-any.whl → 0.65.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.65.4"
1
+ VERSION="0.65.5"
2
2
  SAMPLING_RATE=16000
nkululeko/plots.py CHANGED
@@ -57,6 +57,8 @@ class Plots():
57
57
  bin_reals = eval(self.util.config_val('EXPL', 'bin_reals', 'True'))
58
58
  for att in attributes:
59
59
  if len(att) == 1:
60
+ if att[0] not in df:
61
+ self.util.error(f'unknown feature: {att[0]}')
60
62
  self.util.debug(f'plotting {att[0]}')
61
63
  filename = f'{self.target}-{att[0]}'
62
64
  if self.util.is_categorical(df[att[0]]):
@@ -90,6 +92,10 @@ class Plots():
90
92
  plt.close(fig)
91
93
  # fig.clear() # avoid error
92
94
  elif len(att) == 2:
95
+ if att[0] not in df:
96
+ self.util.error(f'unknown feature: {att[0]}')
97
+ if att[1] not in df:
98
+ self.util.error(f'unknown feature: {att[1]}')
93
99
  self.util.debug(f'plotting {att}')
94
100
  att1 = att[0]
95
101
  att2 = att[1]
nkululeko/utils/stats.py CHANGED
@@ -3,6 +3,14 @@ import math
3
3
  import numpy as np
4
4
  import pandas as pd
5
5
 
6
+ def check_na(a):
7
+ if np.isnan(a).any():
8
+ count = np.count_nonzero(np.isnan(a))
9
+ print(f'WARNING: got {count} Nans (of {len(a)}), setting to 0')
10
+ a[np.isnan(a)] = 0
11
+ return a
12
+ else:
13
+ return a
6
14
 
7
15
  def cohen_d(d1, d2):
8
16
  """
@@ -13,6 +21,9 @@ def cohen_d(d1, d2):
13
21
  Returns:
14
22
  Cohen's d with precision 3
15
23
  """
24
+ # Checks:
25
+ d1 = check_na(d1)
26
+ d2 = check_na(d2)
16
27
  # calculate the size of samples
17
28
  n1, n2 = len(d1), len(d2)
18
29
  # calculate the variance of the samples
@@ -23,7 +34,7 @@ def cohen_d(d1, d2):
23
34
  u1, u2 = np.mean(d1), np.mean(d2)
24
35
  # calculate the effect size
25
36
  if math.isnan(s) or s == 0:
26
- return 0
37
+ return -1
27
38
  return (int(1000 * np.abs((u1 - u2)) / s)) / 1000
28
39
 
29
40
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.65.4
3
+ Version: 0.65.5
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -255,6 +255,10 @@ Nkululeko can be used under the [MIT license](https://choosealicense.com/license
255
255
  Changelog
256
256
  =========
257
257
 
258
+ Version 0.65.5
259
+ --------------
260
+ * added fill_na in plot effect size
261
+
258
262
  Version 0.65.4
259
263
  --------------
260
264
  * added datasets to distribution
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/augment.py,sha256=paq-vEf02XyaPsLjnCbDJbuZind6M6mm0NWAnK5_PKU,1751
3
3
  nkululeko/balancer.py,sha256=64ftZN68sMDfkvuovCDHpAHmSJgCO6Kdk9bwmpSisec,12
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=GQt6bohawLWy5SrHljBXYeG_EnN-Xpz1J3KJwSsP5rA,36
5
+ nkululeko/constants.py,sha256=KGYcdgRK9DOOWiYr-901PUaOgmccfRuUhfuYAEyFvZM,36
6
6
  nkululeko/demo.py,sha256=1JFayJBUqOwj8fDtNF6siuB_5aG6dkb_TeIFPhYv1YI,1858
7
7
  nkululeko/demo_predictor.py,sha256=f3tghu3KxrLFPSrMMqT3E_Owy8alAuHEbkoZuahikEE,2310
8
8
  nkululeko/experiment.py,sha256=fV-TdDPlFhS8DdALuzme0n9-3HnGwi_GxiTak3u_ZAY,24779
@@ -14,7 +14,7 @@ nkululeko/filter_data.py,sha256=LD46OLYfA6UuLvFgaA1LvCVSqmi6JXN2xd_fTZdr-ag,7029
14
14
  nkululeko/glob_conf.py,sha256=KOsmB2_9AVoKNyhtCkaamj-ZYCme6-NjTYF-4wlLgOY,241
15
15
  nkululeko/modelrunner.py,sha256=NYdV4z9TKhtC9LGhOxXa7aBC2AxRjnFJ42Ah01rsbqg,6025
16
16
  nkululeko/nkululeko.py,sha256=SVOY3CPvlmG-16kqV8YOvR2HYCgHkaiVo3GBiwu38W0,1681
17
- nkululeko/plots.py,sha256=p2J9dOHJxbo0_SSh_TtKBLxD5e96DpQ_TmUwn8GDTHo,12714
17
+ nkululeko/plots.py,sha256=wwUvHIlpP6wYlukYNWtgqhxh6avqo_okslNgoT4S6u0,13023
18
18
  nkululeko/predict.py,sha256=3ei4wn2by0p9Vkv7cllMcszmEjSM2vX0T6x_5rlgT28,1851
19
19
  nkululeko/reporter.py,sha256=359aeQWt0ZGLseaJnOfafYG8BrwumiM2Q58DWiaoyWQ,10177
20
20
  nkululeko/resample.py,sha256=NDZLIhmGPcxSZwzIZul9oeNfbaHfAmzjTvRWs6isIr4,2120
@@ -90,9 +90,9 @@ nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=pmLHuXsaqvcdYxB4PSW9l1mbQW
90
90
  nkululeko/segmenting/seg_silero.py,sha256=bbLQxUste1lKEwNRHG4wOTCaFMevNt8TOe2DfmLtu5w,3306
91
91
  nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
92
92
  nkululeko/utils/files.py,sha256=82EsGvTN85lDdSzetm1ZHTVOUm0AcfQhTeurwsfHN_Q,3547
93
- nkululeko/utils/stats.py,sha256=v4SpEa1JDCrh1FLjeDU8WsAWrDFVut505v-b6m400p4,1949
94
- nkululeko-0.65.4.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
95
- nkululeko-0.65.4.dist-info/METADATA,sha256=-iW87jicd9chw6WwfzbUaQ35kg3GjNOK5X_LMaQQxBM,23391
96
- nkululeko-0.65.4.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
97
- nkululeko-0.65.4.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
98
- nkululeko-0.65.4.dist-info/RECORD,,
93
+ nkululeko/utils/stats.py,sha256=nRuZEbHpeRTAcvW8b12ZWi_kDnpC5Ztrmvy0_J621cE,2241
94
+ nkululeko-0.65.5.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
95
+ nkululeko-0.65.5.dist-info/METADATA,sha256=y2ttA1LEwXgflc2MLb1krzgq3zazj780wZ3fIWR8fAg,23458
96
+ nkululeko-0.65.5.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
97
+ nkululeko-0.65.5.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
98
+ nkululeko-0.65.5.dist-info/RECORD,,