nimare 0.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (119) hide show
  1. benchmarks/__init__.py +0 -0
  2. benchmarks/bench_cbma.py +57 -0
  3. nimare/__init__.py +45 -0
  4. nimare/_version.py +21 -0
  5. nimare/annotate/__init__.py +21 -0
  6. nimare/annotate/cogat.py +213 -0
  7. nimare/annotate/gclda.py +924 -0
  8. nimare/annotate/lda.py +147 -0
  9. nimare/annotate/text.py +75 -0
  10. nimare/annotate/utils.py +87 -0
  11. nimare/base.py +217 -0
  12. nimare/cli.py +124 -0
  13. nimare/correct.py +462 -0
  14. nimare/dataset.py +685 -0
  15. nimare/decode/__init__.py +33 -0
  16. nimare/decode/base.py +115 -0
  17. nimare/decode/continuous.py +462 -0
  18. nimare/decode/discrete.py +753 -0
  19. nimare/decode/encode.py +110 -0
  20. nimare/decode/utils.py +44 -0
  21. nimare/diagnostics.py +510 -0
  22. nimare/estimator.py +139 -0
  23. nimare/extract/__init__.py +19 -0
  24. nimare/extract/extract.py +466 -0
  25. nimare/extract/utils.py +295 -0
  26. nimare/generate.py +331 -0
  27. nimare/io.py +667 -0
  28. nimare/meta/__init__.py +39 -0
  29. nimare/meta/cbma/__init__.py +6 -0
  30. nimare/meta/cbma/ale.py +951 -0
  31. nimare/meta/cbma/base.py +947 -0
  32. nimare/meta/cbma/mkda.py +1361 -0
  33. nimare/meta/cbmr.py +970 -0
  34. nimare/meta/ibma.py +1683 -0
  35. nimare/meta/kernel.py +501 -0
  36. nimare/meta/models.py +1199 -0
  37. nimare/meta/utils.py +494 -0
  38. nimare/nimads.py +492 -0
  39. nimare/reports/__init__.py +24 -0
  40. nimare/reports/base.py +664 -0
  41. nimare/reports/default.yml +123 -0
  42. nimare/reports/figures.py +651 -0
  43. nimare/reports/report.tpl +160 -0
  44. nimare/resources/__init__.py +1 -0
  45. nimare/resources/atlases/Harvard-Oxford-LICENSE +93 -0
  46. nimare/resources/atlases/HarvardOxford-cort-maxprob-thr25-2mm.nii.gz +0 -0
  47. nimare/resources/database_file_manifest.json +142 -0
  48. nimare/resources/english_spellings.csv +1738 -0
  49. nimare/resources/filenames.json +32 -0
  50. nimare/resources/neurosynth_laird_studies.json +58773 -0
  51. nimare/resources/neurosynth_stoplist.txt +396 -0
  52. nimare/resources/nidm_pain_dset.json +1349 -0
  53. nimare/resources/references.bib +541 -0
  54. nimare/resources/semantic_knowledge_children.txt +325 -0
  55. nimare/resources/semantic_relatedness_children.txt +249 -0
  56. nimare/resources/templates/MNI152_2x2x2_brainmask.nii.gz +0 -0
  57. nimare/resources/templates/tpl-MNI152NLin6Asym_res-01_T1w.nii.gz +0 -0
  58. nimare/resources/templates/tpl-MNI152NLin6Asym_res-01_desc-brain_mask.nii.gz +0 -0
  59. nimare/resources/templates/tpl-MNI152NLin6Asym_res-02_T1w.nii.gz +0 -0
  60. nimare/resources/templates/tpl-MNI152NLin6Asym_res-02_desc-brain_mask.nii.gz +0 -0
  61. nimare/results.py +225 -0
  62. nimare/stats.py +276 -0
  63. nimare/tests/__init__.py +1 -0
  64. nimare/tests/conftest.py +229 -0
  65. nimare/tests/data/amygdala_roi.nii.gz +0 -0
  66. nimare/tests/data/data-neurosynth_version-7_coordinates.tsv.gz +0 -0
  67. nimare/tests/data/data-neurosynth_version-7_metadata.tsv.gz +0 -0
  68. nimare/tests/data/data-neurosynth_version-7_vocab-terms_source-abstract_type-tfidf_features.npz +0 -0
  69. nimare/tests/data/data-neurosynth_version-7_vocab-terms_vocabulary.txt +100 -0
  70. nimare/tests/data/neurosynth_dset.json +2868 -0
  71. nimare/tests/data/neurosynth_laird_studies.json +58773 -0
  72. nimare/tests/data/nidm_pain_dset.json +1349 -0
  73. nimare/tests/data/nimads_annotation.json +1 -0
  74. nimare/tests/data/nimads_studyset.json +1 -0
  75. nimare/tests/data/test_baseline.txt +2 -0
  76. nimare/tests/data/test_pain_dataset.json +1278 -0
  77. nimare/tests/data/test_pain_dataset_multiple_contrasts.json +1242 -0
  78. nimare/tests/data/test_sleuth_file.txt +18 -0
  79. nimare/tests/data/test_sleuth_file2.txt +10 -0
  80. nimare/tests/data/test_sleuth_file3.txt +5 -0
  81. nimare/tests/data/test_sleuth_file4.txt +5 -0
  82. nimare/tests/data/test_sleuth_file5.txt +5 -0
  83. nimare/tests/test_annotate_cogat.py +32 -0
  84. nimare/tests/test_annotate_gclda.py +86 -0
  85. nimare/tests/test_annotate_lda.py +27 -0
  86. nimare/tests/test_dataset.py +99 -0
  87. nimare/tests/test_decode_continuous.py +132 -0
  88. nimare/tests/test_decode_discrete.py +92 -0
  89. nimare/tests/test_diagnostics.py +168 -0
  90. nimare/tests/test_estimator_performance.py +385 -0
  91. nimare/tests/test_extract.py +46 -0
  92. nimare/tests/test_generate.py +247 -0
  93. nimare/tests/test_io.py +294 -0
  94. nimare/tests/test_meta_ale.py +298 -0
  95. nimare/tests/test_meta_cbmr.py +295 -0
  96. nimare/tests/test_meta_ibma.py +240 -0
  97. nimare/tests/test_meta_kernel.py +209 -0
  98. nimare/tests/test_meta_mkda.py +234 -0
  99. nimare/tests/test_nimads.py +21 -0
  100. nimare/tests/test_reports.py +110 -0
  101. nimare/tests/test_stats.py +101 -0
  102. nimare/tests/test_transforms.py +272 -0
  103. nimare/tests/test_utils.py +200 -0
  104. nimare/tests/test_workflows.py +221 -0
  105. nimare/tests/utils.py +126 -0
  106. nimare/transforms.py +907 -0
  107. nimare/utils.py +1367 -0
  108. nimare/workflows/__init__.py +14 -0
  109. nimare/workflows/base.py +189 -0
  110. nimare/workflows/cbma.py +165 -0
  111. nimare/workflows/ibma.py +108 -0
  112. nimare/workflows/macm.py +77 -0
  113. nimare/workflows/misc.py +65 -0
  114. nimare-0.4.2.dist-info/LICENSE +21 -0
  115. nimare-0.4.2.dist-info/METADATA +124 -0
  116. nimare-0.4.2.dist-info/RECORD +119 -0
  117. nimare-0.4.2.dist-info/WHEEL +5 -0
  118. nimare-0.4.2.dist-info/entry_points.txt +2 -0
  119. nimare-0.4.2.dist-info/top_level.txt +2 -0
@@ -0,0 +1,924 @@
1
+ """Topic modeling with generalized correspondence latent Dirichlet allocation."""
2
+
3
+ import logging
4
+ import os.path as op
5
+
6
+ import nibabel as nib
7
+ import numpy as np
8
+ import pandas as pd
9
+ from nilearn._utils import load_niimg
10
+ from scipy.stats import multivariate_normal
11
+
12
+ from nimare.base import NiMAREBase
13
+ from nimare.utils import get_template
14
+
15
+ LGR = logging.getLogger(__name__)
16
+
17
+
18
+ class GCLDAModel(NiMAREBase):
19
+ """Generate a generalized correspondence latent Dirichlet allocation (GCLDA) topic model.
20
+
21
+ This model was originally described in :footcite:t:`rubin2017decoding`.
22
+
23
+ .. versionchanged:: 0.0.8
24
+
25
+ * [ENH] Support symmetric GC-LDA topics with more than two subregions.
26
+
27
+ Parameters
28
+ ----------
29
+ count_df : :obj:`pandas.DataFrame`
30
+ A DataFrame with feature counts for the model. The index is 'id',
31
+ used for identifying studies. Other columns are features (e.g.,
32
+ unigrams and bigrams from Neurosynth), where each value is the number
33
+ of times the feature is found in a given article.
34
+ coordinates_df : :obj:`pandas.DataFrame`
35
+ A DataFrame with a list of foci in the dataset. The index is 'id',
36
+ used for identifying studies. Additional columns include 'x', 'y' and
37
+ 'z' (foci in standard space).
38
+ n_topics : :obj:`int`, optional
39
+ Number of topics to generate in model. As a good rule of thumb, the
40
+ number of topics should be less than the number of studies in the
41
+ dataset. Otherwise, there can be errors during model training.
42
+ The default is 100.
43
+ n_regions : :obj:`int`, optional
44
+ Number of subregions per topic (>=1). The default is 2.
45
+ alpha : :obj:`float`, optional
46
+ Prior count on topics for each document. The default is 0.1.
47
+ beta : :obj:`float`, optional
48
+ Prior count on word-types for each topic. The default is 0.01.
49
+ gamma : :obj:`float`, optional
50
+ Prior count added to y-counts when sampling z assignments. The
51
+ default is 0.01.
52
+ delta : :obj:`float`, optional
53
+ Prior count on subregions for each topic. The default is 1.0.
54
+ dobs : :obj:`int`, optional
55
+ Spatial region 'default observations' (# observations weighting
56
+ Sigma estimates in direction of default 'roi_size' value). The
57
+ default is 25.
58
+ roi_size : :obj:`float`, optional
59
+ Default spatial 'region of interest' size (default value of
60
+ diagonals in covariance matrix for spatial distribution, which the
61
+ distributions are biased towards). The default is 50.0.
62
+ symmetric : :obj:`bool`, optional
63
+ Whether or not to use symmetry constraint on subregions. Symmetry
64
+ requires n_regions = 2. The default is False.
65
+ seed_init : :obj:`int`, optional
66
+ Initial value of random seed. The default is 1.
67
+
68
+ Attributes
69
+ ----------
70
+ p_topic_g_voxel_ : (V x T) :obj:`numpy.ndarray`
71
+ Probability of each topic (T) give a voxel (V)
72
+ p_voxel_g_topic_ : (V x T) :obj:`numpy.ndarray`
73
+ Probability of each voxel (V) given a topic (T)
74
+ p_topic_g_word_ : (W x T) :obj:`numpy.ndarray`
75
+ Probability of each topic (T) given a word (W)
76
+ p_word_g_topic_ : (W x T) :obj:`numpy.ndarray`
77
+ Probability of each word (W) given a topic (T)
78
+
79
+ References
80
+ ----------
81
+ .. footbibliography::
82
+
83
+ See Also
84
+ --------
85
+ nimare.decode.continuous.gclda_decode_map : GCLDA map decoding
86
+ nimare.decode.discrete.gclda_decode_roi : GCLDA ROI decoding
87
+ nimare.decode.encode.encode_gclda : GCLDA text-to-map encoding
88
+ """
89
+
90
+ def __init__(
91
+ self,
92
+ count_df,
93
+ coordinates_df,
94
+ mask="mni152_2mm",
95
+ n_topics=100,
96
+ n_regions=2,
97
+ symmetric=True,
98
+ alpha=0.1,
99
+ beta=0.01,
100
+ gamma=0.01,
101
+ delta=1.0,
102
+ dobs=25,
103
+ roi_size=50.0,
104
+ seed_init=1,
105
+ ):
106
+ LGR.info("Constructing/Initializing GCLDA Model")
107
+ count_df = count_df.copy()
108
+ coordinates_df = coordinates_df.copy()
109
+
110
+ # Check IDs from DataFrames
111
+ count_df.index = count_df.index.astype(str)
112
+ count_df["id"] = count_df.index
113
+ count_ids = count_df.index.tolist()
114
+ if "id" not in coordinates_df.columns:
115
+ coordinates_df["id"] = coordinates_df.index
116
+ coordinates_df["id"] = coordinates_df["id"].astype(str)
117
+ coord_ids = sorted(list(set(coordinates_df["id"].tolist())))
118
+ ids = sorted(list(set(count_ids).intersection(coord_ids)))
119
+ if len(count_ids) != len(coord_ids) != len(ids):
120
+ union_ids = sorted(list(set(count_ids + coord_ids)))
121
+ LGR.warning(
122
+ f"IDs mismatch detected: retaining {len(ids)} of {len(union_ids)} unique IDs"
123
+ )
124
+ self.ids = ids
125
+
126
+ # Reduce inputs based on shared IDs
127
+ count_df = count_df.loc[count_df["id"].isin(ids)]
128
+ coordinates_df = coordinates_df.loc[coordinates_df["id"].isin(ids)]
129
+
130
+ # --- Checking to make sure parameters are valid
131
+ if (symmetric is True) and (n_regions % 2 != 0):
132
+ # symmetric model only valid if R = 2
133
+ raise ValueError("Cannot run a symmetric model unless n_regions is even.")
134
+
135
+ # Initialize sampling parameters
136
+ # The global sampling iteration of the model
137
+ self.iter = 0
138
+ # Current random seed (is incremented after initialization and each sampling update)
139
+ self.seed = 0
140
+
141
+ # Set up model hyperparameters
142
+ # Pseudo-count hyperparams need to be floats so that when sampling
143
+ # distributions are computed the count matrices/vectors are converted
144
+ # to floats
145
+ self.params = {
146
+ "n_topics": n_topics, # Number of topics (T)
147
+ "n_regions": n_regions, # Number of subregions (R)
148
+ "alpha": alpha, # Prior count on topics for each doc
149
+ "beta": beta, # Prior count on word-types for each topic
150
+ "gamma": gamma, # Prior count added to y-counts when sampling z assignments
151
+ "delta": delta, # Prior count on subregions for each topic
152
+ # Default ROI (default covariance spatial region we regularize towards) (not in paper)
153
+ "roi_size": roi_size,
154
+ # Sample constant (# observations weighting sigma in direction of default covariance)
155
+ # (not in paper)
156
+ "dobs": dobs,
157
+ # Use constrained symmetry on subregions? (only for n_regions = 2)
158
+ "symmetric": symmetric,
159
+ "seed_init": seed_init, # Random seed for initializing model
160
+ }
161
+
162
+ # Add dictionaries for other model info
163
+ self.data = {}
164
+ self.topics = {}
165
+
166
+ # Prepare data
167
+ if isinstance(mask, str) and not op.isfile(mask):
168
+ self.mask = get_template(mask, mask="brain")
169
+ else:
170
+ self.mask = load_niimg(mask)
171
+
172
+ # Extract document and word indices from count_df
173
+ docidx_mapper = {id_: i for (i, id_) in enumerate(ids)}
174
+
175
+ # Create docidx column
176
+ count_df["docidx"] = count_df["id"].map(docidx_mapper)
177
+ count_df = count_df.drop(columns=["id"])
178
+
179
+ # Remove words not found anywhere in the corpus
180
+ n_terms = len(count_df.columns) - 1 # number of columns minus one for docidx
181
+ count_df = count_df.loc[:, (count_df != 0).any(axis=0)]
182
+ n_terms_in_corpus = len(count_df.columns) - 1
183
+ if n_terms_in_corpus != n_terms:
184
+ LGR.warning(
185
+ "Some terms in count_df do not appear in corpus. "
186
+ f"Retaining {n_terms_in_corpus/n_terms} terms."
187
+ )
188
+
189
+ # Get updated vocabulary
190
+ # List of word-strings (wtoken_word_idx values are indices into this list)
191
+ vocabulary = count_df.columns.tolist()
192
+ vocabulary.remove("docidx")
193
+ self.vocabulary = vocabulary
194
+ widx_mapper = {word: i for (i, word) in enumerate(self.vocabulary)}
195
+
196
+ # Melt dataframe and create widx column
197
+ widx_df = pd.melt(count_df, id_vars=["docidx"], var_name="word", value_name="count")
198
+ widx_df["widx"] = widx_df["word"].map(widx_mapper)
199
+
200
+ # Replicate rows based on count
201
+ widx_df = widx_df.loc[np.repeat(widx_df.index.values, widx_df["count"])]
202
+ widx_df = widx_df[["docidx", "widx"]].astype(int)
203
+ widx_df.sort_values(by=["docidx", "widx"], inplace=True)
204
+
205
+ # List of document-indices for word-tokens
206
+ self.data["wtoken_doc_idx"] = widx_df["docidx"].tolist()
207
+ # List of word-indices for word-tokens
208
+ self.data["wtoken_word_idx"] = widx_df["widx"].tolist()
209
+
210
+ # Import all peak-indices into lists
211
+ coordinates_df["docidx"] = coordinates_df["id"].astype(str).map(docidx_mapper)
212
+ coordinates_df = coordinates_df[["docidx", "x", "y", "z"]]
213
+ coordinates_df["docidx"] = coordinates_df["docidx"].astype(int)
214
+
215
+ # List of document-indices for peak-tokens x
216
+ self.data["ptoken_doc_idx"] = coordinates_df["docidx"].tolist()
217
+ self.data["ptoken_coords"] = coordinates_df[["x", "y", "z"]].values
218
+
219
+ # Seed random number generator
220
+ np.random.seed(self.params["seed_init"])
221
+
222
+ # Preallocate vectors of assignment indices
223
+ # word->topic assignments
224
+ self.topics["wtoken_topic_idx"] = np.zeros(len(self.data["wtoken_word_idx"]), dtype=int)
225
+
226
+ # Randomly initialize peak->topic assignments (y) ~ unif(1...n_topics)
227
+ self.topics["peak_topic_idx"] = np.random.randint(
228
+ self.params["n_topics"],
229
+ size=(len(self.data["ptoken_doc_idx"])),
230
+ )
231
+
232
+ # peak->region assignments
233
+ self.topics["peak_region_idx"] = np.zeros(len(self.data["ptoken_doc_idx"]), dtype=int)
234
+
235
+ # Preallocate count matrices
236
+ # Peaks: D x T: Number of peak-tokens assigned to each topic per document
237
+ self.topics["n_peak_tokens_doc_by_topic"] = np.zeros(
238
+ (len(self.ids), self.params["n_topics"]),
239
+ dtype=int,
240
+ )
241
+
242
+ # Peaks: R x T: Number of peak-tokens assigned to each subregion per topic
243
+ self.topics["n_peak_tokens_region_by_topic"] = np.zeros(
244
+ (self.params["n_regions"], self.params["n_topics"]),
245
+ dtype=int,
246
+ )
247
+
248
+ # Words: W x T: Number of word-tokens assigned to each topic per word-type
249
+ self.topics["n_word_tokens_word_by_topic"] = np.zeros(
250
+ (len(self.vocabulary), self.params["n_topics"]),
251
+ dtype=int,
252
+ )
253
+
254
+ # Words: D x T: Number of word-tokens assigned to each topic per document
255
+ self.topics["n_word_tokens_doc_by_topic"] = np.zeros(
256
+ (len(self.ids), self.params["n_topics"]),
257
+ dtype=int,
258
+ )
259
+
260
+ # Words: 1 x T: Total number of word-tokens assigned to each topic (across all docs)
261
+ self.topics["total_n_word_tokens_by_topic"] = np.zeros(
262
+ (1, self.params["n_topics"]),
263
+ dtype=int,
264
+ )
265
+
266
+ # Preallocate Gaussians for all subregions
267
+ # Regions_Mu & Regions_Sigma: Gaussian mean and covariance for all
268
+ # subregions of all topics
269
+ # Formed using lists (over topics) of lists (over subregions) of numpy
270
+ # arrays
271
+ # regions_mu = (n_topics, n_regions, 1, n_peak_dims)
272
+ # regions_sigma = (n_topics, n_regions, n_peak_dims, n_peak_dims)
273
+ # (\mu^{(t)}_r)
274
+ self.topics["regions_mu"] = np.zeros(
275
+ (
276
+ self.params["n_topics"],
277
+ self.params["n_regions"],
278
+ 1,
279
+ self.data["ptoken_coords"].shape[1], # generally 3
280
+ ),
281
+ )
282
+ # (\sigma^{(t)}_r)
283
+ self.topics["regions_sigma"] = np.zeros(
284
+ (
285
+ self.params["n_topics"],
286
+ self.params["n_regions"],
287
+ self.data["ptoken_coords"].shape[1], # generally 3
288
+ self.data["ptoken_coords"].shape[1], # generally 3
289
+ )
290
+ )
291
+
292
+ # Initialize lists for tracking log-likelihood of data over sampling iterations
293
+ self.loglikelihood = {
294
+ "iter": [], # Tracks iteration associated with the log-likelihood values
295
+ "x": [], # Tracks log-likelihood of peak tokens
296
+ "w": [], # Tracks log-likelihood of word tokens
297
+ "total": [], # Tracks log-likelihood of peak + word tokens
298
+ }
299
+
300
+ # Initialize peak->subregion assignments (r)
301
+ if self.params["symmetric"]:
302
+ # if symmetric model use deterministic assignment :
303
+ # if peak_val[0] > 0, r = 1, else r = 0
304
+ # Namely, check whether x-coordinate is greater than zero.
305
+ n_pairs = int(self.params["n_regions"] / 2)
306
+ initial_assignments = np.random.randint(
307
+ n_pairs,
308
+ size=(len(self.data["ptoken_doc_idx"])),
309
+ )
310
+ signs = (self.data["ptoken_coords"][:, 0] > 0).astype(int)
311
+ self.topics["peak_region_idx"][:] = (initial_assignments * 2) + signs
312
+ else:
313
+ # if asymmetric model, randomly sample r ~ unif(1...n_regions)
314
+ self.topics["peak_region_idx"][:] = np.random.randint(
315
+ self.params["n_regions"],
316
+ size=(len(self.data["ptoken_doc_idx"])),
317
+ )
318
+
319
+ # Update model vectors and count matrices to reflect y and r assignments
320
+ for i_ptoken, peak_doc in enumerate(self.data["ptoken_doc_idx"]):
321
+ # peak-token -> topic assignment (y_i)
322
+ peak_topic = self.topics["peak_topic_idx"][i_ptoken]
323
+ # peak-token -> subregion assignment (c_i)
324
+ peak_region = self.topics["peak_region_idx"][i_ptoken]
325
+ # Increment document-by-topic counts
326
+ self.topics["n_peak_tokens_doc_by_topic"][peak_doc, peak_topic] += 1
327
+ # Increment region-by-topic
328
+ self.topics["n_peak_tokens_region_by_topic"][peak_region, peak_topic] += 1
329
+
330
+ # Randomly Initialize Word->Topic Assignments (z) for each word
331
+ # token w_i: sample z_i proportional to p(topic|doc_i)
332
+ for i_wtoken, word in enumerate(self.data["wtoken_word_idx"]):
333
+ # w_i doc-index
334
+ doc = self.data["wtoken_doc_idx"][i_wtoken]
335
+
336
+ # Estimate p(t|d) for current doc
337
+ p_topic_g_doc = (
338
+ self.topics["n_peak_tokens_doc_by_topic"][doc, :] + self.params["gamma"]
339
+ )
340
+
341
+ # Sample a topic from p(t|d) for the z-assignment
342
+ # Compute a cdf of the sampling distribution for z
343
+ probs = np.cumsum(p_topic_g_doc)
344
+
345
+ # How many elements of cdf are less than sample
346
+ random_threshold = np.random.rand() * probs[-1]
347
+ # z = # elements of cdf less than rand-sample
348
+ topic = np.sum(probs < random_threshold)
349
+
350
+ # Update model assignment vectors and count-matrices to reflect z
351
+ # Word-token -> topic assignment (z_i)
352
+ self.topics["wtoken_topic_idx"][i_wtoken] = topic
353
+ self.topics["n_word_tokens_word_by_topic"][word, topic] += 1
354
+ self.topics["total_n_word_tokens_by_topic"][0, topic] += 1
355
+ self.topics["n_word_tokens_doc_by_topic"][doc, topic] += 1
356
+
357
+ def fit(self, n_iters=5000, loglikely_freq=10):
358
+ """Run multiple iterations.
359
+
360
+ .. versionchanged:: 0.0.8
361
+
362
+ [ENH] Remove ``verbose`` parameter.
363
+
364
+ Parameters
365
+ ----------
366
+ n_iters : :obj:`int`, default=5000
367
+ Number of iterations to run. Default is 5000.
368
+ loglikely_freq : :obj:`int`, optional
369
+ The frequency with which log-likelihood is updated. Default value
370
+ is 1 (log-likelihood is updated every iteration).
371
+ """
372
+ if self.iter == 0:
373
+ # Get Initial Spatial Parameter Estimates
374
+ self._update_regions()
375
+
376
+ # Get Log-Likelihood of data for Initialized model and save to
377
+ # variables tracking loglikely
378
+ self.compute_log_likelihood()
379
+
380
+ for i in range(self.iter, n_iters):
381
+ self._update(loglikely_freq=loglikely_freq)
382
+
383
+ # TODO: Handle this more elegantly
384
+ (
385
+ p_topic_g_voxel,
386
+ p_voxel_g_topic,
387
+ p_topic_g_word,
388
+ p_word_g_topic,
389
+ ) = self.get_probability_distributions()
390
+ self.p_topic_g_voxel_ = p_topic_g_voxel
391
+ self.p_voxel_g_topic_ = p_voxel_g_topic
392
+ self.p_topic_g_word_ = p_topic_g_word
393
+ self.p_word_g_topic_ = p_word_g_topic
394
+
395
+ def _update(self, loglikely_freq=1):
396
+ """Run a complete update cycle (sample z, sample y&r, update regions).
397
+
398
+ .. versionchanged:: 0.0.8
399
+
400
+ [ENH] Remove ``verbose`` parameter.
401
+
402
+ Parameters
403
+ ----------
404
+ loglikely_freq : :obj:`int`, optional
405
+ The frequency with which log-likelihood is updated. Default value
406
+ is 1 (log-likelihood is updated every iteration).
407
+ """
408
+ self.iter += 1 # Update total iteration count
409
+
410
+ LGR.debug(f"Iter {self.iter:04d}: Sampling z")
411
+ self.seed += 1
412
+ self._update_word_topic_assignments(self.seed) # Update z-assignments
413
+
414
+ LGR.debug(f"Iter {self.iter:04d}: Sampling y|r")
415
+ self.seed += 1
416
+ self._update_peak_assignments(self.seed) # Update y-assignments
417
+
418
+ LGR.debug(f"Iter {self.iter:04d}: Updating spatial params")
419
+ self._update_regions() # Update gaussian estimates for all subregions
420
+
421
+ # Only update log-likelihood every 'loglikely_freq' iterations
422
+ # (Computing log-likelihood isn't necessary and slows things down a bit)
423
+ if self.iter % loglikely_freq == 0:
424
+ LGR.debug(f"Iter {self.iter:04d}: Computing log-likelihood")
425
+
426
+ # Compute log-likelihood of model in current state
427
+ self.compute_log_likelihood()
428
+ LGR.info(
429
+ f"Iter {self.iter:04d} Log-likely: x = {self.loglikelihood['x'][-1]:10.1f}, "
430
+ f"w = {self.loglikelihood['w'][-1]:10.1f}, "
431
+ f"tot = {self.loglikelihood['total'][-1]:10.1f}"
432
+ )
433
+
434
+ def _update_word_topic_assignments(self, randseed):
435
+ """Update wtoken_topic_idx (z) indicator variables assigning words->topics.
436
+
437
+ Parameters
438
+ ----------
439
+ randseed : :obj:`int`
440
+ Random seed for this iteration.
441
+ """
442
+ # --- Seed random number generator
443
+ np.random.seed(randseed)
444
+
445
+ # Loop over all word tokens
446
+ for i_wtoken, word in enumerate(self.data["wtoken_word_idx"]):
447
+ # Find document in which word token (not just word) appears
448
+ doc = self.data["wtoken_doc_idx"][i_wtoken]
449
+ # current topic assignment for word token w_i
450
+ topic = self.topics["wtoken_topic_idx"][i_wtoken]
451
+
452
+ # Decrement count-matrices to remove current wtoken_topic_idx
453
+ # because wtoken will be reassigned to a new topic
454
+ self.topics["n_word_tokens_word_by_topic"][word, topic] -= 1
455
+ self.topics["total_n_word_tokens_by_topic"][0, topic] -= 1
456
+ self.topics["n_word_tokens_doc_by_topic"][doc, topic] -= 1
457
+
458
+ # Get sampling distribution:
459
+ # p(z_i|z,d,w) ~ p(w|t) * p(t|d)
460
+ # ~ p_w_t * p_topic_g_doc
461
+ p_word_g_topic = (
462
+ self.topics["n_word_tokens_word_by_topic"][word, :] + self.params["beta"]
463
+ ) / (
464
+ self.topics["total_n_word_tokens_by_topic"]
465
+ + (self.params["beta"] * len(self.vocabulary))
466
+ )
467
+ p_topic_g_doc = (
468
+ self.topics["n_peak_tokens_doc_by_topic"][doc, :] + self.params["gamma"]
469
+ )
470
+ probs = p_word_g_topic * p_topic_g_doc # The unnormalized sampling distribution
471
+
472
+ # Sample a z_i assignment for the current word-token from the sampling distribution
473
+ probs = np.squeeze(probs) / np.sum(probs) # Normalize the sampling distribution
474
+ # Numpy returns a binary [1 x T] vector with a '1' in the index of sampled topic
475
+ # and zeros everywhere else
476
+ assigned_topic_vec = np.random.multinomial(1, probs)
477
+ # Extract selected topic from vector
478
+ topic = np.where(assigned_topic_vec)[0][0]
479
+
480
+ # Update the indices and the count matrices using the sampled z assignment
481
+ self.topics["wtoken_topic_idx"][i_wtoken] = topic # Update w_i topic-assignment
482
+ self.topics["n_word_tokens_word_by_topic"][word, topic] += 1
483
+ self.topics["total_n_word_tokens_by_topic"][0, topic] += 1
484
+ self.topics["n_word_tokens_doc_by_topic"][doc, topic] += 1
485
+
486
+ def _update_peak_assignments(self, randseed):
487
+ """Update y / r indicator variables assigning peaks->topics/subregions.
488
+
489
+ Parameters
490
+ ----------
491
+ randseed : :obj:`int`
492
+ Random seed for this iteration.
493
+ """
494
+ # Seed random number generator
495
+ np.random.seed(randseed)
496
+
497
+ # Retrieve p(x|r,y) for all subregions
498
+ peak_probs = self._get_peak_probs(self)
499
+
500
+ # Iterate over all peaks x, and sample a new y and r assignment for each
501
+ for i_ptoken, doc in enumerate(self.data["ptoken_doc_idx"]):
502
+ topic = self.topics["peak_topic_idx"][i_ptoken]
503
+ region = self.topics["peak_region_idx"][i_ptoken]
504
+
505
+ # Decrement count-matrices to remove current ptoken_topic_idx
506
+ # because ptoken will be reassigned to a new topic
507
+ self.topics["n_peak_tokens_region_by_topic"][region, topic] -= 1
508
+ self.topics["n_peak_tokens_doc_by_topic"][doc, topic] -= 1
509
+
510
+ # Retrieve the probability of generating current x from all
511
+ # subregions: [R x T] array of probs
512
+ p_x_subregions = (peak_probs[i_ptoken, :, :]).transpose()
513
+
514
+ # Compute the probabilities of all subregions given doc
515
+ # p(r|d) ~ p(r|t) * p(t|d)
516
+ # Counts of subregions per topic + prior: p(r|t)
517
+ p_region_g_topic = self.topics["n_peak_tokens_region_by_topic"] + self.params["delta"]
518
+
519
+ # Normalize the columns such that each topic's distribution over subregions sums to 1
520
+ p_region_g_topic = p_region_g_topic / np.sum(p_region_g_topic, axis=0, keepdims=True)
521
+
522
+ # Counts of topics per document + prior: p(t|d)
523
+ p_topic_g_doc = (
524
+ self.topics["n_peak_tokens_doc_by_topic"][doc, :] + self.params["alpha"]
525
+ )
526
+
527
+ # Reshape from (ntopics,) to (nregions, ntopics) with duplicated rows
528
+ # Makes it the same shape as p_region_g_topic
529
+ p_topic_g_doc = np.array([p_topic_g_doc] * self.params["n_regions"])
530
+
531
+ # Compute p(subregion | document): p(r|d) ~ p(r|t) * p(t|d)
532
+ # [R x T] array of probs
533
+ p_region_g_doc = p_topic_g_doc * p_region_g_topic
534
+
535
+ # Compute the multinomial probability: p(z|y)
536
+ # Need the current vector of all z and y assignments for current doc
537
+ # The multinomial from which z is sampled is proportional to number
538
+ # of y assigned to each topic, plus constant gamma
539
+ # Compute the proportional probabilities in log-space
540
+ logp = self.topics["n_word_tokens_doc_by_topic"][doc, :] * np.log(
541
+ (self.topics["n_peak_tokens_doc_by_topic"][doc, :] + self.params["gamma"] + 1)
542
+ / (self.topics["n_peak_tokens_doc_by_topic"][doc, :] + self.params["gamma"])
543
+ )
544
+ # Add a constant before exponentiating to avoid any underflow issues
545
+ p_peak_g_topic = np.exp(logp - np.max(logp))
546
+
547
+ # Reshape from (ntopics,) to (nregions, ntopics) with duplicated rows
548
+ p_peak_g_topic = np.array([p_peak_g_topic] * self.params["n_regions"])
549
+
550
+ # Get the full sampling distribution:
551
+ # [R x T] array containing the proportional probability of all y/r combinations
552
+ probs_pdf = p_x_subregions * p_region_g_doc * p_peak_g_topic
553
+
554
+ # Convert from a [R x T] matrix into a [R*T x 1] array we can sample from
555
+ probs_pdf = np.reshape(probs_pdf, (self.params["n_regions"] * self.params["n_topics"]))
556
+
557
+ # Normalize the sampling distribution
558
+ probs_pdf = probs_pdf / np.sum(probs_pdf)
559
+
560
+ # Sample a single element (corresponding to a y_i and c_i assignment for the ptoken)
561
+ # from the sampling distribution
562
+ # Returns a binary [1 x R*T] vector with a '1' in location that was sampled
563
+ # and zeros everywhere else
564
+ assignment_vec = np.random.multinomial(1, probs_pdf)
565
+
566
+ # Reshape 1D back to [R x T] 2D
567
+ assignment_arr = np.reshape(
568
+ assignment_vec,
569
+ (self.params["n_regions"], self.params["n_topics"]),
570
+ )
571
+ # Transform the linear index of the sampled element into the
572
+ # subregion/topic (r/y) assignment indices
573
+ assignment_idx = np.where(assignment_arr)
574
+ # Subregion sampled (r)
575
+ region = assignment_idx[0][0]
576
+ # Topic sampled (y)
577
+ topic = assignment_idx[1][0]
578
+
579
+ # Update the indices and the count matrices using the sampled y/r assignments
580
+ # Increment count in Subregion x Topic count matrix
581
+ self.topics["n_peak_tokens_region_by_topic"][region, topic] += 1
582
+ # Increment count in Document x Topic count matrix
583
+ self.topics["n_peak_tokens_doc_by_topic"][doc, topic] += 1
584
+ # Update y->topic assignment
585
+ self.topics["peak_topic_idx"][i_ptoken] = topic
586
+ # Update y->subregion assignment
587
+ self.topics["peak_region_idx"][i_ptoken] = region
588
+
589
+ def _update_regions(self):
590
+ """Update spatial distribution parameters (Gaussians params for all subregions).
591
+
592
+ Updates regions_mu and regions_sigma, indicating location and
593
+ distribution of each subregion.
594
+ """
595
+ # Generate default ROI based on default_width
596
+ default_roi = self.params["roi_size"] * np.eye(self.data["ptoken_coords"].shape[1])
597
+
598
+ if self.params["symmetric"]:
599
+ n_pairs = int(self.params["n_regions"] / 2)
600
+
601
+ # With symmetric subregions, we jointly compute all estimates for subregions 1 & 2,
602
+ # constraining the means to be symmetric w.r.t. the origin along x-dimension
603
+ for i_topic in range(self.params["n_topics"]):
604
+ for j_pair in range(n_pairs):
605
+ region1, region2 = j_pair * 2, (j_pair * 2) + 1
606
+
607
+ # Get all peaks assigned to current topic & subregion 1
608
+ idx1 = (self.topics["peak_topic_idx"] == i_topic) & (
609
+ self.topics["peak_region_idx"] == region1
610
+ )
611
+ idx1_xyz = self.data["ptoken_coords"][idx1, :]
612
+ n_obs1 = self.topics["n_peak_tokens_region_by_topic"][region1, i_topic]
613
+
614
+ # Get all peaks assigned to current topic & subregion 2
615
+ idx2 = (self.topics["peak_topic_idx"] == i_topic) & (
616
+ self.topics["peak_region_idx"] == region2
617
+ )
618
+ idx2_xyz = self.data["ptoken_coords"][idx2, :]
619
+ n_obs2 = self.topics["n_peak_tokens_region_by_topic"][region2, i_topic]
620
+
621
+ # Get all peaks assigned to current topic & either subregion
622
+ all_topic_peaks = idx1 | idx2
623
+ all_xyz = self.data["ptoken_coords"][all_topic_peaks, :]
624
+
625
+ # Estimate means
626
+ # If there are no observations, we set mean equal to zeros, otherwise take MLE
627
+
628
+ # Estimate independent mean (centroid of peaks) for subregion 1
629
+ if n_obs1 == 0:
630
+ reg1_center_xyz = np.zeros([self.data["ptoken_coords"].shape[1]])
631
+ else:
632
+ reg1_center_xyz = np.mean(idx1_xyz, axis=0)
633
+
634
+ # Estimate independent mean (centroid of peaks) for subregion 2
635
+ if n_obs2 == 0:
636
+ reg2_center_xyz = np.zeros([self.data["ptoken_coords"].shape[1]])
637
+ else:
638
+ reg2_center_xyz = np.mean(idx2_xyz, axis=0)
639
+
640
+ # Estimate the weighted means of all dims, where for dim1 we
641
+ # compute the mean w.r.t. absolute distance from the origin
642
+ weighted_mean_dim1 = (
643
+ (-reg1_center_xyz[0] * n_obs1) + (reg2_center_xyz[0] * n_obs2)
644
+ ) / (n_obs1 + n_obs2)
645
+ weighted_mean_otherdims = np.mean(all_xyz[:, 1:], axis=0)
646
+
647
+ # Store weighted mean estimates
648
+ mu1 = np.zeros([1, self.data["ptoken_coords"].shape[1]])
649
+ mu2 = np.zeros([1, self.data["ptoken_coords"].shape[1]])
650
+ mu1[0, 0] = -weighted_mean_dim1
651
+ mu1[0, 1:] = weighted_mean_otherdims
652
+ mu2[0, 0] = weighted_mean_dim1
653
+ mu2[0, 1:] = weighted_mean_otherdims
654
+
655
+ # Store estimates in model object
656
+ self.topics["regions_mu"][i_topic, region1, ...] = mu1
657
+ self.topics["regions_mu"][i_topic, region2, ...] = mu2
658
+
659
+ # Estimate Covariances
660
+ # Covariances are estimated independently
661
+ # Covariance for subregion 1
662
+ if n_obs1 <= 1:
663
+ c_hat1 = default_roi
664
+ else:
665
+ c_hat1 = np.cov(idx1_xyz, rowvar=False)
666
+
667
+ # Covariance for subregion 2
668
+ if n_obs2 <= 1:
669
+ c_hat2 = default_roi
670
+ else:
671
+ c_hat2 = np.cov(idx2_xyz, rowvar=False)
672
+
673
+ # Regularize the covariances, using the ratio of observations to
674
+ # sample_constant
675
+ d_c_1 = (n_obs1) / (n_obs1 + self.params["dobs"])
676
+ d_c_2 = (n_obs2) / (n_obs2 + self.params["dobs"])
677
+ sigma1 = (d_c_1 * c_hat1) + ((1 - d_c_1) * default_roi)
678
+ sigma2 = (d_c_2 * c_hat2) + ((1 - d_c_2) * default_roi)
679
+
680
+ # Store estimates in model object
681
+ self.topics["regions_sigma"][i_topic, region1, ...] = sigma1
682
+ self.topics["regions_sigma"][i_topic, region2, ...] = sigma2
683
+ else:
684
+ # For each region, compute a mean and a regularized covariance matrix
685
+ for i_topic in range(self.params["n_topics"]):
686
+ for j_region in range(self.params["n_regions"]):
687
+ # Get all peaks assigned to current topic & subregion
688
+ topic_region_peaks_idx = (self.topics["peak_topic_idx"] == i_topic) & (
689
+ self.topics["peak_region_idx"] == j_region
690
+ )
691
+ topic_region_peaks_xyz = self.data["ptoken_coords"][topic_region_peaks_idx, :]
692
+ n_obs = self.topics["n_peak_tokens_region_by_topic"][j_region, i_topic]
693
+
694
+ # Estimate mean
695
+ # If there are no observations, we set mean equal to zeros, otherwise take MLE
696
+ if n_obs == 0:
697
+ mu = np.zeros([self.data["ptoken_coords"].shape[1]])
698
+ else:
699
+ mu = np.mean(topic_region_peaks_xyz, axis=0)
700
+
701
+ # Estimate covariance
702
+ # if there are 1 or fewer observations, we set sigma_hat equal to default ROI,
703
+ # otherwise take MLE
704
+ if n_obs <= 1:
705
+ c_hat = default_roi
706
+ else:
707
+ c_hat = np.cov(topic_region_peaks_xyz, rowvar=False)
708
+
709
+ # Regularize the covariance, using the ratio of observations
710
+ # to dobs (default constant # observations)
711
+ d_c = n_obs / (n_obs + self.params["dobs"])
712
+ sigma = (d_c * c_hat) + ((1 - d_c) * default_roi)
713
+
714
+ # Store estimates in model object
715
+ self.topics["regions_mu"][i_topic, j_region, ...] = mu
716
+ self.topics["regions_sigma"][i_topic, j_region, ...] = sigma
717
+
718
+ def compute_log_likelihood(self, model=None, update_vectors=True):
719
+ """Compute log-likelihood of a model object given current model.
720
+
721
+ Computes the log-likelihood of data in any model object (either train or test) given the
722
+ posterior predictive distributions over peaks and word-types for the model,
723
+ using the method described in :footcite:t:`newman2009distributed`.
724
+ Note that this is not computing the joint log-likelihood of model parameters and data.
725
+
726
+ Parameters
727
+ ----------
728
+ model : :obj:`~nimare.annotate.gclda.GCLDAModel`, optional
729
+ The model for which log-likelihoods will be calculated.
730
+ If not provided, log-likelihood will be calculated for the current model (self).
731
+ Default is None.
732
+ update_vectors : :obj:`bool`, optional
733
+ Whether to update model's log-likelihood vectors or not.
734
+ Default is True.
735
+
736
+ Returns
737
+ -------
738
+ x_loglikely : :obj:`float`
739
+ Total log-likelihood of all peak tokens.
740
+ w_loglikely : :obj:`float`
741
+ Total log-likelihood of all word tokens.
742
+ tot_loglikely : :obj:`float`
743
+ Total log-likelihood of peak + word tokens.
744
+
745
+ References
746
+ ----------
747
+ .. footbibliography::
748
+ """
749
+ if model is None:
750
+ model = self
751
+ elif update_vectors:
752
+ LGR.info("External model detected: Disabling update_vectors")
753
+ update_vectors = False
754
+
755
+ # Pre-compute all probabilities from count matrices that are needed
756
+ # for loglikelihood computations
757
+ # Compute docprobs for y = ND x NT: p( y_i=t | d )
758
+ doccounts = self.topics["n_peak_tokens_doc_by_topic"] + self.params["alpha"]
759
+ doccounts_sum = np.sum(doccounts, axis=1)
760
+ docprobs_y = np.transpose(np.transpose(doccounts) / doccounts_sum)
761
+
762
+ # Compute docprobs for z = ND x NT: p( z_i=t | y^(d) )
763
+ doccounts = self.topics["n_peak_tokens_doc_by_topic"] + self.params["gamma"]
764
+ doccounts_sum = np.sum(doccounts, axis=1)
765
+ docprobs_z = np.transpose(np.transpose(doccounts) / doccounts_sum)
766
+
767
+ # Compute regionprobs = NR x NT: p( r | t )
768
+ regioncounts = (self.topics["n_peak_tokens_region_by_topic"]) + self.params["delta"]
769
+ regioncounts_sum = np.sum(regioncounts, axis=0)
770
+ regionprobs = regioncounts / regioncounts_sum
771
+
772
+ # Compute wordprobs = NW x NT: p( w | t )
773
+ wordcounts = self.topics["n_word_tokens_word_by_topic"] + self.params["beta"]
774
+ wordcounts_sum = np.sum(wordcounts, axis=0)
775
+ wordprobs = wordcounts / wordcounts_sum
776
+
777
+ # Get the matrix giving p(x_i|r,t) for all x:
778
+ # NY x NT x NR matrix of probabilities of all peaks given all
779
+ # topic/subregion spatial distributions
780
+ peak_probs = self._get_peak_probs(model)
781
+
782
+ # Compute observed peaks (x) Loglikelihood:
783
+ # p(x|model, doc) = p(topic|doc) * p(subregion|topic) * p(x|subregion)
784
+ # = p_topic_g_doc * p_region_g_topic * p_x_r
785
+ # Initialize variable tracking total loglikelihood of all x tokens
786
+ x_loglikely = 0
787
+
788
+ # Go over all observed peaks and add p(x|model) to running total
789
+ for i_ptoken in range(len(self.data["ptoken_doc_idx"])):
790
+ doc = self.data["ptoken_doc_idx"][i_ptoken] - 1 # convert didx from 1-idx to 0-idx
791
+ p_x = 0 # Running total for p(x|d) across subregions:
792
+ # Compute p(x_i|d) for each subregion separately and then
793
+ # sum across the subregions
794
+ for j_region in range(self.params["n_regions"]):
795
+ # p(t|d) - p(topic|doc)
796
+ p_topic_g_doc = docprobs_y[doc]
797
+
798
+ # p(r|t) - p(subregion|topic)
799
+ p_region_g_topic = regionprobs[j_region]
800
+
801
+ # p(r|d) - p(subregion|document) = p(topic|doc)*p(subregion|topic)
802
+ p_region_g_doc = p_topic_g_doc * p_region_g_topic
803
+
804
+ # p(x|r) - p(x|subregion)
805
+ p_x_r = peak_probs[i_ptoken, :, j_region]
806
+
807
+ # p(x|subregion,doc) = sum_topics ( p(subregion|doc) * p(x|subregion) )
808
+ p_x_rd = np.dot(p_region_g_doc, p_x_r)
809
+ p_x += p_x_rd # Add probability for current subregion to total
810
+ # probability for token across subregions
811
+ # Add probability for current token to running total for all x tokens
812
+ x_loglikely += np.log(p_x)
813
+
814
+ # Compute observed words (w) Loglikelihoods:
815
+ # p(w|model, doc) = p(topic|doc) * p(word|topic)
816
+ # = p_topic_g_doc * p_w_t
817
+ w_loglikely = 0 # Initialize variable tracking total loglikelihood of all w tokens
818
+
819
+ # Compute a matrix of posterior predictives over words:
820
+ # = ND x NW p(w|d) = sum_t ( p(t|d) * p(w|t) )
821
+ p_wtoken_g_doc = np.dot(docprobs_z, np.transpose(wordprobs))
822
+
823
+ # Go over all observed word tokens and add p(w|model) to running total
824
+ for i_wtoken in range(len(self.data["wtoken_word_idx"])):
825
+ # convert wtoken_word_idx from 1-idx to 0-idx
826
+ word_token = self.data["wtoken_word_idx"][i_wtoken] - 1
827
+ # convert wtoken_doc_idx from 1-idx to 0-idx
828
+ doc = self.data["wtoken_doc_idx"][i_wtoken] - 1
829
+ # Probability of sampling current w token from d
830
+ p_wtoken = p_wtoken_g_doc[doc, word_token]
831
+ # Add log-probability of current token to running total for all w tokens
832
+ w_loglikely += np.log(p_wtoken)
833
+ tot_loglikely = x_loglikely + w_loglikely
834
+
835
+ # Update model log-likelihood history vector (if update_vectors == True)
836
+ if update_vectors:
837
+ self.loglikelihood["iter"].append(self.iter)
838
+ self.loglikelihood["x"].append(x_loglikely)
839
+ self.loglikelihood["w"].append(w_loglikely)
840
+ self.loglikelihood["total"].append(tot_loglikely)
841
+
842
+ # Return loglikely values (used when computing log-likelihood for a
843
+ # model-object containing hold-out data)
844
+ return (x_loglikely, w_loglikely, tot_loglikely)
845
+
846
+ def _get_peak_probs(self, model):
847
+ """Compute a matrix giving p(x|r,t).
848
+
849
+ This uses all x values in a model object, and each topic's spatial parameters.
850
+
851
+ Returns
852
+ -------
853
+ peak_probs : :obj:`numpy.ndarray` of :obj:`numpy.float64`
854
+ nPeaks x nTopics x nRegions matrix of probabilities, giving
855
+ probability of sampling each peak (x) from all subregions.
856
+ """
857
+ peak_probs = np.zeros(
858
+ (len(model.data["ptoken_doc_idx"]), self.params["n_topics"], self.params["n_regions"]),
859
+ dtype=float,
860
+ )
861
+ for i_topic in range(self.params["n_topics"]):
862
+ for j_region in range(self.params["n_regions"]):
863
+ pdf = multivariate_normal.pdf(
864
+ model.data["ptoken_coords"],
865
+ mean=self.topics["regions_mu"][i_topic, j_region, 0, :],
866
+ cov=self.topics["regions_sigma"][i_topic, j_region, ...],
867
+ )
868
+ peak_probs[:, i_topic, j_region] = pdf
869
+ return peak_probs
870
+
871
+ def get_probability_distributions(self):
872
+ """Get conditional probability of selecting each voxel in the brain mask given each topic.
873
+
874
+ Returns
875
+ -------
876
+ p_topic_g_voxel : :obj:`numpy.ndarray` of :obj:`numpy.float64`
877
+ A voxel-by-topic array of conditional probabilities: p(topic|voxel).
878
+ For cell ij, the value is the probability of topic j being selected
879
+ given voxel i is active.
880
+ p_voxel_g_topic : :obj:`numpy.ndarray` of :obj:`numpy.float64`
881
+ A voxel-by-topic array of conditional probabilities: p(voxel|topic).
882
+ For cell ij, the value is the probability of voxel i being selected
883
+ given topic j has already been selected.
884
+ p_topic_g_word : :obj:`numpy.ndarray` of :obj:`numpy.float64`
885
+ A word-by-topic array of conditional probabilities: p(topic|word).
886
+ For cell ij, the value is the probability of topic i being selected
887
+ given word j is present.
888
+ p_word_g_topic : :obj:`numpy.ndarray` of :obj:`numpy.float64`
889
+ A word-by-topic array of conditional probabilities: p(word|topic).
890
+ For cell ij, the value is the probability of word j being selected
891
+ given topic i has already been selected.
892
+ """
893
+ affine = self.mask.affine
894
+ mask_ijk = np.vstack(np.where(self.mask.get_fdata())).T
895
+ mask_xyz = nib.affines.apply_affine(affine, mask_ijk)
896
+
897
+ spatial_dists = np.zeros((mask_xyz.shape[0], self.params["n_topics"]), float)
898
+ for i_topic in range(self.params["n_topics"]):
899
+ for j_region in range(self.params["n_regions"]):
900
+ pdf = multivariate_normal.pdf(
901
+ mask_xyz,
902
+ mean=self.topics["regions_mu"][i_topic, j_region, 0, :],
903
+ cov=self.topics["regions_sigma"][i_topic, j_region, ...],
904
+ )
905
+ spatial_dists[:, i_topic] += pdf
906
+ p_topic_g_voxel = spatial_dists / np.sum(spatial_dists, axis=1)[:, None]
907
+ p_topic_g_voxel = np.nan_to_num(p_topic_g_voxel, 0) # might be unnecessary
908
+
909
+ p_voxel_g_topic = spatial_dists / np.sum(spatial_dists, axis=0)[None, :]
910
+ p_voxel_g_topic = np.nan_to_num(p_voxel_g_topic, 0) # might be unnecessary
911
+
912
+ n_word_tokens_per_topic = np.sum(self.topics["n_word_tokens_word_by_topic"], axis=0)
913
+ p_word_g_topic = (
914
+ self.topics["n_word_tokens_word_by_topic"] / n_word_tokens_per_topic[None, :]
915
+ )
916
+ p_word_g_topic = np.nan_to_num(p_word_g_topic, 0)
917
+
918
+ n_topics_per_word_token = np.sum(self.topics["n_word_tokens_word_by_topic"], axis=1)
919
+ p_topic_g_word = (
920
+ self.topics["n_word_tokens_word_by_topic"] / n_topics_per_word_token[:, None]
921
+ )
922
+ p_topic_g_word = np.nan_to_num(p_topic_g_word, 0)
923
+
924
+ return p_topic_g_voxel, p_voxel_g_topic, p_topic_g_word, p_word_g_topic