ninetoothed 0.4.0__py3-none-any.whl → 0.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ninetoothed/jit.py +35 -15
- ninetoothed/tensor.py +22 -3
- {ninetoothed-0.4.0.dist-info → ninetoothed-0.6.0.dist-info}/METADATA +4 -2
- ninetoothed-0.6.0.dist-info/RECORD +10 -0
- ninetoothed-0.4.0.dist-info/RECORD +0 -10
- {ninetoothed-0.4.0.dist-info → ninetoothed-0.6.0.dist-info}/WHEEL +0 -0
- {ninetoothed-0.4.0.dist-info → ninetoothed-0.6.0.dist-info}/licenses/LICENSE +0 -0
ninetoothed/jit.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1
1
|
import ast
|
2
2
|
import collections
|
3
3
|
import functools
|
4
|
+
import importlib.util
|
4
5
|
import inspect
|
5
6
|
import itertools
|
6
7
|
import math
|
8
|
+
import sys
|
7
9
|
import tempfile
|
8
10
|
|
9
11
|
import triton
|
@@ -41,24 +43,20 @@ class JIT:
|
|
41
43
|
ast.fix_missing_locations(tree)
|
42
44
|
|
43
45
|
unparsed = ast.unparse(tree).replace("None:", ":").replace(":None", ":")
|
46
|
+
dependencies = self._find_dependencies()
|
47
|
+
source = "\n\n".join((unparsed, dependencies)).strip()
|
44
48
|
|
45
49
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".py") as temp_file:
|
46
|
-
temp_file.write(
|
50
|
+
temp_file.write(source.encode("utf-8"))
|
47
51
|
temp_file_name = temp_file.name
|
48
52
|
|
49
|
-
|
50
|
-
|
51
|
-
source=temp_file.read(),
|
52
|
-
filename=temp_file_name,
|
53
|
-
mode="exec",
|
54
|
-
)
|
55
|
-
|
56
|
-
namespace = {}
|
57
|
-
exec(code, namespace)
|
53
|
+
module = type(self)._import_from_path(temp_file_name, temp_file_name)
|
54
|
+
module_vars = vars(module)
|
58
55
|
|
59
56
|
handle = _Handle(
|
60
|
-
|
61
|
-
|
57
|
+
module_vars[self.func.__name__],
|
58
|
+
module_vars[f"launch_{self.func.__name__}"],
|
59
|
+
source,
|
62
60
|
)
|
63
61
|
|
64
62
|
type(self).handles[source_file][source_line] = handle
|
@@ -74,6 +72,24 @@ class JIT:
|
|
74
72
|
|
75
73
|
return ast.Module(body=[finder.result], type_ignores=[])
|
76
74
|
|
75
|
+
def _find_dependencies(self):
|
76
|
+
dependencies = set()
|
77
|
+
|
78
|
+
for obj in self.func.__globals__.values():
|
79
|
+
if isinstance(obj, triton.runtime.JITFunction):
|
80
|
+
dependencies.add(obj.src)
|
81
|
+
|
82
|
+
return "\n".join(f"@triton.jit\n{dependency}" for dependency in dependencies)
|
83
|
+
|
84
|
+
@staticmethod
|
85
|
+
def _import_from_path(module_name, file_path):
|
86
|
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
87
|
+
module = importlib.util.module_from_spec(spec)
|
88
|
+
sys.modules[module_name] = module
|
89
|
+
spec.loader.exec_module(module)
|
90
|
+
|
91
|
+
return module
|
92
|
+
|
77
93
|
|
78
94
|
class CodeGenerator(ast.NodeTransformer):
|
79
95
|
def __init__(self, context):
|
@@ -102,7 +118,7 @@ class CodeGenerator(ast.NodeTransformer):
|
|
102
118
|
self.generic_visit(node)
|
103
119
|
|
104
120
|
for arg in self._args:
|
105
|
-
if not isinstance(arg, Tensor):
|
121
|
+
if not isinstance(arg, Tensor) or arg.ndim == 0:
|
106
122
|
continue
|
107
123
|
|
108
124
|
offsets = arg.offsets()
|
@@ -178,7 +194,7 @@ class CodeGenerator(ast.NodeTransformer):
|
|
178
194
|
if isinstance(value, Tensor):
|
179
195
|
inner = value.dtype
|
180
196
|
|
181
|
-
return Symbol(inner
|
197
|
+
return Symbol(getattr(inner, node.attr)).node
|
182
198
|
|
183
199
|
self.generic_visit(node)
|
184
200
|
|
@@ -355,6 +371,9 @@ class CodeGenerator(ast.NodeTransformer):
|
|
355
371
|
|
356
372
|
@staticmethod
|
357
373
|
def _generate_load(tensor, intermediate_indices=()):
|
374
|
+
if tensor.ndim == 0:
|
375
|
+
return Symbol(tensor.original.name).node
|
376
|
+
|
358
377
|
pointers, mask = CodeGenerator._generate_pointers_and_mask(
|
359
378
|
tensor, intermediate_indices
|
360
379
|
)
|
@@ -459,9 +478,10 @@ class Tritonizer(ast.NodeTransformer):
|
|
459
478
|
|
460
479
|
|
461
480
|
class _Handle:
|
462
|
-
def __init__(self, kernel, launch):
|
481
|
+
def __init__(self, kernel, launch, source):
|
463
482
|
self._kernel = kernel
|
464
483
|
self._launch = launch
|
484
|
+
self._source = source
|
465
485
|
|
466
486
|
def __call__(self, *args, **kwargs):
|
467
487
|
return self._launch(*args, **kwargs)
|
ninetoothed/tensor.py
CHANGED
@@ -21,11 +21,11 @@ class Tensor:
|
|
21
21
|
|
22
22
|
self.dtype = dtype
|
23
23
|
|
24
|
-
self.name = f"
|
24
|
+
self.name = f"_ninetoothed_tensor_{type(self).num_instances}"
|
25
25
|
|
26
26
|
if ndim is not None:
|
27
|
-
self.shape =
|
28
|
-
self.strides =
|
27
|
+
self.shape = (Symbol(self.size_string(i)) for i in range(ndim))
|
28
|
+
self.strides = (Symbol(self.stride_string(i)) for i in range(ndim))
|
29
29
|
else:
|
30
30
|
self.shape = shape
|
31
31
|
|
@@ -103,6 +103,9 @@ class Tensor:
|
|
103
103
|
)
|
104
104
|
|
105
105
|
def names(self):
|
106
|
+
if self.ndim == 0:
|
107
|
+
return {self.original.name}
|
108
|
+
|
106
109
|
return (
|
107
110
|
{self.original.pointer_string()}
|
108
111
|
| {
|
@@ -191,6 +194,22 @@ class Tensor:
|
|
191
194
|
|
192
195
|
return self.strides[dim]
|
193
196
|
|
197
|
+
@property
|
198
|
+
def shape(self):
|
199
|
+
return self._shape
|
200
|
+
|
201
|
+
@shape.setter
|
202
|
+
def shape(self, value):
|
203
|
+
self._shape = tuple(value)
|
204
|
+
|
205
|
+
@property
|
206
|
+
def strides(self):
|
207
|
+
return self._strides
|
208
|
+
|
209
|
+
@strides.setter
|
210
|
+
def strides(self, value):
|
211
|
+
self._strides = tuple(value)
|
212
|
+
|
194
213
|
@property
|
195
214
|
def ndim(self):
|
196
215
|
return len(self.shape)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: ninetoothed
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.6.0
|
4
4
|
Summary: A domain-specific language based on Triton but providing higher-level abstraction.
|
5
5
|
Project-URL: Homepage, https://github.com/InfiniTensor/ninetoothed
|
6
6
|
Project-URL: Issues, https://github.com/InfiniTensor/ninetoothed/issues
|
@@ -15,6 +15,8 @@ Description-Content-Type: text/markdown
|
|
15
15
|
|
16
16
|
# NineToothed
|
17
17
|
|
18
|
+

|
19
|
+
|
18
20
|
A domain-specific language (DSL) based on Triton but providing higher-level abstractions.
|
19
21
|
|
20
22
|
**Other language versions: [English](README.md), [简体中文](docs/README.zh.md).**
|
@@ -80,4 +82,4 @@ def matmul_kernel(a: a_tiled, b: b_tiled, c: c_tiled):
|
|
80
82
|
|
81
83
|
For matrix multiplication, we also have three tensor parameters, but the tiling method is more complex than vector addition. We denote the three matrices as $A$, $B$, and $C$, where $A$ and $B$ are inputs, and $C$ is the output. Tiling $C$ is simple; we just need to divide it into blocks of size `(BLOCK_SIZE_M, BLOCK_SIZE_N)` by rows and columns. Once each block computes its result, the entire $C$ is computed. However, how should we tile $A$ and $B$? The answer is to introduce another meta-parameter `BLOCK_SIZE_K`. This way, we can divide $A$ into blocks of size `(BLOCK_SIZE_M, BLOCK_SIZE_K)` and $B$ into blocks of size `(BLOCK_SIZE_K, BLOCK_SIZE_N)`. However, for matrix multiplication, $A$ and $B$ do not correspond block by block; each row of $A$ needs to correspond to each column of $B$. Therefore, we need to further `tile` $A$ and $B$ by rows and columns, respectively. Up to this point, we have a set of row blocks of $A$ and column blocks of $B$. However, each row block of $A$ must correspond to every column block of $B$. This is where `expand` comes in. We `expand` the row blocks of $A$ along the columns to the number of columns of $C$ and the column blocks of $B$ along the rows to the number of rows of $C$. This way, we successfully tile $A$, $B$, and $C$. In fact, our meta-operations up to this point have already enabled us to write kernel functions. However, we notice that the levels where the row blocks and column blocks reside, which we mentioned earlier, are two-dimensional, and their sizes are of the forms `(1, ...)` and `(..., 1)`. This means that if no other operations are performed, the way we access row blocks and column blocks would have to be `a[0, k]` and `b[k, 0]`. If we want to use `a` to find the range of `k`, we would need to use `a.shape[1]`, but we know that dimensions of size `1` can actually be removed completely. This is why we added two lines of `squeeze`. The `dtype` refers to the data type, which in PyTorch can generally be some integer or floating-point type, such as `torch.float32`. However, since meta-operations like `tile` can be performed in NineToothed, `dtype` can also be a `Tensor`. In other words, there is a concept of "tensors that store tensors" in NineToothed. In summary, these two lines perform operations on the tensors stored in the outmost tensor, removing the dimensions of size `1`. This way, when we access the row and column blocks, we can use `a[k]` and `b[k]`, and when finding the range of `k`, we can use `a.shape[0]`.
|
82
84
|
|
83
|
-
With tiling done, the rest is simple. In the function body, we define an `accumulator` to accumulate intermediate results. We then iterate through the corresponding row blocks of $A$ and column blocks of B
|
85
|
+
With tiling done, the rest is simple. In the function body, we define an `accumulator` to accumulate intermediate results. We then iterate through the corresponding row blocks of $A$ and column blocks of $B$, multiplying them and accumulating the results in `accumulator`. Finally, we place the `accumulator` in the corresponding block of $C$. Since each block of the parameter tensors undergoes this operation, the multiplication is completed for the whole tensors as well.
|
@@ -0,0 +1,10 @@
|
|
1
|
+
ninetoothed/__init__.py,sha256=T5UJXlC-wbo8JKPbLUNT65Kccp12xP52WFV5FsugETI,147
|
2
|
+
ninetoothed/jit.py,sha256=5gNp4HixCkural_Ns3DxwT4LL3OUcG0ECj4NLjb-EYk,16959
|
3
|
+
ninetoothed/language.py,sha256=YwjlBENmmKPTnhaQ2uYbj5MwzrCAT7MLJ6VkQ6NeXJE,504
|
4
|
+
ninetoothed/symbol.py,sha256=8Wg-JQPkVv9mMIxB1Rj4SHzOytHXPgHLkuK0BEFPDkc,5243
|
5
|
+
ninetoothed/tensor.py,sha256=L-9LhwnM4uRtRvj3tqrzerUijEfKeTQvFBcmS1hQilI,6656
|
6
|
+
ninetoothed/torchifier.py,sha256=8M2PDwyFIfVypX6Z-Vt_bGbsCPqxqKnftL0rXeh9bOM,911
|
7
|
+
ninetoothed-0.6.0.dist-info/METADATA,sha256=zvY4nvKt7R8kWDYrGnApem_C07trLgOj1-7zXPfqD9U,6785
|
8
|
+
ninetoothed-0.6.0.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
9
|
+
ninetoothed-0.6.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
10
|
+
ninetoothed-0.6.0.dist-info/RECORD,,
|
@@ -1,10 +0,0 @@
|
|
1
|
-
ninetoothed/__init__.py,sha256=T5UJXlC-wbo8JKPbLUNT65Kccp12xP52WFV5FsugETI,147
|
2
|
-
ninetoothed/jit.py,sha256=ECjaHcrVNj1SBxoMdzjGi5iDp3rtv2jUiHjvK0eU6Cs,16188
|
3
|
-
ninetoothed/language.py,sha256=YwjlBENmmKPTnhaQ2uYbj5MwzrCAT7MLJ6VkQ6NeXJE,504
|
4
|
-
ninetoothed/symbol.py,sha256=8Wg-JQPkVv9mMIxB1Rj4SHzOytHXPgHLkuK0BEFPDkc,5243
|
5
|
-
ninetoothed/tensor.py,sha256=_DrjOJ-pBvEbSNUvUoYJduLQXmuKgNcqhe4xUDMVoZw,6275
|
6
|
-
ninetoothed/torchifier.py,sha256=8M2PDwyFIfVypX6Z-Vt_bGbsCPqxqKnftL0rXeh9bOM,911
|
7
|
-
ninetoothed-0.4.0.dist-info/METADATA,sha256=Wgg0CP-j8VkiJWMpyOLOL7C1kVLkeF4OoZD6eyZsgLQ,6720
|
8
|
-
ninetoothed-0.4.0.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
9
|
-
ninetoothed-0.4.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
10
|
-
ninetoothed-0.4.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|