ngsolve 6.2.2501.post47.dev1__cp313-cp313-macosx_10_15_universal2.whl → 6.2.2501.post48.dev1__cp313-cp313-macosx_10_15_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ngsolve might be problematic. Click here for more details.

Files changed (285) hide show
  1. netgen/include/arnoldi.hpp +55 -0
  2. netgen/include/bandmatrix.hpp +334 -0
  3. netgen/include/basematrix.hpp +957 -0
  4. netgen/include/basevector.hpp +1268 -0
  5. netgen/include/bdbequations.hpp +2752 -0
  6. netgen/include/bdbintegrator.hpp +1660 -0
  7. netgen/include/bessel.hpp +1064 -0
  8. netgen/include/bilinearform.hpp +963 -0
  9. netgen/include/bla.hpp +29 -0
  10. netgen/include/blockalloc.hpp +95 -0
  11. netgen/include/blockjacobi.hpp +316 -0
  12. netgen/include/bspline.hpp +114 -0
  13. netgen/include/calcinverse.hpp +141 -0
  14. netgen/include/cg.hpp +368 -0
  15. netgen/include/chebyshev.hpp +44 -0
  16. netgen/include/cholesky.hpp +720 -0
  17. netgen/include/clapack.h +7254 -0
  18. netgen/include/code_generation.hpp +296 -0
  19. netgen/include/coefficient.hpp +2033 -0
  20. netgen/include/coefficient_impl.hpp +19 -0
  21. netgen/include/coefficient_stdmath.hpp +167 -0
  22. netgen/include/commutingAMG.hpp +106 -0
  23. netgen/include/comp.hpp +79 -0
  24. netgen/include/compatibility.hpp +41 -0
  25. netgen/include/complex_wrapper.hpp +73 -0
  26. netgen/include/compressedfespace.hpp +110 -0
  27. netgen/include/contact.hpp +231 -0
  28. netgen/include/diagonalmatrix.hpp +154 -0
  29. netgen/include/differentialoperator.hpp +276 -0
  30. netgen/include/diffop.hpp +1286 -0
  31. netgen/include/diffop_impl.hpp +326 -0
  32. netgen/include/discontinuous.hpp +84 -0
  33. netgen/include/dump.hpp +949 -0
  34. netgen/include/eigen.hpp +60 -0
  35. netgen/include/eigensystem.hpp +18 -0
  36. netgen/include/elasticity_equations.hpp +595 -0
  37. netgen/include/elementbyelement.hpp +195 -0
  38. netgen/include/elementtopology.hpp +1760 -0
  39. netgen/include/elementtransformation.hpp +339 -0
  40. netgen/include/evalfunc.hpp +405 -0
  41. netgen/include/expr.hpp +1655 -0
  42. netgen/include/facetfe.hpp +175 -0
  43. netgen/include/facetfespace.hpp +178 -0
  44. netgen/include/facethofe.hpp +111 -0
  45. netgen/include/facetsurffespace.hpp +112 -0
  46. netgen/include/fe_interfaces.hpp +32 -0
  47. netgen/include/fem.hpp +87 -0
  48. netgen/include/fesconvert.hpp +14 -0
  49. netgen/include/fespace.hpp +1445 -0
  50. netgen/include/finiteelement.hpp +286 -0
  51. netgen/include/globalinterfacespace.hpp +77 -0
  52. netgen/include/globalspace.hpp +115 -0
  53. netgen/include/gridfunction.hpp +525 -0
  54. netgen/include/h1amg.hpp +41 -0
  55. netgen/include/h1hofe.hpp +188 -0
  56. netgen/include/h1hofe_impl.hpp +1262 -0
  57. netgen/include/h1hofefo.hpp +148 -0
  58. netgen/include/h1hofefo_impl.hpp +185 -0
  59. netgen/include/h1hofespace.hpp +167 -0
  60. netgen/include/h1lofe.hpp +1237 -0
  61. netgen/include/h1lumping.hpp +35 -0
  62. netgen/include/hcurl_equations.hpp +1352 -0
  63. netgen/include/hcurlcurlfe.hpp +2221 -0
  64. netgen/include/hcurlcurlfespace.hpp +78 -0
  65. netgen/include/hcurlfe.hpp +259 -0
  66. netgen/include/hcurlfe_utils.hpp +107 -0
  67. netgen/include/hcurlhdiv_dshape.hpp +857 -0
  68. netgen/include/hcurlhdivfes.hpp +308 -0
  69. netgen/include/hcurlhofe.hpp +175 -0
  70. netgen/include/hcurlhofe_impl.hpp +1871 -0
  71. netgen/include/hcurlhofespace.hpp +193 -0
  72. netgen/include/hcurllofe.hpp +1146 -0
  73. netgen/include/hdiv_equations.hpp +865 -0
  74. netgen/include/hdivdivfe.hpp +2923 -0
  75. netgen/include/hdivdivsurfacespace.hpp +76 -0
  76. netgen/include/hdivfe.hpp +206 -0
  77. netgen/include/hdivfe_utils.hpp +716 -0
  78. netgen/include/hdivfes.hpp +75 -0
  79. netgen/include/hdivhofe.hpp +447 -0
  80. netgen/include/hdivhofe_impl.hpp +1107 -0
  81. netgen/include/hdivhofefo.hpp +229 -0
  82. netgen/include/hdivhofespace.hpp +175 -0
  83. netgen/include/hdivhosurfacefespace.hpp +106 -0
  84. netgen/include/hdivlofe.hpp +773 -0
  85. netgen/include/hidden.hpp +74 -0
  86. netgen/include/householder.hpp +181 -0
  87. netgen/include/hypre_ams_precond.hpp +123 -0
  88. netgen/include/hypre_precond.hpp +73 -0
  89. netgen/include/integrator.hpp +2024 -0
  90. netgen/include/integratorcf.hpp +253 -0
  91. netgen/include/interpolate.hpp +49 -0
  92. netgen/include/intrule.hpp +2541 -0
  93. netgen/include/irspace.hpp +49 -0
  94. netgen/include/jacobi.hpp +136 -0
  95. netgen/include/l2hofe.hpp +193 -0
  96. netgen/include/l2hofe_impl.hpp +564 -0
  97. netgen/include/l2hofefo.hpp +542 -0
  98. netgen/include/l2hofespace.hpp +344 -0
  99. netgen/include/la.hpp +38 -0
  100. netgen/include/linearform.hpp +266 -0
  101. netgen/include/matrix.hpp +2140 -0
  102. netgen/include/memusage.hpp +41 -0
  103. netgen/include/meshaccess.hpp +1358 -0
  104. netgen/include/mgpre.hpp +204 -0
  105. netgen/include/mptools.hpp +2145 -0
  106. netgen/include/multigrid.hpp +42 -0
  107. netgen/include/multivector.hpp +447 -0
  108. netgen/include/mumpsinverse.hpp +187 -0
  109. netgen/include/mycomplex.hpp +361 -0
  110. netgen/include/ng_lapack.hpp +1661 -0
  111. netgen/include/ngblas.hpp +1099 -0
  112. netgen/include/ngs_defines.hpp +30 -0
  113. netgen/include/ngs_stdcpp_include.hpp +106 -0
  114. netgen/include/ngs_utils.hpp +121 -0
  115. netgen/include/ngsobject.hpp +1019 -0
  116. netgen/include/ngsstream.hpp +113 -0
  117. netgen/include/ngstd.hpp +72 -0
  118. netgen/include/nodalhofe.hpp +96 -0
  119. netgen/include/nodalhofe_impl.hpp +141 -0
  120. netgen/include/normalfacetfe.hpp +223 -0
  121. netgen/include/normalfacetfespace.hpp +98 -0
  122. netgen/include/normalfacetsurfacefespace.hpp +84 -0
  123. netgen/include/order.hpp +251 -0
  124. netgen/include/parallel_matrices.hpp +222 -0
  125. netgen/include/paralleldofs.hpp +340 -0
  126. netgen/include/parallelngs.hpp +23 -0
  127. netgen/include/parallelvector.hpp +269 -0
  128. netgen/include/pardisoinverse.hpp +200 -0
  129. netgen/include/periodic.hpp +125 -0
  130. netgen/include/plateaufespace.hpp +25 -0
  131. netgen/include/pml.hpp +275 -0
  132. netgen/include/pmltrafo.hpp +631 -0
  133. netgen/include/postproc.hpp +142 -0
  134. netgen/include/precomp.hpp +60 -0
  135. netgen/include/preconditioner.hpp +602 -0
  136. netgen/include/prolongation.hpp +235 -0
  137. netgen/include/python_comp.hpp +107 -0
  138. netgen/include/python_fem.hpp +89 -0
  139. netgen/include/python_linalg.hpp +58 -0
  140. netgen/include/python_ngstd.hpp +385 -0
  141. netgen/include/recursive_pol.hpp +4844 -0
  142. netgen/include/recursive_pol_tet.hpp +395 -0
  143. netgen/include/recursive_pol_trig.hpp +492 -0
  144. netgen/include/reorderedfespace.hpp +81 -0
  145. netgen/include/sample_sort.hpp +105 -0
  146. netgen/include/scalarfe.hpp +335 -0
  147. netgen/include/shapefunction_utils.hpp +113 -0
  148. netgen/include/simd_complex.hpp +284 -0
  149. netgen/include/smoother.hpp +253 -0
  150. netgen/include/solve.hpp +89 -0
  151. netgen/include/sparsecholesky.hpp +313 -0
  152. netgen/include/sparsematrix.hpp +1038 -0
  153. netgen/include/sparsematrix_dyn.hpp +91 -0
  154. netgen/include/sparsematrix_impl.hpp +920 -0
  155. netgen/include/special_matrix.hpp +461 -0
  156. netgen/include/specialelement.hpp +125 -0
  157. netgen/include/statushandler.hpp +33 -0
  158. netgen/include/stringops.hpp +12 -0
  159. netgen/include/superluinverse.hpp +136 -0
  160. netgen/include/symbolicintegrator.hpp +849 -0
  161. netgen/include/symmetricmatrix.hpp +144 -0
  162. netgen/include/tangentialfacetfe.hpp +224 -0
  163. netgen/include/tangentialfacetfespace.hpp +106 -0
  164. netgen/include/tensor.hpp +522 -0
  165. netgen/include/tensorcoefficient.hpp +446 -0
  166. netgen/include/tensorproductintegrator.hpp +113 -0
  167. netgen/include/thcurlfe.hpp +128 -0
  168. netgen/include/thcurlfe_impl.hpp +380 -0
  169. netgen/include/thdivfe.hpp +80 -0
  170. netgen/include/thdivfe_impl.hpp +426 -0
  171. netgen/include/tpdiffop.hpp +461 -0
  172. netgen/include/tpfes.hpp +133 -0
  173. netgen/include/tpintrule.hpp +224 -0
  174. netgen/include/triangular.hpp +465 -0
  175. netgen/include/tscalarfe.hpp +245 -0
  176. netgen/include/tscalarfe_impl.hpp +1029 -0
  177. netgen/include/umfpackinverse.hpp +148 -0
  178. netgen/include/vector.hpp +1219 -0
  179. netgen/include/voxelcoefficientfunction.hpp +41 -0
  180. netgen/include/vtkoutput.hpp +198 -0
  181. netgen/include/vvector.hpp +208 -0
  182. netgen/include/webgui.hpp +92 -0
  183. netgen/libngbla.dylib +0 -0
  184. netgen/libngcomp.dylib +0 -0
  185. netgen/libngfem.dylib +0 -0
  186. netgen/libngla.dylib +0 -0
  187. netgen/libngsolve.dylib +0 -0
  188. netgen/libngstd.dylib +0 -0
  189. ngsolve/__init__.pyi +231 -0
  190. ngsolve/bla.pyi +1139 -0
  191. ngsolve/bvp.pyi +32 -0
  192. ngsolve/cmake/NGSolveConfig.cmake +102 -0
  193. ngsolve/cmake/ngsolve-targets-release.cmake +69 -0
  194. ngsolve/cmake/ngsolve-targets.cmake +163 -0
  195. ngsolve/comp/__init__.pyi +5382 -0
  196. ngsolve/comp/pml.pyi +89 -0
  197. ngsolve/config/__init__.py +1 -0
  198. ngsolve/config/__init__.pyi +43 -0
  199. ngsolve/config/__main__.py +4 -0
  200. ngsolve/config/config.py +60 -0
  201. ngsolve/config/config.pyi +45 -0
  202. ngsolve/demos/TensorProduct/__init__.py +0 -0
  203. ngsolve/demos/TensorProduct/tp_dg_1d_1d.py +80 -0
  204. ngsolve/demos/TensorProduct/tp_dg_1d_2d.py +73 -0
  205. ngsolve/demos/TensorProduct/tp_dg_2d_1d.py +72 -0
  206. ngsolve/demos/TensorProduct/tp_dg_2d_2d.py +66 -0
  207. ngsolve/demos/__init__.py +0 -0
  208. ngsolve/demos/howto/__init__.py +0 -0
  209. ngsolve/demos/howto/hhj.py +44 -0
  210. ngsolve/demos/howto/hybrid_dg.py +53 -0
  211. ngsolve/demos/howto/mixed.py +30 -0
  212. ngsolve/demos/howto/nonlin.py +29 -0
  213. ngsolve/demos/howto/pickling.py +26 -0
  214. ngsolve/demos/howto/pml.py +31 -0
  215. ngsolve/demos/howto/taskmanager.py +20 -0
  216. ngsolve/demos/howto/tdnns.py +47 -0
  217. ngsolve/demos/howto/timeDG-skeleton.py +45 -0
  218. ngsolve/demos/howto/timeDG.py +38 -0
  219. ngsolve/demos/howto/timeDGlap.py +42 -0
  220. ngsolve/demos/howto/timeDGwave.py +61 -0
  221. ngsolve/demos/intro/__init__.py +0 -0
  222. ngsolve/demos/intro/adaptive.py +123 -0
  223. ngsolve/demos/intro/cmagnet.py +62 -0
  224. ngsolve/demos/intro/elasticity.py +76 -0
  225. ngsolve/demos/intro/navierstokes.py +74 -0
  226. ngsolve/demos/intro/poisson.ipynb +170 -0
  227. ngsolve/demos/intro/poisson.py +41 -0
  228. ngsolve/demos/mpi/__init__.py +0 -0
  229. ngsolve/demos/mpi/mpi_cmagnet.py +87 -0
  230. ngsolve/demos/mpi/mpi_navierstokes.py +117 -0
  231. ngsolve/demos/mpi/mpi_poisson.py +89 -0
  232. ngsolve/demos/mpi/mpi_timeDG.py +82 -0
  233. ngsolve/directsolvers.pyi +18 -0
  234. ngsolve/eigenvalues.pyi +30 -0
  235. ngsolve/fem.pyi +1707 -0
  236. ngsolve/krylovspace.pyi +309 -0
  237. ngsolve/la.pyi +1218 -0
  238. ngsolve/ngslib.so +0 -0
  239. ngsolve/ngstd.pyi +58 -0
  240. ngsolve/nonlinearsolvers.pyi +98 -0
  241. ngsolve/preconditioners.pyi +6 -0
  242. ngsolve/solve.pyi +108 -0
  243. ngsolve/solvers.pyi +14 -0
  244. ngsolve/timestepping.pyi +34 -0
  245. ngsolve/timing.pyi +57 -0
  246. ngsolve/utils.pyi +279 -0
  247. ngsolve-6.2.2501.post48.dev1.data/data/Netgen.icns +0 -0
  248. ngsolve-6.2.2501.post48.dev1.data/data/bin/ngscxx +17 -0
  249. ngsolve-6.2.2501.post48.dev1.data/data/bin/ngsld +13 -0
  250. ngsolve-6.2.2501.post48.dev1.data/data/bin/ngsolve.tcl +648 -0
  251. ngsolve-6.2.2501.post48.dev1.data/data/bin/ngspy +2 -0
  252. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/beam.geo +17 -0
  253. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/beam.vol +240 -0
  254. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/chip.in2d +41 -0
  255. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/chip.vol +614 -0
  256. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/coil.geo +12 -0
  257. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/coil.vol +2560 -0
  258. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/coilshield.geo +24 -0
  259. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/coilshield.vol +3179 -0
  260. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/cube.geo +19 -0
  261. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/cube.vol +1832 -0
  262. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d10_DGdoubleglazing.pde +50 -0
  263. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d11_chip_nitsche.pde +40 -0
  264. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d1_square.pde +43 -0
  265. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d2_chip.pde +35 -0
  266. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d3_helmholtz.pde +22 -0
  267. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d4_cube.pde +46 -0
  268. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d5_beam.pde +74 -0
  269. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d6_shaft.pde +73 -0
  270. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d7_coil.pde +50 -0
  271. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d8_coilshield.pde +49 -0
  272. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/d9_hybridDG.pde +72 -0
  273. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/doubleglazing.in2d +27 -0
  274. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/doubleglazing.vol +737 -0
  275. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/piezo2d40round4.vol.gz +0 -0
  276. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/shaft.geo +73 -0
  277. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/shaft.vol +4291 -0
  278. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/square.in2d +17 -0
  279. ngsolve-6.2.2501.post48.dev1.data/data/share/ngsolve/square.vol +149 -0
  280. {ngsolve-6.2.2501.post47.dev1.dist-info → ngsolve-6.2.2501.post48.dev1.dist-info}/METADATA +1 -1
  281. ngsolve-6.2.2501.post48.dev1.dist-info/RECORD +304 -0
  282. ngsolve-6.2.2501.post47.dev1.dist-info/RECORD +0 -25
  283. {ngsolve-6.2.2501.post47.dev1.dist-info → ngsolve-6.2.2501.post48.dev1.dist-info}/LICENSE +0 -0
  284. {ngsolve-6.2.2501.post47.dev1.dist-info → ngsolve-6.2.2501.post48.dev1.dist-info}/WHEEL +0 -0
  285. {ngsolve-6.2.2501.post47.dev1.dist-info → ngsolve-6.2.2501.post48.dev1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,2221 @@
1
+ #ifndef FILE_HCURLCURLFE
2
+ #define FILE_HCURLCURLFE
3
+
4
+ /*********************************************************************/
5
+ /* File: hcurlcurlfe.hpp */
6
+ /* Author: Michael Neunteufel */
7
+ /* Date: June 2018 */
8
+ /*********************************************************************/
9
+
10
+
11
+ #include "finiteelement.hpp"
12
+ #include "fe_interfaces.hpp"
13
+ #include "hcurlfe.hpp"
14
+ #include "hcurlfe_utils.hpp"
15
+ #include "recursive_pol.hpp"
16
+ #include "recursive_pol_trig.hpp"
17
+ #include "recursive_pol_tet.hpp"
18
+
19
+ namespace ngfem
20
+ {
21
+
22
+ template <typename T>
23
+ Mat<3,3,T> TensorCrossProduct(Mat<3,3,T> A, Mat<3,3,T> B)
24
+ {
25
+ // return 0.5 * ( Cof(A+B) - Cof(A-B) ); // more cancelation
26
+
27
+ Mat<3,3,T> prod;
28
+ prod.Col(0) = Cross(A.Col(1), B.Col(2)) - Cross(A.Col(2), B.Col(1));
29
+ prod.Col(1) = Cross(A.Col(2), B.Col(0)) - Cross(A.Col(0), B.Col(2));
30
+ prod.Col(2) = Cross(A.Col(0), B.Col(1)) - Cross(A.Col(1), B.Col(0));
31
+ return prod;
32
+ }
33
+
34
+ template <typename T>
35
+ Mat<3,3,T> TensorCrossProduct(Vec<3,T> v, Mat<3,3,T> A)
36
+ {
37
+ Mat<3,3,T> result;
38
+ for (int j = 0; j < 3; j++)
39
+ result.Col(j) = Cross(v, A.Col(j));
40
+ return result;
41
+ }
42
+
43
+ template <typename T>
44
+ Mat<3,3,T> TensorCrossProduct(Mat<3,3,T> A, Vec<3,T> v)
45
+ {
46
+ Mat<3,3,T> result;
47
+ for (int j = 0; j < 3; j++)
48
+ result.Row(j) = Cross(A.Row(j), v);
49
+ return result;
50
+ }
51
+
52
+
53
+
54
+ template <int DIM>
55
+ class HCurlCurlFiniteElement : public FiniteElement
56
+ {
57
+ public:
58
+ using FiniteElement::FiniteElement;
59
+ using FiniteElement::ndof;
60
+ using FiniteElement::order;
61
+
62
+ virtual void CalcMappedShape (const BaseMappedIntegrationPoint & bmip,
63
+ BareSliceMatrix<double> shape) const = 0;
64
+
65
+ virtual void EvaluateMappedShape (const BaseMappedIntegrationPoint & bmip,
66
+ BareSliceVector<double> coefs,
67
+ BareSliceMatrix<double> shape) const = 0;
68
+
69
+ virtual void CalcMappedCurlShape (const BaseMappedIntegrationPoint & bmip,
70
+ BareSliceMatrix<double> shape) const = 0;
71
+
72
+ virtual void CalcMappedIncShape (const BaseMappedIntegrationPoint & bmip,
73
+ BareSliceMatrix<double> shape) const = 0;
74
+
75
+ virtual void EvaluateMappedIncShape (const BaseMappedIntegrationPoint & bmip,
76
+ BareSliceVector<double> coefs,
77
+ BareSliceVector<double> inc) const = 0;
78
+
79
+ virtual void CalcMappedIncShape (const SIMD_BaseMappedIntegrationRule & bmir,
80
+ BareSliceMatrix<SIMD<double>> shape) const = 0;
81
+
82
+ virtual void EvaluateIncShape (const SIMD_BaseMappedIntegrationRule & ir,
83
+ BareSliceVector<> coefs,
84
+ BareSliceMatrix<SIMD<double>> values) const = 0;
85
+
86
+ virtual void AddTransIncShape (const SIMD_BaseMappedIntegrationRule & ir,
87
+ BareSliceMatrix<SIMD<double>> values,
88
+ BareSliceVector<> coefs) const = 0;
89
+
90
+
91
+ virtual void CalcMappedShape (const SIMD_BaseMappedIntegrationRule & bmir,
92
+ BareSliceMatrix<SIMD<double>> shapes) const = 0;
93
+
94
+ virtual void Evaluate (const SIMD_BaseMappedIntegrationRule & ir,
95
+ BareSliceVector<> coefs,
96
+ BareSliceMatrix<SIMD<double>> values) const = 0;
97
+
98
+ virtual void AddTrans (const SIMD_BaseMappedIntegrationRule & ir,
99
+ BareSliceMatrix<SIMD<double>> values,
100
+ BareSliceVector<> coefs) const = 0;
101
+
102
+ virtual void CalcDualShape (const BaseMappedIntegrationPoint & bmip, BareSliceMatrix<> shape) const = 0;
103
+ virtual void CalcDualShape (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceMatrix<SIMD<double>> shape) const = 0;
104
+ virtual void EvaluateDual (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs, BareSliceMatrix<SIMD<double>> values) const = 0;
105
+ virtual void AddDualTrans (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> values, BareSliceVector<double> coefs) const = 0;
106
+
107
+ };
108
+
109
+ template <int D,typename VEC,typename MAT>
110
+ void VecToSymMat(const VEC & vec, MAT & mat)
111
+ {
112
+ switch(D)
113
+ {
114
+ case 1:
115
+ mat(0) = vec(0);
116
+ break;
117
+ case 2:
118
+ mat(0) = vec(0);
119
+ mat(3) = vec(1);
120
+ mat(1) = mat(2) = vec(2);
121
+ break;
122
+ case 3:
123
+ mat(0) = vec(0);
124
+ mat(4) = vec(1);
125
+ mat(8) = vec(2);
126
+ mat(1) = mat(3) = vec(5);
127
+ mat(2) = mat(6) = vec(4);
128
+ mat(5) = mat(7) = vec(3);
129
+ break;
130
+ }
131
+ }
132
+
133
+ template <int H, int W, typename T>
134
+ Mat<H,W,T> DyadProd(Vec<H,T> a, Vec<W,T> b)
135
+ {
136
+ Mat<H,W,T> m;
137
+ for (int i = 0; i < H; i++)
138
+ for (int j = 0; j < W; j++)
139
+ m(i,j) = a(i)*b(j);
140
+ return m;
141
+ }
142
+
143
+ template <int S, typename T>
144
+ Mat<S,S,T> SymDyadProd(Vec<S,T> a, Vec<S,T> b)
145
+ {
146
+ Mat<S,S,T> m;
147
+ for (int i = 0; i < S; i++)
148
+ for (int j = 0; j < S; j++)
149
+ m(i,j) = a(i)*b(j)+a(j)*b(i);
150
+ return m;
151
+ }
152
+
153
+
154
+ template <typename T>
155
+ Vec<6, AutoDiff<3,T>> SymDyadProd(AutoDiff<3,T> a, AutoDiff<3,T> b)
156
+ {
157
+ return Vec<6, AutoDiff<3,T>>(2*a.DValue(0)*b.DValue(0),2*a.DValue(1)*b.DValue(1),2*a.DValue(2)*b.DValue(2), a.DValue(1)*b.DValue(2)+a.DValue(2)*b.DValue(1), a.DValue(0)*b.DValue(2)+a.DValue(2)*b.DValue(0),a.DValue(1)*b.DValue(0)+a.DValue(0)*b.DValue(1));
158
+ }
159
+
160
+ template <typename T>
161
+ Vec<6, AutoDiff<3,T>> SymDyadProdAD(Vec<3,T> a, Vec<3,T> b)
162
+ {
163
+ return Vec<6, AutoDiff<3,T>>(2*a(0)*b(0),2*a(1)*b(1),2*a(2)*b(2), a(1)*b(2)+a(2)*b(1), a(0)*b(2)+a(2)*b(0),a(1)*b(0)+a(0)*b(1));
164
+ }
165
+
166
+ template <typename T>
167
+ Vec<3,AutoDiff<2,T>> SymDyadProd(AutoDiff<2,T> a, AutoDiff<2,T> b)
168
+ {
169
+ return Vec<3,AutoDiff<2,T>>(2*a.DValue(0)*b.DValue(0),2*a.DValue(1)*b.DValue(1),a.DValue(1)*b.DValue(0)+a.DValue(0)*b.DValue(1));
170
+ }
171
+
172
+ template <typename T>
173
+ Vec<3,AutoDiff<2,T>> SymDyadProdAD(Vec<2,T> a, Vec<2,T> b)
174
+ {
175
+ return Vec<3,AutoDiff<2,T>>(2*a(0)*b(0),2*a(1)*b(1),a(1)*b(0)+a(0)*b(1));
176
+ }
177
+
178
+ template <typename T>
179
+ AutoDiff<1,T> SymDyadProd(AutoDiff<1,T> a, AutoDiff<1,T> b)
180
+ {
181
+ return a.DValue(0)*b.DValue(0);
182
+ }
183
+
184
+
185
+ //------------------REGGE_SHAPE---------------------
186
+ template <int D, typename T> class T_REGGE_Shape;
187
+ template <typename T> class T_REGGE_Shape<1,T>
188
+ {
189
+ AutoDiff<1,T> u;
190
+ public:
191
+ T_REGGE_Shape (AutoDiff<1,T> au) : u(au) { ; }
192
+ Vec<1,T> Shape() { return u.Value(); }
193
+ /*0 2
194
+ 2 1*/
195
+ Vec<1,T> CurlShape() { return 0.0; }
196
+ };
197
+
198
+ template <typename T> class T_REGGE_Shape<2,T>
199
+ {
200
+ Vec<3,AutoDiff<2,T>> u;
201
+ public:
202
+ T_REGGE_Shape (Vec<3,AutoDiff<2,T>> au) : u(au) { ; }
203
+ Vec<3,T> Shape() { return Vec<3,T> (u(0).Value(), u(1).Value(), u(2).Value()); }
204
+ /*0 2
205
+ 2 1*/
206
+ Vec<2,T> CurlShape() { return Vec<2,T> (u(2).DValue(0)-u(0).DValue(1), u(1).DValue(0)-u(2).DValue(1)); }
207
+ };
208
+
209
+ template <typename T> class T_REGGE_Shape<3,T>
210
+ {
211
+ Vec<6,AutoDiff<3,T>> u;
212
+ public:
213
+ T_REGGE_Shape (Vec<6,AutoDiff<3,T>> au) : u(au) { ; }
214
+ Vec<6,T> Shape() { return Vec<6,T> (u(0).Value(), u(1).Value(), u(2).Value(), u(3).Value(), u(4).Value(), u(5).Value()); }
215
+ /*0 5 4
216
+ 5 1 3
217
+ 4 3 2*/
218
+ Vec<9,T> CurlShape() { return Vec<9,T> (u(4).DValue(1)-u(5).DValue(2), -u(4).DValue(0)+u(0).DValue(2), u(5).DValue(0)-u(0).DValue(1),
219
+ u(3).DValue(1)-u(1).DValue(2), -u(3).DValue(0)+u(5).DValue(2), u(1).DValue(0)-u(5).DValue(1),
220
+ u(2).DValue(1)-u(3).DValue(2), -u(2).DValue(0)+u(4).DValue(2), u(3).DValue(0)-u(4).DValue(1)); }
221
+ };
222
+ //---------------------------------------------------
223
+
224
+
225
+ // ***************** EpsGrad ****************************** */
226
+ // eps (nabla u)
227
+
228
+ template <int D, typename T> class T_EpsGrad;
229
+ template <typename T> class T_EpsGrad<2,T>
230
+ {
231
+ AutoDiffDiff<2,T> u;
232
+ public:
233
+ T_EpsGrad (AutoDiffDiff<2,T> au) : u(au) { ; }
234
+ Vec<3,T> Shape()
235
+ {
236
+ return Vec<3,T> (u.DDValue(0,0), u.DDValue(1,1), u.DDValue(0,1));
237
+ }
238
+ Vec<2,T> CurlShape() { return Vec<2,T> (0.0, 0.0); }
239
+ };
240
+
241
+ template <int D, typename T>
242
+ auto EpsGrad (AutoDiffDiff<D,T> au) { return T_EpsGrad<D,T>(au); }
243
+
244
+ // ***************** wEpsGrad ****************************** */
245
+ // w*eps (nabla u)
246
+
247
+ template <int D, typename T> class T_wEpsGrad;
248
+ template <typename T> class T_wEpsGrad<2,T>
249
+ {
250
+ AutoDiffDiff<2,T> u;
251
+ AutoDiff<1,T> w;
252
+ public:
253
+ T_wEpsGrad (AutoDiffDiff<2,T> au, AutoDiff<1,T> aw) : u(au), w(aw) { ; }
254
+ Vec<6,T> Shape()
255
+ {
256
+ return w.Value()*Vec<6,T> (u.DDValue(0,0), u.DDValue(1,1), u.DDValue(2,2), u.DDValue(1,2), u.DDValue(0,2), u.DDValue(0,1));
257
+ }
258
+ Vec<9,T> CurlShape() { return Vec<9,T> (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0); }
259
+ };
260
+
261
+ template <int D, typename T>
262
+ auto wEpsGrad (AutoDiffDiff<D,T> au, AutoDiff<1,T> aw) { return T_wEpsGrad<D,T>(au, aw); }
263
+
264
+
265
+ // ***************** Eps_u_Gradv ****************************** */
266
+ // eps (u nabla v)
267
+
268
+ template <int D, typename T> class T_Eps_u_Gradv;
269
+ template <typename T> class T_Eps_u_Gradv<2,T>
270
+ {
271
+ AutoDiffDiff<2,T> u, v;
272
+ public:
273
+ T_Eps_u_Gradv (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av) : u(au), v(av) { ; }
274
+ Vec<3,T> Shape() { return Vec<3,T> ((u.Value()*v.DDValue(0,0) + u.DValue(0)*v.DValue(0)),
275
+ (u.Value()*v.DDValue(1,1) + u.DValue(1)*v.DValue(1)),
276
+ u.Value()*v.DDValue(0,1) + 0.5 * (u.DValue(0)*v.DValue(1)+u.DValue(1)*v.DValue(0))); }
277
+ Vec<2,T> CurlShape()
278
+ {
279
+ T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
280
+ T ux = u.DValue(0), uy = u.DValue(1);
281
+ T vxx = v.DDValue(0,0), vyy = v.DDValue(1,1), vxy = v.DDValue(0,1);
282
+ T vx = v.DValue(0), vy = v.DValue(1);
283
+
284
+ /*return -0.5 * Vec<2,T> (uyy*vx - uxy*vy + uy*vxy - ux*vyy,
285
+ -uxy*vx + uxx*vy - uy*vxx + ux*vxy);*/
286
+ return 0.5 * Vec<2,T>(ux*vxy - uy*vxx - uxy*vx + uxx*vy,
287
+ ux*vyy + uxy*vy - uyy*vx - uy*vxy);
288
+ }
289
+ };
290
+
291
+ template <int D, typename T>
292
+ auto Eps_u_Gradv (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av) { return T_Eps_u_Gradv<D,T>(au, av); }
293
+
294
+
295
+ template <int D, typename T> class T_vEpsGradu;
296
+ template <typename T> class T_vEpsGradu<2,T>
297
+ {
298
+ AutoDiffDiff<2,T> u,v;
299
+ public:
300
+ T_vEpsGradu (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av) : u(au), v(av) { ; }
301
+ Vec<3,T> Shape() { return Vec<3,T> (u.DDValue(0,0)*v.Value(),
302
+ u.DDValue(1,1)*v.Value(), (u.DDValue(1,0)*v.Value()));}
303
+ Vec<2,T> CurlShape()
304
+ {
305
+ T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
306
+ T vx = v.DValue(0), vy = v.DValue(1);
307
+
308
+ //return Vec<2,T> (uyy*vx- uxy*vy, uxx*vy- uxy*vx);
309
+ return Vec<2,T> (uxy*vx - vy*uxx, uyy*vx - uxy*vy);
310
+ }
311
+ };
312
+
313
+ template <int D, typename T>
314
+ auto vEpsGradu (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av) { return T_vEpsGradu<D,T>(au, av); }
315
+
316
+
317
+ template <int D, typename T>
318
+ class ReggeAD
319
+ {
320
+ Mat<D,D,T> value;
321
+
322
+ public:
323
+ ReggeAD ()
324
+ {
325
+ value = T(0);
326
+ }
327
+
328
+ ReggeAD (AutoDiff<D,T> a, AutoDiff<D,T> b)
329
+ {
330
+ Vec<D,T> Da, Db;
331
+ for(int i=0; i<D; i++)
332
+ {
333
+ Da(i) = a.DValue(i);
334
+ Db(i) = b.DValue(i);
335
+ }
336
+ value = SymDyadProd(Da,Db);
337
+ }
338
+
339
+ auto Value() const { return value; }
340
+
341
+ Mat<D,D,T> & Value() { return value; }
342
+ };
343
+
344
+ template <int D, typename T>
345
+ auto MakeReggeAD(AutoDiff<D,T> a, AutoDiff<D,T> b)
346
+ {
347
+ return ReggeAD<D,T>(a, b);
348
+ }
349
+
350
+
351
+
352
+ template <int D, typename T>
353
+ ReggeAD<D,T> operator* (AutoDiff<D,T> s, ReggeAD<D,T> A)
354
+ {
355
+ ReggeAD<D,T> result;
356
+ result.Value() = s.Value()*A.Value();
357
+ return result;
358
+ }
359
+
360
+
361
+ template <int D, typename T>
362
+ ReggeAD<D,T> operator* (T s, ReggeAD<D,T> A)
363
+ {
364
+ ReggeAD<D,T> result = A;
365
+ result.Value() *= s;
366
+ return result;
367
+ }
368
+
369
+ template <int D, typename T>
370
+ ReggeAD<D,T> operator+ (ReggeAD<D,T> A, ReggeAD<D,T> B)
371
+ {
372
+ ReggeAD<D,T> result = A;
373
+ result.Value() += B.Value();
374
+ return result;
375
+ }
376
+
377
+ template <int D, typename T>
378
+ ReggeAD<D,T> operator- (ReggeAD<D,T> A, ReggeAD<D,T> B)
379
+ {
380
+ ReggeAD<D,T> result = A;
381
+ result.Value() -= B.Value();
382
+ return result;
383
+ }
384
+
385
+ template <int D, typename T> class ReggeADD;
386
+
387
+ template <typename T>
388
+ class ReggeADD<3,T>
389
+ {
390
+ Mat<3,3,T> value;
391
+ Mat<3,3,T> curl;
392
+ Mat<3,3,T> inc;
393
+
394
+ public:
395
+ ReggeADD ()
396
+ {
397
+ value = T(0);
398
+ curl = T(0);
399
+ inc = T(0);
400
+ }
401
+
402
+ ReggeADD (AutoDiffDiff<3,T> a, AutoDiffDiff<3,T> b)
403
+ {
404
+ auto Da = Vec<3,T>(a.DValue(0),a.DValue(1),a.DValue(2));
405
+ auto Db = Vec<3,T>(b.DValue(0),b.DValue(1),b.DValue(2));
406
+ value = SymDyadProd(Da,Db);
407
+ // curl(s*v) = nabla s x v + s curl(v) in 3D
408
+ // | nabla a_1 x b + a_1 curl(b) |
409
+ // curl(a \otimes b) = | nabla a_2 x b + a_2 curl(b) |
410
+ // | nabla a_3 x b + a_3 curl(b) |
411
+
412
+ // curl( nabla s ) = 0
413
+ // | nabla d_x a x nabla b |
414
+ // -> curl( nabla a \otimes nabla b) = | nabla d_y a x nabla b |
415
+ // | nabla d_z a x nabla b |
416
+
417
+ Vec<3,T> Ddai [3] = { Vec<3,T>(a.DDValue(0,0), a.DDValue(0,1), a.DDValue(0,2)), Vec<3,T>(a.DDValue(1,0), a.DDValue(1,1), a.DDValue(1,2)), Vec<3,T>(a.DDValue(2,0), a.DDValue(2,1), a.DDValue(2,2)) };
418
+ Vec<3,T> Ddbi [3] = { Vec<3,T>(b.DDValue(0,0), b.DDValue(0,1), b.DDValue(0,2)), Vec<3,T>(b.DDValue(1,0), b.DDValue(1,1), b.DDValue(1,2)), Vec<3,T>(b.DDValue(2,0), b.DDValue(2,1), b.DDValue(2,2)) };
419
+
420
+ for (int i = 0; i < 3; i++)
421
+ curl.Row(i) = Cross(Ddai[i], Db) + Cross(Ddbi[i], Da);
422
+
423
+
424
+ // | nabla d_x a x nabla b |
425
+ // curl( nabla a \otimes nabla b) = | nabla d_y a x nabla b |
426
+ // | nabla d_z a x nabla b |
427
+
428
+
429
+ // curl T curl ( nabla a \otimes nabla b):
430
+ //11: d_yd_z(a) d_yd_z(b) - d^2_z(a) d^2_y(b) - d_y^2(a) d^2_z(b) + d_yd_z(a)d_yd_z(b)
431
+ //12: d_xd_y(a) d_z^2(b) - d_xd_z(a) d_yd_z(b) - d_yd_z(a) d_xd_z(b) + d_z^2(a)d_xd_y(b)
432
+ //13: d^2_y(a) d_xd_z(b) - d_yd_z(a) d_xd_y(b) - d_xd_y(a) d_yd_z(b) + d_xd_z(a)d^2_y(b)
433
+ //22: d_xd_z(a) d_xd_z(b) - d^2_x(a) d^2_z(b) - d^2_z(a) d^2_x(b) + d_xd_z(a)d_xd_z(b)
434
+ //23: d_yd_z(a) d^2_x(b) - d_xd_y(a) d_xd_z(b) - d_xd_z(a) d_xd_y(b) + d^2_x(a)d_yd_z(b)
435
+ //33: d^2_x(a) d^2_y(b) - d_xd_y(a) d_xd_y(b) - d_xd_y(a) d_xd_y(b) + d^2_y(a)d^2_x(b)
436
+
437
+ // = - hesse(a) x hesse(b) = -eps_imn eps_jlk d_md_l(a) d_nd_k b ??
438
+
439
+ /*inc(0,0) = a.DDValue(1,2)*b.DDValue(1,2) - a.DDValue(2,2)*b.DDValue(1,1) - a.DDValue(1,1)*b.DDValue(2,2) + a.DDValue(1,2)*b.DDValue(1,2);
440
+ inc(0,1) = a.DDValue(0,1)*b.DDValue(2,2) - a.DDValue(0,2)*b.DDValue(1,2) - a.DDValue(1,2)*b.DDValue(0,2) + a.DDValue(2,2)*b.DDValue(0,1);
441
+ inc(0,2) = a.DDValue(1,1)*b.DDValue(0,2) - a.DDValue(1,2)*b.DDValue(0,1) - a.DDValue(0,1)*b.DDValue(1,2) + a.DDValue(0,2)*b.DDValue(1,1);
442
+ inc(1,1) = a.DDValue(0,2)*b.DDValue(0,2) - a.DDValue(0,0)*b.DDValue(2,2) - a.DDValue(2,2)*b.DDValue(0,0) + a.DDValue(0,2)*b.DDValue(0,2);
443
+ inc(1,2) = a.DDValue(1,2)*b.DDValue(0,0) - a.DDValue(0,1)*b.DDValue(0,2) - a.DDValue(0,2)*b.DDValue(0,1) + a.DDValue(0,0)*b.DDValue(1,2);
444
+ inc(2,2) = a.DDValue(0,0)*b.DDValue(1,1) - a.DDValue(0,1)*b.DDValue(0,1) - a.DDValue(0,1)*b.DDValue(0,1) + a.DDValue(1,1)*b.DDValue(0,0);
445
+ // curl T curl ( nabla b \otimes nabla a):
446
+ inc(0,0) += b.DDValue(1,2)*a.DDValue(1,2) - b.DDValue(2,2)*a.DDValue(1,1) - b.DDValue(1,1)*a.DDValue(2,2) + b.DDValue(1,2)*a.DDValue(1,2);
447
+ inc(0,1) += b.DDValue(0,1)*a.DDValue(2,2) - b.DDValue(0,2)*a.DDValue(1,2) - b.DDValue(1,2)*a.DDValue(0,2) + b.DDValue(2,2)*a.DDValue(0,1);
448
+ inc(0,2) += b.DDValue(1,1)*a.DDValue(0,2) - b.DDValue(1,2)*a.DDValue(0,1) - b.DDValue(0,1)*a.DDValue(1,2) + b.DDValue(0,2)*a.DDValue(1,1);
449
+ inc(1,1) += b.DDValue(0,2)*a.DDValue(0,2) - b.DDValue(0,0)*a.DDValue(2,2) - b.DDValue(2,2)*a.DDValue(0,0) + b.DDValue(0,2)*a.DDValue(0,2);
450
+ inc(1,2) += b.DDValue(1,2)*a.DDValue(0,0) - b.DDValue(0,1)*a.DDValue(0,2) - b.DDValue(0,2)*a.DDValue(0,1) + b.DDValue(0,0)*a.DDValue(1,2);
451
+ inc(2,2) += b.DDValue(0,0)*a.DDValue(1,1) - b.DDValue(0,1)*a.DDValue(0,1) - b.DDValue(0,1)*a.DDValue(0,1) + b.DDValue(1,1)*a.DDValue(0,0);
452
+ // symmetry
453
+ inc(1,0) = inc(0,1);
454
+ inc(2,0) = inc(0,2);
455
+ inc(2,1) = inc(1,2);*/
456
+
457
+ Mat<3,3,T> hesse1, hesse2;
458
+ a.StoreHessian(hesse1.Data());
459
+ b.StoreHessian(hesse2.Data());
460
+ inc = -2*TensorCrossProduct(hesse1,hesse2);
461
+ }
462
+
463
+ auto Value() const { return value; }
464
+ auto Curl() const { return curl; }
465
+ auto Inc() const { return inc; }
466
+
467
+ Mat<3,3,T> & Value() { return value; }
468
+ Mat<3,3,T> & Curl() { return curl; }
469
+ Mat<3,3,T> & Inc() { return inc; }
470
+ };
471
+
472
+
473
+ template <typename T>
474
+ class ReggeADD<2,T>
475
+ {
476
+ Mat<2,2,T> value;
477
+ Vec<2,T> curl;
478
+ T inc;
479
+
480
+ public:
481
+ ReggeADD ()
482
+ {
483
+ value = T(0);
484
+ curl = T(0);
485
+ inc = T(0);
486
+ }
487
+
488
+ ReggeADD (AutoDiffDiff<2,T> a, AutoDiffDiff<2,T> b)
489
+ {
490
+ auto Da = Vec<2,T>(a.DValue(0),a.DValue(1));
491
+ auto Db = Vec<2,T>(b.DValue(0),b.DValue(1));
492
+ value = SymDyadProd(Da,Db);
493
+ // curl(s*v) = v* nabla s^perp + s curl(v) in 2D
494
+ // | b * nabla a_1^perp + a_1 curl(b) |
495
+ // curl(a \otimes b) = | b * nabla a_2^perp + a_2 curl(b) |
496
+
497
+ // curl( nabla s ) = 0
498
+ // | Db * nabla d_x a^perp |
499
+ // -> curl( nabla a \otimes nabla b) = | Db * nabla d_y a^perp |
500
+
501
+ Vec<2,T> Ddai_p [2] = { Vec<2,T>(-a.DDValue(0,1), a.DDValue(0,0)), Vec<2,T>(-a.DDValue(1,1), a.DDValue(1,0)) };
502
+ Vec<2,T> Ddbi_p [2] = { Vec<2,T>(-b.DDValue(0,1), b.DDValue(0,0)), Vec<2,T>(-b.DDValue(1,1), b.DDValue(1,0)) };
503
+
504
+ for (int i=0; i<2; i++)
505
+ curl(i) = InnerProduct(Db,Ddai_p[i]) + InnerProduct(Da,Ddbi_p[i]);
506
+
507
+ // | Db * nabla d_x a^perp |
508
+ // curl( nabla a \otimes nabla b) = | Db * nabla d_y a^perp |
509
+
510
+
511
+ // curl T curl ( nabla a \otimes nabla b) = d_x(Db * nabla d_y a^perp) - d_y(Db * nabla d_x a^perp)
512
+ // = (d_x Db) * nabla(d_y a)^perp - (d_y Db) * nabla(d_x a)^perp
513
+
514
+ inc = InnerProduct(Vec<2,T>(b.DDValue(0,0), b.DDValue(0,1)),Ddai_p[1]) - InnerProduct(Vec<2,T>(b.DDValue(1,0), b.DDValue(1,1)),Ddai_p[0]) + InnerProduct(Vec<2,T>(a.DDValue(0,0), a.DDValue(0,1)),Ddbi_p[1]) - InnerProduct(Vec<2,T>(a.DDValue(1,0), a.DDValue(1,1)),Ddbi_p[0]);
515
+ }
516
+
517
+ auto Value() const { return value; }
518
+ auto Curl() const { return curl; }
519
+ auto Inc() const { return inc; }
520
+
521
+ Mat<2,2,T> & Value() { return value; }
522
+ Vec<2,T> & Curl() { return curl; }
523
+ T & Inc() { return inc; }
524
+ };
525
+
526
+ template <int D, typename T>
527
+ auto MakeReggeAD(AutoDiffDiff<D,T> a, AutoDiffDiff<D,T> b)
528
+ {
529
+ return ReggeADD<D,T>(a, b);
530
+ }
531
+
532
+ template <typename T>
533
+ ReggeADD<3,T> operator* (AutoDiffDiff<3,T> s, ReggeADD<3,T> A)
534
+ {
535
+ ReggeADD<3,T> result;
536
+ result.Value() = s.Value()*A.Value();
537
+
538
+ // s scalar, v vector
539
+ // curl(s*v) = nabla s x v + s curl(v) in 3D
540
+ Vec<3,T> gradient;
541
+ s.StoreGradient(gradient.Data());
542
+
543
+ result.Curl() = s.Value()*A.Curl();
544
+ for (int i = 0; i < 3; i++)
545
+ result.Curl().Row(i) += Cross(gradient, Vec<3,T>(A.Value().Row(i)));
546
+
547
+ // inc(s A) = s inc(A) + 2sym(grad(s) x curl A) + hesse(s) x A, x...Tensor-Cross-Product
548
+ Mat<3,3,T> hesse;
549
+ s.StoreHessian(hesse.Data());
550
+
551
+ result.Inc() = s.Value()*A.Inc() + TensorCrossProduct(gradient,A.Curl()) + Trans(TensorCrossProduct(gradient,A.Curl())) + TensorCrossProduct(hesse,A.Value());
552
+
553
+ return result;
554
+ }
555
+
556
+
557
+ template <int D, typename T>
558
+ ReggeADD<D,T> operator* (T s, ReggeADD<D,T> A)
559
+ {
560
+ ReggeADD<D,T> result = A;
561
+ result.Value() *= s;
562
+ result.Curl() *= s;
563
+ result.Inc() *= s;
564
+ return result;
565
+ }
566
+
567
+ template <int D, typename T>
568
+ ReggeADD<D,T> operator+ (ReggeADD<D,T> A, ReggeADD<D,T> B)
569
+ {
570
+ ReggeADD<D,T> result = A;
571
+ result.Value() += B.Value();
572
+ result.Curl() += B.Curl();
573
+ result.Inc() += B.Inc();
574
+ return result;
575
+ }
576
+
577
+ template <int D, typename T>
578
+ ReggeADD<D,T> operator- (ReggeADD<D,T> A, ReggeADD<D,T> B)
579
+ {
580
+ ReggeADD<D,T> result = A;
581
+ result.Value() -= B.Value();
582
+ result.Curl() -= B.Curl();
583
+ result.Inc() -= B.Inc();
584
+ return result;
585
+ }
586
+
587
+
588
+ template <typename T>
589
+ ReggeADD<2,T> operator* (AutoDiffDiff<2,T> s, ReggeADD<2,T> A)
590
+ {
591
+ ReggeADD<2,T> result;
592
+ result.Value() = s.Value()*A.Value();
593
+
594
+ // s scalar, v vector
595
+ // curl(s*v) = v* nabla s^perp + s curl(v) in 2D
596
+ result.Curl() = A.Value()*Vec<2,T>(-s.DValue(1),s.DValue(0)) + s.Value()*A.Curl();
597
+
598
+ // inc(sA) = A:( dydy s & -dxdy s \\ -dxdy s & dxdx s) + 2*nabla s^\perp*curl(A) + s*inc(A)
599
+ Mat<2,2,T> hesse;
600
+ hesse(0,0) = s.DDValue(1,1);
601
+ hesse(1,0) = -s.DDValue(1,0);
602
+ hesse(0,1) = -s.DDValue(0,1);
603
+ hesse(1,1) = s.DDValue(0,0);
604
+
605
+ result.Inc() = s.Value()*A.Inc() + InnerProduct(hesse,A.Value()) + 2*InnerProduct(Vec<2,T>(-s.DValue(1),s.DValue(0)),A.Curl());
606
+
607
+ return result;
608
+ }
609
+
610
+
611
+
612
+
613
+ template <ELEMENT_TYPE ET> class HCurlCurlFE;
614
+
615
+
616
+ template <ELEMENT_TYPE ET>
617
+ class T_HCurlCurlFE : public HCurlCurlFiniteElement<ET_trait<ET>::DIM>,
618
+ public VertexOrientedFE<ET>
619
+ {
620
+ protected:
621
+ static constexpr int DIM = ET_trait<ET>::DIM;
622
+ enum { DIM_STRESS = (DIM*(DIM+1))/2 };
623
+ // enum { DIM_DMAT = 7*DIM-12 };
624
+ // enum { DIM_DDMAT = 8*DIM-15 };
625
+ enum { DIM_DMAT = (5*DIM*DIM-11*DIM+6)/2 };
626
+ enum { DIM_DDMAT = (7*DIM*DIM-19*DIM+12)/2 };
627
+
628
+ using VertexOrientedFE<ET>::vnums;
629
+ using HCurlCurlFiniteElement<ET_trait<ET>::DIM>::ndof;
630
+ using HCurlCurlFiniteElement<ET_trait<ET>::DIM>::order;
631
+
632
+
633
+ int order_edge[ET_trait<ET>::N_EDGE];
634
+ IVec<DIM-1> order_facet[ET_trait<ET>::N_FACET];
635
+ IVec<DIM> order_inner;
636
+
637
+
638
+ public:
639
+ using VertexOrientedFE<ET>::SetVertexNumbers;
640
+
641
+ T_HCurlCurlFE (int aorder)
642
+ {
643
+ order = aorder;
644
+ for (auto & of : order_facet) of = aorder;
645
+ order_inner = aorder;
646
+
647
+ }
648
+
649
+ virtual ELEMENT_TYPE ElementType() const override { return ET; }
650
+ const HCurlCurlFE<ET> * Cast() const { return static_cast<const HCurlCurlFE<ET>*> (this); }
651
+
652
+ INLINE void SetOrderFacet (int nr, IVec<DIM-1,int> order) { order_facet[nr] = order; }
653
+ INLINE void SetOrderEdge (int nr, int order) { order_edge[nr] = order; }
654
+ INLINE void SetOrderInner (IVec<DIM,int> order) { order_inner = order; }
655
+
656
+ virtual void ComputeNDof()
657
+ {
658
+ cout << "Error, T_HCurlCurlFE<ET>:: ComputeNDof not available, only for ET == TRIG" << endl;
659
+ }
660
+
661
+
662
+ virtual void CalcMappedShape (const BaseMappedIntegrationPoint & bmip,
663
+ BareSliceMatrix<double> shapes) const override
664
+ {
665
+ Switch<4-DIM>
666
+ (bmip.DimSpace()-DIM,[this, &bmip, shapes](auto CODIM)
667
+ {
668
+ constexpr auto DIMSPACE = DIM+CODIM.value;
669
+ auto & mip = static_cast<const MappedIntegrationPoint<DIM, DIM+CODIM.value>&> (bmip);
670
+
671
+ Cast() -> T_CalcShape (GetTIP(mip),SBLambda([shapes,DIMSPACE](int nr,auto val)
672
+ {
673
+ shapes.Row(nr).Range(DIMSPACE*DIMSPACE) = val.Value().AsVector();
674
+ }));
675
+ });
676
+ }
677
+
678
+
679
+
680
+ virtual void EvaluateMappedShape (const BaseMappedIntegrationPoint & bmip,
681
+ BareSliceVector<double> coefs,
682
+ BareSliceMatrix<double> shape) const override
683
+ {
684
+ Switch<4-DIM>
685
+ (bmip.DimSpace()-DIM,[this, &bmip, coefs, shape](auto CODIM)
686
+ {
687
+ auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM+CODIM.value>&> (bmip);
688
+
689
+ Mat<DIM+CODIM.value,DIM+CODIM.value> summat(0);
690
+ Cast() -> T_CalcShape (GetTIP(mip), SBLambda ([&summat,coefs] (int nr, auto val)
691
+ {
692
+ summat += coefs(nr) * val.Value();
693
+
694
+ }));
695
+ for (int k = 0; k < sqr(DIM+CODIM.value); k++)
696
+ shape(k) = summat(k);
697
+ });
698
+
699
+ }
700
+
701
+ virtual void CalcMappedIncShape (const BaseMappedIntegrationPoint & bmip,
702
+ BareSliceMatrix<double> shapes) const override
703
+ {
704
+ auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM>&> (bmip);
705
+ if constexpr (ET == ET_TET || ET == ET_TRIG || ET == ET_QUAD)
706
+ Cast() -> T_CalcShape (GetTIPHesse(mip),SBLambda([shapes](int nr,auto val)
707
+ {
708
+ if constexpr (DIM==3)
709
+ shapes.Row(nr).Range(DIM_DDMAT) = val.Inc().AsVector();
710
+ else
711
+ shapes.Row(nr).Range(DIM_DDMAT) = val.Inc();
712
+ }));
713
+ else
714
+ throw Exception("HCurlCurl::CalcMappedIncShape implemented only for TRIG and TET");
715
+
716
+ }
717
+
718
+ virtual void EvaluateMappedIncShape (const BaseMappedIntegrationPoint & bmip,
719
+ BareSliceVector<double> coefs,
720
+ BareSliceVector<double> inc) const override
721
+ {
722
+ auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM>&> (bmip);
723
+
724
+ Mat<DIM*(DIM-1)/2,DIM*(DIM-1)/2> sum = 0.0;
725
+ if constexpr (ET == ET_TET || ET == ET_TRIG || ET == ET_QUAD)
726
+ Cast() -> T_CalcShape (GetTIPHesse(mip),SBLambda([coefs, &sum](int nr,auto val)
727
+ {
728
+ sum += coefs(nr) * Mat<DIM*(DIM-1)/2,DIM*(DIM-1)/2>(val.Inc());
729
+ }));
730
+ else
731
+ throw Exception("HCurlCurl::EvaluateMappedIncShape implemented only for TRIG and TET");
732
+
733
+ inc.Range(0,DIM_DDMAT) = sum.AsVector();
734
+ }
735
+
736
+ virtual void CalcMappedIncShape (const SIMD_BaseMappedIntegrationRule & bmir,
737
+ BareSliceMatrix<SIMD<double>> shapes) const override
738
+ {
739
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
740
+ for (size_t i = 0; i < mir.Size(); i++)
741
+ {
742
+ if constexpr (ET == ET_TET || ET == ET_TRIG || ET == ET_QUAD)
743
+ {
744
+ Cast() -> T_CalcShape (GetTIPHesse(mir[i]),SBLambda([shapes,i](int j,auto val)
745
+ {
746
+ if constexpr (DIM==3)
747
+ shapes.Rows(j*sqr(DIM), (j+1)*sqr(DIM)).Col(i).Range(0,DIM_DDMAT) = val.Inc().AsVector();
748
+ else
749
+ shapes.Rows(j,j+1).Col(i).Range(0,DIM_DDMAT) = val.Inc();
750
+ }));
751
+ }
752
+ else
753
+ throw Exception("HCurlCurl::CalcMappedIncShape implemented only for TRIG and TET");
754
+
755
+ }
756
+ }
757
+
758
+ void EvaluateIncShape (const SIMD_BaseMappedIntegrationRule & bmir,
759
+ BareSliceVector<> coefs,
760
+ BareSliceMatrix<SIMD<double>> values) const override
761
+ {
762
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
763
+ for (size_t i = 0; i < bmir.Size(); i++)
764
+ {
765
+ double *pcoefs = &coefs(0);
766
+ const size_t dist = coefs.Dist();
767
+ if constexpr (ET == ET_TET && DIM == 3)
768
+ {
769
+ Mat<DIM,DIM,SIMD<double>> summat(0);
770
+ Cast() -> T_CalcShape (GetTIPHesse(mir[i]),
771
+ SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
772
+ {
773
+ summat += (*pcoefs)*val.Inc();
774
+ pcoefs += dist;
775
+ }));
776
+ for (size_t k = 0; k < sqr(DIM); k++)
777
+ values(k,i) = summat(k);
778
+ }
779
+ if constexpr ((ET == ET_TRIG || ET == ET_QUAD) && DIM == 2)
780
+ {
781
+ SIMD<double> summat(0);
782
+ Cast() -> T_CalcShape (GetTIPHesse(mir[i]),
783
+ SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
784
+ {
785
+ summat += (*pcoefs)*val.Inc();
786
+ pcoefs += dist;
787
+ }));
788
+ values(0,i) = summat;
789
+ }
790
+ }
791
+
792
+ /*if constexpr (ET == ET_TET || ET == ET_TRIG)
793
+ {
794
+ Switch<1>
795
+ (bmir.DimSpace()-DIM,[values,&bmir,coefs,this](auto CODIM)
796
+ {
797
+ constexpr auto DIMSPACE = DIM+CODIM.value;
798
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
799
+ for (size_t i = 0; i < bmir.Size(); i++)
800
+ {
801
+ double *pcoefs = &coefs(0);
802
+ const size_t dist = coefs.Dist();
803
+
804
+
805
+ if constexpr (DIMSPACE==3)
806
+ {
807
+ Mat<DIMSPACE,DIMSPACE,SIMD<double>> summat(0);
808
+ Cast() -> T_CalcShape (GetTIPHesse(mir[i]),
809
+ SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
810
+ {
811
+ summat += (*pcoefs)*val.Inc();
812
+ pcoefs += dist;
813
+ }));
814
+ for (size_t k = 0; k < sqr(DIMSPACE); k++)
815
+ values(k,i) = summat(k);
816
+ }
817
+ if constexpr (DIMSPACE==2)
818
+ {
819
+ SIMD<double> summat(0);
820
+ Cast() -> T_CalcShape (GetTIPHesse(mir[i]),
821
+ SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
822
+ {
823
+ summat += (*pcoefs)*val.Inc();
824
+ pcoefs += dist;
825
+ }));
826
+ values(0,i) = summat;
827
+ }
828
+
829
+ }
830
+ });
831
+ }*/
832
+ }
833
+
834
+ void AddTransIncShape (const SIMD_BaseMappedIntegrationRule & ir,
835
+ BareSliceMatrix<SIMD<double>> values,
836
+ BareSliceVector<> coefs) const override
837
+ {
838
+ throw ExceptionNOSIMD("HCurlCurl::AddTransIncShape not implemented yet");
839
+ }
840
+
841
+
842
+
843
+ virtual void CalcDualShape (const BaseMappedIntegrationPoint & bmip, BareSliceMatrix<> shape) const override
844
+ {
845
+ shape.AddSize(ndof, sqr(bmip.DimSpace())) = 0.0;
846
+ Switch<4-DIM>
847
+ (bmip.DimSpace()-DIM,[this, &bmip, shape](auto CODIM)
848
+ {
849
+ auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM+CODIM.value>&> (bmip);
850
+
851
+ Cast() -> CalcDualShape2 (mip, SBLambda([shape] (size_t nr, auto val)
852
+ {
853
+ shape.Row(nr) = val.AsVector();
854
+ }));
855
+ });
856
+ }
857
+
858
+ virtual void CalcDualShape (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> shapes) const override
859
+ {
860
+ Switch<4-DIM>
861
+ (bmir.DimSpace()-DIM,[this, &bmir, shapes](auto CODIM)
862
+ {
863
+ constexpr int DIMSPACE = DIM+CODIM.value;
864
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
865
+
866
+ shapes.AddSize(ndof*sqr(DIMSPACE), mir.Size()) = 0.0;
867
+ for (size_t i = 0; i < mir.Size(); i++)
868
+ {
869
+ Cast() -> CalcDualShape2 (mir[i], SBLambda([shapes,i,DIMSPACE] (size_t j, auto val)
870
+ {
871
+ shapes.Rows(j*sqr(DIMSPACE), (j+1)*sqr(DIMSPACE)).Col(i).Range(0,sqr(DIMSPACE)) = val.AsVector();
872
+ }));
873
+ }
874
+ });
875
+ }
876
+
877
+ virtual void EvaluateDual (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs, BareSliceMatrix<SIMD<double>> values) const override
878
+ {
879
+ Switch<4-DIM>
880
+ (bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
881
+ {
882
+ constexpr int DIMSPACE = DIM+CODIM.value;
883
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
884
+ for (size_t i = 0; i < mir.Size(); i++)
885
+ {
886
+ Mat<DIMSPACE,DIMSPACE,SIMD<double>> sum (SIMD<double>(0.0));
887
+ Cast() -> CalcDualShape2 (mir[i], SBLambda([&sum, coefs] (size_t j, auto val)
888
+ {
889
+ sum += coefs(j) * val;
890
+ }));
891
+ for (size_t k = 0; k < sqr(DIMSPACE); k++)
892
+ values(k, i) = sum(k);
893
+ }
894
+ });
895
+ }
896
+
897
+ virtual void AddDualTrans (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> values, BareSliceVector<double> coefs) const override
898
+ {
899
+ Switch<4-DIM>
900
+ (bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
901
+ {
902
+ constexpr int DIMSPACE = DIM+CODIM.value;
903
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
904
+ for (size_t i = 0; i < mir.Size(); i++)
905
+ {
906
+ Mat<DIMSPACE,DIMSPACE,SIMD<double>> value;
907
+ for (size_t k = 0; k < sqr(DIMSPACE); k++)
908
+ value(k) = values(k, i);
909
+
910
+ Cast()-> CalcDualShape2 (mir[i], SBLambda([value, coefs] (size_t j, auto val)
911
+ {
912
+ coefs(j) += HSum(InnerProduct(val,value));
913
+ }));
914
+ }
915
+ });
916
+ }
917
+
918
+ virtual void CalcMappedCurlShape (const BaseMappedIntegrationPoint & bmip,
919
+ BareSliceMatrix<double> shape) const override
920
+ {
921
+ auto mip = static_cast<const MappedIntegrationPoint<DIM,DIM> &>(bmip);
922
+
923
+ if constexpr (ET == ET_TET || ET == ET_TRIG)
924
+ Cast() -> T_CalcShape (GetTIPHesse(mip),SBLambda([shape](int nr,auto val)
925
+ {
926
+ if constexpr (DIM==3)
927
+ shape.Row(nr).Range(DIM_DMAT) = val.Curl().AsVector();
928
+ else
929
+ shape.Row(nr).Range(DIM_DMAT) = val.Curl();
930
+ }));
931
+ else
932
+ throw Exception("HCurlCurl::CalcMappedCurlShape implemented only for TRIG and TET");
933
+ }
934
+
935
+ virtual void CalcMappedShape (const SIMD_BaseMappedIntegrationRule & bmir,
936
+ BareSliceMatrix<SIMD<double>> shapes) const override
937
+ {
938
+ Switch<4-DIM>
939
+ (bmir.DimSpace()-DIM,[this, &bmir, shapes](auto CODIM)
940
+ {
941
+ constexpr auto DIMSPACE = DIM+CODIM.value;
942
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
943
+ for (size_t i = 0; i < mir.Size(); i++)
944
+ {
945
+ this->Cast() -> T_CalcShape (GetTIP(mir[i]),
946
+ SBLambda ([i,shapes,DIMSPACE] (size_t j, auto val)
947
+ {
948
+ shapes.Rows(j*sqr(DIMSPACE), (j+1)*sqr(DIMSPACE)).Col(i).Range(0,sqr(DIMSPACE)) = val.Value().AsVector();
949
+ }));
950
+ }
951
+ });
952
+ }
953
+
954
+
955
+ virtual void Evaluate (const SIMD_BaseMappedIntegrationRule & bmir,
956
+ BareSliceVector<> coefs,
957
+ BareSliceMatrix<SIMD<double>> values) const override
958
+ {
959
+ Switch<4-DIM>
960
+ (bmir.DimSpace()-DIM,[values,&bmir, coefs,this](auto CODIM)
961
+ {
962
+ constexpr auto DIMSPACE = DIM+CODIM.value;
963
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
964
+ for (size_t i = 0; i < bmir.Size(); i++)
965
+ {
966
+ double *pcoefs = &coefs(0);
967
+ const size_t dist = coefs.Dist();
968
+
969
+ Mat<DIMSPACE,DIMSPACE,SIMD<double>> summat(0);
970
+ Cast() -> T_CalcShape (GetTIP(mir[i]),
971
+ SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
972
+ {
973
+ summat += (*pcoefs)*val.Value();
974
+ pcoefs += dist;
975
+ }));
976
+ for (size_t k = 0; k < sqr(DIMSPACE); k++)
977
+ values(k,i) = summat(k);
978
+ }
979
+ });
980
+ }
981
+
982
+ virtual void AddTrans (const SIMD_BaseMappedIntegrationRule & bmir,
983
+ BareSliceMatrix<SIMD<double>> values,
984
+ BareSliceVector<> coefs) const override
985
+ {
986
+ Switch<4-DIM>
987
+ (bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
988
+ {
989
+ constexpr int DIMSPACE = DIM+CODIM.value;
990
+ auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
991
+ for (size_t i = 0; i < mir.Size(); i++)
992
+ {
993
+ Mat<DIMSPACE,DIMSPACE,SIMD<double>> vali;
994
+ vali.AsVector()= values.Col(i);
995
+
996
+ double *pcoefs = &coefs(0);
997
+ const size_t dist = coefs.Dist();
998
+ Cast()->T_CalcShape (GetTIP(mir[i]),
999
+ SBLambda ([vali,&pcoefs,dist] (size_t j, auto s)
1000
+ {
1001
+ *pcoefs += HSum(InnerProduct(s.Value(), vali));
1002
+ pcoefs += dist;
1003
+ }));
1004
+ }
1005
+ });
1006
+
1007
+ }
1008
+
1009
+ };
1010
+
1011
+
1012
+
1013
+
1014
+ #ifdef FILE_HCURLCURLFE_CPP
1015
+ #define HCURLCURLFE_EXTERN
1016
+ #else
1017
+ #define HCURLCURLFE_EXTERN extern
1018
+ #endif
1019
+
1020
+ HCURLCURLFE_EXTERN template class HCurlCurlFiniteElement<2>;
1021
+ HCURLCURLFE_EXTERN template class HCurlCurlFiniteElement<3>;
1022
+
1023
+ template <> class HCurlCurlFE<ET_SEGM> : public T_HCurlCurlFE<ET_SEGM>
1024
+ {
1025
+
1026
+ public:
1027
+ using T_HCurlCurlFE<ET_SEGM> :: T_HCurlCurlFE;
1028
+
1029
+ virtual void ComputeNDof()
1030
+ {
1031
+ order = 0;
1032
+ ndof = 0;
1033
+ ndof += order_inner[0]+1;
1034
+ order = max2(order,order_inner[0]);
1035
+
1036
+ }
1037
+
1038
+ template <typename Tx, typename TFA>
1039
+ void T_CalcShape (TIP<1,Tx> ip, TFA & shape) const
1040
+ {
1041
+ Tx x = ip.x;
1042
+ Tx lami[2] ={ x, 1-x };
1043
+ int ii = 0;
1044
+
1045
+ IVec<2> e = ET_trait<ET_SEGM>::GetEdgeSort (0, vnums);
1046
+ Tx ls = lami[e[0]], le = lami[e[1]];
1047
+
1048
+ auto symdyadic = MakeReggeAD(ls, le);
1049
+
1050
+ LegendrePolynomial::Eval(order_inner[0], ls-le, SBLambda([symdyadic, &ii, shape] (size_t nr, auto val)
1051
+ {
1052
+ shape[ii++] = 0.5*val*symdyadic;
1053
+ }));
1054
+ }
1055
+
1056
+ template <typename MIP, typename TFA>
1057
+ void CalcDualShape2 (const MIP & mip, TFA & shape) const
1058
+ {
1059
+ auto & ip = mip.IP();
1060
+ typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
1061
+ T x = ip(0);
1062
+ T lam[2] = { x, 1-x };
1063
+
1064
+ int ii = 0;
1065
+
1066
+ IVec<2> e = ET_trait<ET_SEGM>::GetEdgeSort (0, vnums);
1067
+ T xi = lam[e[0]]-lam[e[1]];
1068
+
1069
+ auto tv = mip.GetJacobian()*Vec<1,T>(1);
1070
+ auto tt = DyadProd(tv,tv);
1071
+
1072
+ LegendrePolynomial::Eval(order_inner[0], xi, SBLambda([shape,mip,tt,&ii] (size_t nr, T val)
1073
+ {
1074
+ shape[ii++] = 1/mip.GetMeasure()*val*tt;
1075
+ }));
1076
+
1077
+ }
1078
+ };
1079
+
1080
+
1081
+ template <> class HCurlCurlFE<ET_TRIG> : public T_HCurlCurlFE<ET_TRIG>
1082
+ {
1083
+
1084
+ public:
1085
+ using T_HCurlCurlFE<ET_TRIG> :: T_HCurlCurlFE;
1086
+
1087
+ virtual void ComputeNDof()
1088
+ {
1089
+ order = 0;
1090
+ ndof = 0;
1091
+ for (int i=0; i<3; i++)
1092
+ {
1093
+ ndof += order_facet[i][0]+1;
1094
+ order = max2(order, order_facet[i][0]);
1095
+ }
1096
+ int ninner = 3*order_inner[0]*(order_inner[0]+1)/2 ;
1097
+ order = max2(order, order_inner[0]);
1098
+
1099
+ ndof += ninner;
1100
+
1101
+ }
1102
+
1103
+
1104
+ template <typename Tx, typename TFA>
1105
+ void T_CalcShape (TIP<2,Tx> ip, TFA & shape) const
1106
+ {
1107
+ Tx x = ip.x, y = ip.y;
1108
+ Tx lami[3] ={ x, y, 1-x-y };
1109
+ int ii = 0;
1110
+
1111
+ // /*int maxorder_facet =
1112
+ // max2(order_facet[0][0],max2(order_facet[1][0],order_facet[2][0]));
1113
+ // ArrayMem<Tx,20> ha(maxorder_facet+1);
1114
+ // ArrayMem<Tx,20> u(order_inner[0]+2), v(order_inner[0]+2);
1115
+
1116
+ // for (int i = 0; i < 3; i++)
1117
+ // {
1118
+ // IVec<2> e = ET_trait<ET_TRIG>::GetEdgeSort(i,vnums);
1119
+ // Tx ls = llami[e[0]], le = llami[e[1]];
1120
+
1121
+ // // edge functions are all curl-free!
1122
+ // IntegratedLegendreMonomialExt::CalcTrigExt(maxorder_facet+2,
1123
+ // le-ls, 1-le-ls, ha);
1124
+
1125
+ // for (int l = 0; l <= order_facet[i][0]; l++)
1126
+ // shape[ii++] = EpsGrad (ha[l]);
1127
+ // }*/
1128
+
1129
+ for (int i = 0; i < 3; i++)
1130
+ {
1131
+ IVec<2> e = ET_trait<ET_TRIG>::GetEdgeSort (i, vnums);
1132
+ Tx ls = lami[e[1]], le = lami[e[0]];
1133
+
1134
+ auto symdyadic = MakeReggeAD(ls, le);
1135
+
1136
+ LegendrePolynomial::EvalScaled(order_facet[i][0], ls-le,ls+le, SBLambda([symdyadic, &ii, shape] (size_t nr, auto val)
1137
+ {
1138
+ shape[ii++] = -val*symdyadic;
1139
+ }));
1140
+ }
1141
+
1142
+
1143
+ if (order_inner[0] > 0)
1144
+ {
1145
+ IVec<4> f = ET_trait<ET_TRIG>::GetFaceSort(0, vnums);
1146
+ Tx ls = lami[f[0]], le = lami[f[1]], lt = lami[f[2]];
1147
+
1148
+ auto symdyadic1 = lt*MakeReggeAD(ls, le);
1149
+ auto symdyadic2 = ls*MakeReggeAD(lt, le);
1150
+ auto symdyadic3 = le*MakeReggeAD(ls, lt);
1151
+
1152
+
1153
+ DubinerBasis::Eval(order_inner[0]-1, ls,le,
1154
+ SBLambda([symdyadic1,symdyadic2,symdyadic3, &ii, shape] (size_t nr, auto val)
1155
+ {
1156
+ shape[ii++] = 2*val*symdyadic1;
1157
+ shape[ii++] = 2*val*symdyadic2;
1158
+ shape[ii++] = 2*val*symdyadic3;
1159
+ }));
1160
+ }
1161
+
1162
+ };
1163
+
1164
+ template <typename MIP, typename TFA>
1165
+ void CalcDualShape2 (const MIP & mip, TFA & shape) const
1166
+ {
1167
+ auto & ip = mip.IP();
1168
+ typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
1169
+ T x = ip(0), y = ip(1);
1170
+ T lam[3] = { x, y, 1-x-y };
1171
+ Vec<2,T> pnts[3] = { { 1, 0 }, { 0, 1 } , { 0, 0 } };
1172
+ int facetnr = ip.FacetNr();
1173
+
1174
+ int ii = 0;
1175
+
1176
+
1177
+ if (ip.VB() == BND)
1178
+ { // facet shapes
1179
+ for (int i = 0; i < 3; i++)
1180
+ {
1181
+ int p = order_facet[i][0];
1182
+
1183
+ if (i == facetnr)
1184
+ {
1185
+ IVec<2> e = ET_trait<ET_TRIG>::GetEdgeSort (i, vnums);
1186
+
1187
+ T xi = lam[e[0]]-lam[e[1]];
1188
+ Vec<2,T> tauref = pnts[e[0]] - pnts[e[1]];
1189
+
1190
+
1191
+ auto tv = mip.GetJacobian()*tauref;
1192
+
1193
+ auto tt = DyadProd(tv,tv);
1194
+ LegendrePolynomial::Eval
1195
+ (p, xi,
1196
+ SBLambda([&] (size_t nr, T val)
1197
+ {
1198
+ shape[nr+ii] = 1/mip.GetMeasure()*val*tt;
1199
+ }));
1200
+ }
1201
+ ii += (p+1);
1202
+ }
1203
+ }
1204
+ else
1205
+ {
1206
+ for (int i = 0; i < 3; i++)
1207
+ ii += order_facet[i][0]+1;
1208
+ }
1209
+ if (ip.VB() == VOL)
1210
+ {
1211
+ auto p = order_inner[0]-1;
1212
+ if( p >= 0 )
1213
+ {
1214
+ IVec<4> f = ET_trait<ET_TRIG>::GetFaceSort(0, vnums);
1215
+
1216
+ DubinerBasis::Eval (p, lam[f[0]], lam[f[1]],
1217
+ SBLambda([&] (size_t nr, T val)
1218
+ {
1219
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<2,2>({{1,0},{0,0}})*Trans(mip.GetJacobian());
1220
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<2,2>({{0,0},{0,1}})*Trans(mip.GetJacobian());
1221
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<2,2>({{0,1},{1,0}})*Trans(mip.GetJacobian());
1222
+ }));
1223
+ }
1224
+ }
1225
+ }
1226
+
1227
+
1228
+ };
1229
+
1230
+ template <> class HCurlCurlFE<ET_QUAD> : public T_HCurlCurlFE<ET_QUAD>
1231
+ {
1232
+
1233
+ public:
1234
+ using T_HCurlCurlFE<ET_QUAD> :: T_HCurlCurlFE;
1235
+
1236
+ virtual void ComputeNDof()
1237
+ {
1238
+ order = 0;
1239
+ ndof = 0;
1240
+ for (int i=0; i<4; i++)
1241
+ {
1242
+ ndof += order_facet[i][0]+1;
1243
+ order = max2(order, order_facet[i][0]);
1244
+ }
1245
+ int ninner = order_inner[0]*order_inner[0] + (order_inner[0]+2)*order_inner[0]*2 +1;//+ 2*order_inner[0];
1246
+ order = max2(order, order_inner[0]);
1247
+ order += 1;
1248
+ ndof += ninner;
1249
+
1250
+ }
1251
+
1252
+
1253
+
1254
+ template <typename Tx, typename TFA>
1255
+ void T_CalcShape (TIP<2,Tx> ip, TFA & shape) const
1256
+ {
1257
+ Tx x = ip.x, y = ip.y;
1258
+ Tx lx[4] ={ 1-x, x, x, 1-x };
1259
+ Tx ly[4] ={ 1-y, 1-y, y, y };
1260
+ Tx lami[4] = {(1-x)*(1-y),x*(1-y),x*y,(1-x)*y};
1261
+ Tx sigma[4] = {(1-x)+(1-y),x+(1-y),x+y,(1-x)+y};
1262
+ int ii = 0;
1263
+
1264
+ ArrayMem<Tx,20> v(order+2), u(order+2);
1265
+
1266
+
1267
+ for (int i = 0; i < 4; i++)
1268
+ {
1269
+ IVec<2> e = ET_trait<ET_QUAD>::GetEdgeSort (i, vnums);
1270
+ Tx xi = sigma[e[1]]-sigma[e[0]];
1271
+ Tx lam_e = lami[e[0]]+lami[e[1]];
1272
+ auto symdyadic = MakeReggeAD(xi, xi);
1273
+
1274
+
1275
+ //IntLegNoBubble::
1276
+ LegendrePolynomial::
1277
+ EvalMult (order_facet[i][0],
1278
+ xi, 0.25*lam_e, SBLambda ([&](int i, auto val)
1279
+ {
1280
+ shape[ii++] = val*symdyadic;
1281
+ }));
1282
+ }
1283
+
1284
+
1285
+
1286
+ int oi = order_inner[0];
1287
+
1288
+ auto symdyadic = MakeReggeAD(0.5*x,0.5*y); //(0,0.5, 0.5,0) * P(y) * P(x)
1289
+
1290
+ Tx eta = ly[2]-ly[1];
1291
+ Tx xi = lx[1]-lx[0];
1292
+ LegendrePolynomial (oi, eta, v);
1293
+ LegendrePolynomial (oi, xi, u);
1294
+
1295
+ for (int i = 0; i <= oi; i++)
1296
+ for (int j = 0; j <= oi; j++)
1297
+ {
1298
+ shape[ii++] = u[i]*v[j]*symdyadic;
1299
+ }
1300
+
1301
+
1302
+ auto symdyad = lx[1]*lx[0]*MakeReggeAD(y,y);//x*(1-x)*(0,0, 0,1) * P(y) * P(x)
1303
+ for (int i = 0; i < oi; i++)
1304
+ for (int j = 0; j <= oi; j++)
1305
+ {
1306
+ shape[ii++] = u[i]*v[j]*symdyad;
1307
+ }
1308
+
1309
+ symdyad = ly[2]*ly[1]*MakeReggeAD(x,x); //y*(1-y)*(1,0, 0,0) * P(x) * P(y)
1310
+
1311
+ for (int j = 0; j < oi; j++)
1312
+ for (int i = 0; i <= oi; i++)
1313
+ {
1314
+ shape[ii++] = u[i]*v[j]*symdyad;
1315
+ }
1316
+
1317
+ //old version
1318
+ //ArrayMem<Tx,20> u(order+2);
1319
+ /*for (int i = 0; i < 4; i++)
1320
+ {
1321
+ IVec<2> e = ET_trait<ET_QUAD>::GetEdgeSort (i, vnums);
1322
+ Tx xi = llx[e[1]]+lly[e[1]]-llx[e[0]]-lly[e[0]];
1323
+ Tx eta = llx[e[0]]*lly[e[0]]+llx[e[1]]*lly[e[1]];
1324
+
1325
+ IntegratedLegendreMonomialExt::Calc(order_facet[i][0]+2,xi,u);
1326
+
1327
+
1328
+ for (int l = 0; l <= order_facet[i][0]; l++)
1329
+ shape[ii++] = Eps_u_Gradv (eta, u[l]);
1330
+ }
1331
+
1332
+ IntegratedLegendreMonomialExt::Calc(oi+3,llx[0]-llx[1],u);
1333
+ IntegratedLegendreMonomialExt::Calc(oi+3,lly[0]-lly[2],v);
1334
+
1335
+ for(int i = 0; i <= oi-1; i++)
1336
+ for(int j = 0; j <= oi-1; j++)
1337
+ shape[ii++] = EpsGrad(u[i]*v[j]);
1338
+
1339
+ for(int i = 0; i <= oi+1; i++)
1340
+ for(int j = 0; j <= oi-1; j++)
1341
+ {
1342
+ shape[ii++] = vEpsGradu(u[i],v[j]);
1343
+ shape[ii++] = vEpsGradu(v[i],u[j]);
1344
+ }
1345
+ shape[ii++] = Eps_u_Gradv(lx[0], ly[0]);
1346
+
1347
+ for(int i = 0; i <= oi-1; i++)
1348
+ {
1349
+ shape[ii++] = Eps_u_Gradv(u[i], ly[0]);
1350
+ shape[ii++] = Eps_u_Gradv(v[i], lx[0]);
1351
+ }*/
1352
+
1353
+
1354
+
1355
+ };
1356
+
1357
+ template <typename MIP, typename TFA>
1358
+ void CalcDualShape2 (const MIP & mip, TFA & shape) const
1359
+ {
1360
+ auto & ip = mip.IP();
1361
+ typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
1362
+
1363
+ T x = ip(0), y = ip(1);
1364
+ T lx[4] = { 1-x, x, x, 1-x };
1365
+ T ly[4] = { 1-y, 1-y, y, y };
1366
+ T sigma[4] = {(1-x)+(1-y),x+(1-y),x+y,(1-x)+y};
1367
+
1368
+ Vec<2,T> pnts[4] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } };
1369
+ int facetnr = ip.FacetNr();
1370
+
1371
+ int ii = 0;
1372
+
1373
+ ArrayMem<T,20> v(order+2), u(order+2);
1374
+
1375
+
1376
+ if (mip.IP().VB() == BND)
1377
+ { // facet shapes
1378
+ for (int i = 0; i < 4; i++)
1379
+ {
1380
+ int p = order_facet[i][0];
1381
+
1382
+ if (i == facetnr)
1383
+ {
1384
+ IVec<2> e = ET_trait<ET_QUAD>::GetEdgeSort (i, vnums);
1385
+
1386
+ //T xi = lam[e[0]]-lam[e[1]];
1387
+ T xi = sigma[e[1]]-sigma[e[0]];
1388
+ Vec<2,T> tauref = pnts[e[0]] - pnts[e[1]];
1389
+
1390
+
1391
+ auto tv = mip.GetJacobian()*tauref;
1392
+
1393
+ auto tt = DyadProd(tv,tv);
1394
+ LegendrePolynomial::Eval
1395
+ (p, xi,
1396
+ SBLambda([&] (size_t nr, T val)
1397
+ {
1398
+ shape[nr+ii] = 1/mip.GetMeasure()*val*tt;
1399
+ }));
1400
+ /*IVec<2> e = ET_trait<ET_QUAD>::GetEdgeSort (i, vnums);
1401
+ AutoDiff<2,T> xi = sigma[e[1]]-sigma[e[0]];
1402
+ AutoDiff<2,T> lam_e = lami[e[0]]+lami[e[1]];
1403
+ Vec<3, AutoDiff<2,T>> symdyadic = SymDyadProd(xi,xi);
1404
+
1405
+
1406
+ IntLegNoBubble::
1407
+ EvalMult (order_edge[i],
1408
+ xi, lam_e, SBLambda ([&](int nr, auto val)
1409
+ {
1410
+ VecToSymMat<2>(T_REGGE_Shape<2,T>(val*symdyadic).Shape(),tmp);
1411
+ shape[nr + ii] = mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1412
+ }));*/
1413
+ /*AutoDiff<2,T> xi = sigma[e[1]]-sigma[e[0]];
1414
+ AutoDiff<2,T> lam_e = lami[e[0]]+lami[e[1]];
1415
+ Vec<3, AutoDiff<2,T>> symdyadic = SymDyadProd(xi,xi);
1416
+
1417
+
1418
+ IntLegNoBubble::
1419
+ EvalMult (p,xi, lam_e, SBLambda ([&](int nr, auto val)
1420
+ {
1421
+ VecToSymMat<2>(T_REGGE_Shape<2,T>(val*symdyadic).Shape(),tmp);
1422
+ shape[nr + ii] = 1/mip.GetMeasure()*tmp;
1423
+ }));*/
1424
+ }
1425
+ ii += (p+1);
1426
+ }
1427
+ }
1428
+ else
1429
+ {
1430
+ for (int i = 0; i < 4; i++)
1431
+ ii += order_facet[i][0]+1;
1432
+ }
1433
+
1434
+ if (mip.IP().VB() == VOL)
1435
+ {
1436
+ auto p = order_inner[0];
1437
+
1438
+ T eta = ly[2]-ly[1];
1439
+ T xi = lx[1]-lx[0];
1440
+ LegendrePolynomial (p, eta, v);
1441
+ LegendrePolynomial (p, xi, u);
1442
+
1443
+ for (int i = 0; i <= p; i++)
1444
+ for (int j = 0; j <= p; j++)
1445
+ {
1446
+ shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{0,1},{1,0}}))*Trans(mip.GetJacobian());
1447
+ }
1448
+
1449
+
1450
+ //auto symdyad = lx[1]*lx[0]*SymDyadProd(Vec<2,T>(0,1),Vec<2,T>(0,1));//x*(1-x)*(0,0, 0,1) * P(y) * P(x)
1451
+ for (int i = 0; i < p; i++)
1452
+ for (int j = 0; j <= p; j++)
1453
+ {
1454
+ shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{0,0},{0,1}}))*Trans(mip.GetJacobian());
1455
+ }
1456
+
1457
+ //symdyad = ly[2]*ly[1]*SymDyadProd(Vec<2,T>(1,0),Vec<2,T>(1,0)); //y*(1-y)*(1,0, 0,0) * P(x) * P(y)
1458
+
1459
+ for (int j = 0; j < p; j++)
1460
+ for (int i = 0; i <= p; i++)
1461
+ {
1462
+ shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{1,0},{0,0}}))*Trans(mip.GetJacobian());
1463
+ }
1464
+
1465
+ //IVec<4> f = ET_trait<ET_QUAD>::GetFaceSort(0, vnums);
1466
+
1467
+ /*IntegratedLegendreMonomialExt::Calc(p+3,lx[0]-lx[1],u);
1468
+ IntegratedLegendreMonomialExt::Calc(p+3,ly[0]-ly[2],v);
1469
+
1470
+ Mat<2,2,T> tmp;
1471
+
1472
+ for(int i = 0; i <= p-1; i++)
1473
+ for(int j = 0; j <= p-1; j++)
1474
+ {
1475
+ VecToSymMat<2>(EpsGrad(u[i]*v[j]).Shape(),tmp);
1476
+ shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1477
+ }
1478
+
1479
+ for(int i = 0; i <= p+1; i++)
1480
+ for(int j = 0; j <= p-1; j++)
1481
+ {
1482
+ VecToSymMat<2>(vEpsGradu(u[i],v[j]).Shape(),tmp);
1483
+ shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1484
+ VecToSymMat<2>(vEpsGradu(v[i],u[j]).Shape(),tmp);
1485
+ shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1486
+ }
1487
+
1488
+ VecToSymMat<2>(Eps_u_Gradv(lx[0], ly[0]).Shape(),tmp);
1489
+ shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1490
+
1491
+ for(int i = 0; i <= p-1; i++)
1492
+ {
1493
+ VecToSymMat<2>(Eps_u_Gradv(u[i], ly[0]).Shape(),tmp);
1494
+ shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1495
+ VecToSymMat<2>(Eps_u_Gradv(v[i], lx[0]).Shape(),tmp);
1496
+ shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1497
+ }*/
1498
+ }
1499
+ }
1500
+ };
1501
+
1502
+
1503
+ template <> class HCurlCurlFE<ET_PRISM> : public T_HCurlCurlFE<ET_PRISM>
1504
+ {
1505
+ public:
1506
+ enum { incrorder_xx1 = 0};
1507
+ enum { incrorder_zz1 = 0};
1508
+ enum { incrorder_xx2 = 0};
1509
+ enum { incrorder_zz2 = 0};
1510
+ enum { incrorder_xx1_bd = 0};
1511
+ enum { incrorder_zz1_bd = 0};
1512
+ enum { incrorder_xx2_bd = 0};
1513
+ enum { incrorder_zz2_bd = 0};
1514
+ using T_HCurlCurlFE<ET_PRISM> :: T_HCurlCurlFE;
1515
+
1516
+ virtual void ComputeNDof()
1517
+ {
1518
+ order = 0;
1519
+ ndof = 0;
1520
+
1521
+ for (int i=0; i < 9; i++)
1522
+ {
1523
+ ndof += order_edge[i]+1;
1524
+ order = max2(order,order_edge[i]);
1525
+ }
1526
+
1527
+ for (int i=0; i<2; i++)
1528
+ {
1529
+ ndof += 3*(order_facet[i][0])*(order_facet[i][0]+1)/2;
1530
+ order = max2(order, order_facet[i][0]);
1531
+ }
1532
+
1533
+ for (int i=2; i<5; i++)
1534
+ {
1535
+ ndof += order_facet[i][0]*order_facet[i][0] + (order_facet[i][0]+2)*order_facet[i][0]*2 +1;
1536
+ order = max2(order, order_facet[i][0]);
1537
+ }
1538
+ int p = order_inner[0];
1539
+ int ninner = 3*p*(p+1)/2*p + (p-1)*(p)/2*(p+1) + (p+1)*p*(p+1);
1540
+ ndof += ninner;
1541
+
1542
+ order = 1+max2(order, p);
1543
+ }
1544
+
1545
+
1546
+ template <typename Tx, typename TFA>
1547
+ void T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
1548
+ {
1549
+ Tx x = ip.x, y = ip.y, z = ip.z;
1550
+ Tx lx[6] ={ x, y, 1-x-y, x, y, 1-x-y };
1551
+ Tx lz[6] ={ 1-z,1-z,1-z,z,z,z };
1552
+
1553
+ int ii = 0;
1554
+
1555
+
1556
+ const FACE * faces = ElementTopology::GetFaces(ET_PRISM);
1557
+
1558
+ ArrayMem<Tx,20> leg_u(order+2), leg_v(order+3);
1559
+ ArrayMem<Tx,20> leg_w(order+2);
1560
+
1561
+ //horizontal edge shapes
1562
+ for (int i = 0; i < 6; i++)
1563
+ {
1564
+ IVec<2> e = ET_trait<ET_PRISM>::GetEdgeSort (i, vnums);
1565
+ Tx ls = lx[e[1]], le = lx[e[0]], lm = lz[e[0]];
1566
+
1567
+ auto symdyadic = lm*MakeReggeAD(ls,le);
1568
+
1569
+ LegendrePolynomial::EvalScaled(order_edge[i], ls-le,ls+le, SBLambda([symdyadic, &ii, shape] (size_t nr, auto val)
1570
+ {
1571
+ shape[ii++] = -val*symdyadic;
1572
+ }));
1573
+ }
1574
+
1575
+
1576
+
1577
+ //vertical edge shapes
1578
+ for (int i = 6; i < 9; i++)
1579
+ {
1580
+ IVec<2> e = ET_trait<ET_PRISM>::GetEdgeSort (i, vnums);
1581
+ Tx ls = lx[e[0]], lm1 = lz[e[0]], lm2 = lz[e[1]];
1582
+ auto symdyadic = ls*MakeReggeAD(lm1,lm1);
1583
+ LegendrePolynomial (order_edge[i],lm1-lm2, leg_v);
1584
+
1585
+ for (int j=0; j <= order_edge[i]; j++)
1586
+ shape[ii++] = leg_v[j]*symdyadic;
1587
+ }
1588
+
1589
+
1590
+
1591
+ //horizontal face shaps
1592
+ for(int fa = 0; fa < 2; fa++)
1593
+ {
1594
+ if (order_facet[fa][0] > 0)
1595
+ {
1596
+ IVec<4> f = ET_trait<ET_PRISM>::GetFaceSort(fa, vnums);
1597
+ Tx ls = lx[f[0]], le = lx[f[1]], lt = lx[f[2]], lm = lz[f[0]];
1598
+
1599
+ auto symdyadic1 = lm*lt*MakeReggeAD(ls,le);
1600
+ auto symdyadic2 = lm*ls*MakeReggeAD(lt,le);
1601
+ auto symdyadic3 = lm*le*MakeReggeAD(ls,lt);
1602
+
1603
+ DubinerBasis::Eval(order_facet[fa][0]-1, ls,le,
1604
+ SBLambda([symdyadic1,symdyadic2,symdyadic3, &ii, shape] (size_t nr, auto val)
1605
+ {
1606
+ shape[ii++] = val*symdyadic1;
1607
+ shape[ii++] = val*symdyadic2;
1608
+ shape[ii++] = val*symdyadic3;
1609
+ }));
1610
+ }
1611
+ }
1612
+
1613
+
1614
+ //vertical face shaps
1615
+ for(int fa = 2; fa < 5; fa++)
1616
+ {
1617
+ int of = order_facet[fa][0];
1618
+
1619
+ int fmax = 0;
1620
+ for(int j = 1; j < 4; j++)
1621
+ if(vnums[faces[fa][j]] > vnums[faces[fa][fmax]]) fmax = j;
1622
+ int fz,ftrig;
1623
+ fz = 3 - fmax;
1624
+ ftrig = fmax^1;
1625
+ fmax = faces[fa][fmax];
1626
+ fz = faces[fa][fz];
1627
+ ftrig = faces[fa][ftrig];
1628
+
1629
+ Tx eta = lz[fz]-lz[fmax];
1630
+ Tx xi = lx[ftrig]-lx[fmax];
1631
+
1632
+ LegendrePolynomial (of, eta, leg_v);
1633
+ LegendrePolynomial (of, xi, leg_u);
1634
+
1635
+ auto W = uDv_minus_vDu(lx[ftrig],lx[fmax]);
1636
+ Tx W_AD;
1637
+ W_AD.DValue(0) = W.Value()(0);
1638
+ W_AD.DValue(1) = W.Value()(1);
1639
+ W_AD.DValue(2) = W.Value()(2);
1640
+ auto symdyadic = MakeReggeAD(eta,0.25*W_AD); //^= (0,1, 1,0) * P(x)*P(y)
1641
+ for (int j = 0; j <= of; j++)
1642
+ for (int k = 0; k <= of; k++)
1643
+ shape[ii++] = leg_v[j]*leg_u[k]*symdyadic;
1644
+
1645
+
1646
+ auto symdyad = 0.25*lx[ftrig]*lx[fmax]*MakeReggeAD(eta,eta); //^= x*(1-x)*(0,0, 0,1) * P(x) * P(y)
1647
+ for (int i = 0; i < of; i++)
1648
+ for (int j = 0; j <= of; j++)
1649
+ shape[ii++] = leg_u[i]*leg_v[j]*symdyad;
1650
+
1651
+ symdyad = 0.25*lz[fz]*lz[fmax]*MakeReggeAD(lx[ftrig],lx[fmax]); //^= y*(1-y)*(1,0, 0,0) * P(x)*P(y)
1652
+ for (int j = 0; j < of; j++)
1653
+ for (int i = 0; i <= of; i++)
1654
+ shape[ii++] = leg_u[i]*leg_v[j]*symdyad;
1655
+ }
1656
+
1657
+ //inner shapes
1658
+ int p = order_inner[0];
1659
+ if (p > 0)
1660
+ {
1661
+
1662
+ IVec<4> f = ET_trait<ET_PRISM>::GetFaceSort(0, vnums);
1663
+
1664
+ Tx ls = lx[f[0]], le = lx[f[1]], lt = lx[f[2]], lm = lz[0], ln = lz[3];
1665
+
1666
+ auto symdyadic1 = lm*ln*lt*MakeReggeAD(ls,le);
1667
+ auto symdyadic2 = lm*ln*ls*MakeReggeAD(lt,le);
1668
+ auto symdyadic3 = lm*ln*le*MakeReggeAD(ls,lt);
1669
+
1670
+ Tx eta = lz[0]-lz[4];
1671
+ LegendrePolynomial (p, eta, leg_w);
1672
+
1673
+ // Reg(T) x [0,1]
1674
+ DubinerBasis::Eval(p-1, ls,le,
1675
+ SBLambda([symdyadic1,symdyadic2,symdyadic3, &ii, shape,p,leg_w] (size_t nr, auto val)
1676
+ {
1677
+ for(int j=0; j < p; j++)
1678
+ {
1679
+ shape[ii++] = leg_w[j]*val*symdyadic1;
1680
+ shape[ii++] = leg_w[j]*val*symdyadic2;
1681
+ shape[ii++] = leg_w[j]*val*symdyadic3;
1682
+ }
1683
+ }));
1684
+
1685
+
1686
+ // H1(T) x [0,1]
1687
+ auto symdyadic = ls*le*lt*MakeReggeAD(eta,eta);
1688
+ DubinerBasis::Eval(p-2, ls,le,
1689
+ SBLambda([symdyadic, &ii, shape,p,leg_w] (size_t nr, auto val)
1690
+ {
1691
+ for(int j=0; j <= p; j++)
1692
+ {
1693
+ shape[ii++] = val*leg_w[j]*symdyadic;
1694
+ }
1695
+ }));
1696
+
1697
+
1698
+ // Nedelec_1 x [0,1]
1699
+ DubinerBasis::EvalMult(p-2, lx[f[0]], lx[f[1]],lx[f[0]]*lx[f[1]]*lx[f[2]],
1700
+ SBLambda([&](int nr, auto val)
1701
+ {
1702
+ auto tmp = Du(val);
1703
+ Tx tmp_AD;
1704
+ tmp_AD.DValue(0) = tmp.Value()(0);
1705
+ tmp_AD.DValue(1) = tmp.Value()(1);
1706
+ tmp_AD.DValue(2) = tmp.Value()(2);
1707
+ auto symdyadic = MakeReggeAD(tmp_AD,eta);
1708
+ for(int j=0; j <= p; j++)
1709
+ shape[ii++] = leg_w[j]*symdyadic;
1710
+ }));
1711
+
1712
+ DubinerBasis::EvalMult(p-1, lx[f[0]], lx[f[1]], lx[f[0]],
1713
+ SBLambda([&ii,shape,p,leg_w,eta,f,lx](int nr, auto val)
1714
+ {
1715
+ auto tmp = wuDv_minus_wvDu (lx[f[1]], lx[f[2]], val);
1716
+ Tx tmp_AD;
1717
+ tmp_AD.DValue(0) = tmp.Value()(0);
1718
+ tmp_AD.DValue(1) = tmp.Value()(1);
1719
+ tmp_AD.DValue(2) = tmp.Value()(2);
1720
+ auto symdyadic = MakeReggeAD(tmp_AD,eta);
1721
+ for(int j=0; j <= p; j++)
1722
+ shape[ii++] = leg_w[j]*symdyadic;
1723
+ }));
1724
+
1725
+ LegendrePolynomial::EvalMult(p-1, lx[f[2]]-lx[f[1]], lx[f[2]],
1726
+ SBLambda([&ii,shape,p,leg_w,eta,lx,f] (int j, auto val)
1727
+ {
1728
+ auto tmp = wuDv_minus_wvDu (lx[f[1]], lx[f[0]], val);
1729
+ Tx tmp_AD;
1730
+ tmp_AD.DValue(0) = tmp.Value()(0);
1731
+ tmp_AD.DValue(1) = tmp.Value()(1);
1732
+ tmp_AD.DValue(2) = tmp.Value()(2);
1733
+ auto symdyadic = MakeReggeAD(tmp_AD,eta);
1734
+ for(int j=0; j <= p; j++)
1735
+ shape[ii++] = leg_w[j]*symdyadic;
1736
+ }));
1737
+
1738
+ }
1739
+
1740
+ }
1741
+
1742
+
1743
+ template <typename MIP, typename TFA>
1744
+ void CalcDualShape2 (const MIP & mip, TFA & shape) const
1745
+ {
1746
+ throw Exception ("Hcurlcurlfe calcdualshape2 not implementend for element type ET_PRISM");
1747
+ }
1748
+
1749
+ };
1750
+
1751
+
1752
+
1753
+ template <> class HCurlCurlFE<ET_TET> : public T_HCurlCurlFE<ET_TET>
1754
+ {
1755
+ public:
1756
+ using T_HCurlCurlFE<ET_TET> :: T_HCurlCurlFE;
1757
+
1758
+ virtual void ComputeNDof()
1759
+ {
1760
+ order = 0;
1761
+ ndof = 0;
1762
+
1763
+ for (int i=0; i<6; i++)
1764
+ {
1765
+ ndof += order_edge[i]+1;
1766
+ order = max2(order, order_edge[i]);
1767
+ }
1768
+
1769
+ for (int i=0; i<4; i++)
1770
+ {
1771
+ ndof += 3*(order_facet[i][0])*(order_facet[i][0]+1)/2;
1772
+ order = max2(order, order_facet[i][0]);
1773
+ }
1774
+
1775
+ int p = order_inner[0];
1776
+ int ninner = p > 1 ? 6*(p+1)*(p)*(p-1)/6 : 0;
1777
+ ndof += ninner;
1778
+
1779
+ order = max2(order, p);
1780
+ }
1781
+
1782
+
1783
+
1784
+ template <typename Tx, typename TFA>
1785
+ void T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
1786
+ {
1787
+ Tx x = ip.x, y = ip.y, z = ip.z;
1788
+ Tx lam[4] = {x, y, z, 1-x-y-z};
1789
+ int ii = 0;
1790
+
1791
+ for (int i = 0; i < 6; i++)
1792
+ {
1793
+ IVec<2> e = ET_trait<ET_TET>::GetEdgeSort (i, vnums);
1794
+ Tx ls = lam[e[1]], le = lam[e[0]];
1795
+
1796
+ auto symdyadic = MakeReggeAD(ls, le);
1797
+ LegendrePolynomial::EvalScaled(order_edge[i], ls-le,ls+le, SBLambda([symdyadic, &ii, shape] (size_t nr, auto val)
1798
+ {
1799
+ shape[ii++] = -val*symdyadic;
1800
+ }));
1801
+ }
1802
+
1803
+
1804
+ for(int fa = 0; fa < 4; fa++)
1805
+ {
1806
+ if (order_facet[fa][0] > 0)
1807
+ {
1808
+ IVec<4> f = ET_trait<ET_TET>::GetFaceSort(fa, vnums);
1809
+ Tx ls = lam[f[0]], le = lam[f[1]], lt = lam[f[2]];
1810
+
1811
+ auto symdyadic1 = lt*MakeReggeAD(ls, le);
1812
+ auto symdyadic2 = ls*MakeReggeAD(lt, le);
1813
+ auto symdyadic3 = le*MakeReggeAD(ls, lt);
1814
+
1815
+ DubinerBasis::Eval(order_facet[fa][0]-1, ls,le,
1816
+ SBLambda([symdyadic1,symdyadic2,symdyadic3, &ii, shape] (size_t nr, auto val)
1817
+ {
1818
+ shape[ii++] = val*symdyadic1;
1819
+ shape[ii++] = val*symdyadic2;
1820
+ shape[ii++] = val*symdyadic3;
1821
+ }));
1822
+ }
1823
+ }
1824
+
1825
+ if (order_inner[0] > 1)
1826
+ {
1827
+ Tx li = lam[0], lj = lam[1], lk = lam[2], ll = lam[3];
1828
+
1829
+ auto symdyadic1 = li*lj*MakeReggeAD(lk, ll);
1830
+ auto symdyadic2 = lj*lk*MakeReggeAD(ll, li);
1831
+ auto symdyadic3 = lk*ll*MakeReggeAD(li, lj);
1832
+ auto symdyadic4 = ll*li*MakeReggeAD(lj, lk);
1833
+ auto symdyadic5 = li*lk*MakeReggeAD(lj, ll);
1834
+ auto symdyadic6 = lj*ll*MakeReggeAD(li, lk);
1835
+
1836
+
1837
+ DubinerBasis3D::Eval (order_inner[0]-2, lam[0], lam[1], lam[2], SBLambda([&ii, shape, symdyadic1, symdyadic2, symdyadic3, symdyadic4, symdyadic5, symdyadic6](size_t j, auto val)
1838
+ {
1839
+ shape[ii++] = val*symdyadic1;
1840
+ shape[ii++] = val*symdyadic2;
1841
+ shape[ii++] = val*symdyadic3;
1842
+ shape[ii++] = val*symdyadic4;
1843
+ shape[ii++] = val*symdyadic5;
1844
+ shape[ii++] = val*symdyadic6;
1845
+ }));
1846
+ }
1847
+
1848
+ }
1849
+
1850
+
1851
+
1852
+ template <typename MIP, typename TFA>
1853
+ void CalcDualShape2 (const MIP & mip, TFA & shape) const
1854
+ {
1855
+ auto & ip = mip.IP();
1856
+ typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
1857
+ T x = ip(0), y = ip(1), z = ip(2);
1858
+ T lam[4] = { x, y, z, 1-x-y-z };
1859
+ Vec<3,T> pnts[4] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } , { 0, 0, 0 } };
1860
+ int facetnr = ip.FacetNr();
1861
+
1862
+ int ii = 0;
1863
+
1864
+ if (ip.VB() == BBND)
1865
+ { // facet shapes
1866
+ for (int i = 0; i < 6; i++)
1867
+ {
1868
+ int p = order_edge[i];
1869
+
1870
+ if (i == facetnr)
1871
+ {
1872
+ IVec<2> e = ET_trait<ET_TET>::GetEdgeSort (i, vnums);
1873
+
1874
+ T xi = lam[e[1]]-lam[e[0]];
1875
+ Vec<3,T> tauref = pnts[e[1]] - pnts[e[0]];
1876
+ Vec<3,T> tau = mip.GetJacobian()*tauref;
1877
+ Mat<3,3,T> tt = DyadProd(tau,tau);
1878
+ LegendrePolynomial::Eval
1879
+ (p, xi,
1880
+ SBLambda([&] (size_t nr, T val)
1881
+ {
1882
+ shape[nr+ii] = 1/mip.GetMeasure()*val*tt;
1883
+ }));
1884
+ }
1885
+ ii += (p+1);
1886
+ }
1887
+ }
1888
+ else
1889
+ {
1890
+ for (int i = 0; i < 6; i++)
1891
+ ii += order_edge[i]+1;
1892
+ }
1893
+ if (ip.VB() == BND)
1894
+ {
1895
+ for (int i = 0; i < 4; i++)
1896
+ {
1897
+ auto p = order_facet[i][0]-1;
1898
+ if( p >= 0 && i == facetnr )
1899
+ {
1900
+ IVec<4> fav = ET_trait<ET_TET>:: GetFaceSort(facetnr, vnums);
1901
+ Vec<3,T> adxi = pnts[fav[0]] - pnts[fav[2]];
1902
+ Vec<3,T> adeta = pnts[fav[1]] - pnts[fav[2]];
1903
+ T xi = lam[fav[0]];
1904
+ T eta = lam[fav[1]];
1905
+
1906
+ Matrix<T> F(3,2);
1907
+ F.Col(0) = adxi;
1908
+ F.Col(1) = adeta;
1909
+
1910
+ Matrix<T> Ftmp(2,2);
1911
+ Ftmp = Trans(F)*F;
1912
+ auto det = sqrt(Ftmp(0,0)*Ftmp(1,1)-Ftmp(1,0)*Ftmp(0,1));
1913
+
1914
+ DubinerBasis::Eval (p, xi, eta,
1915
+ SBLambda([&] (size_t nr, T val)
1916
+ {
1917
+ shape[ii++] = 1/(det*mip.GetMeasure())*val*Mat<3,3,T>(mip.GetJacobian()*F*Matrix<>({{1,0},{0,0}})*Trans(mip.GetJacobian()*F));
1918
+ shape[ii++] = 1/(det*mip.GetMeasure())*val*Mat<3,3,T>(mip.GetJacobian()*F*Matrix<>({{0,0},{0,1}})*Trans(mip.GetJacobian()*F));
1919
+ shape[ii++] = 1/(det*mip.GetMeasure())*val*Mat<3,3,T>(mip.GetJacobian()*F*Matrix<>({{0,1},{1,0}})*Trans(mip.GetJacobian()*F));
1920
+ }));
1921
+ }
1922
+ else
1923
+ ii += 3*(order_facet[i][0])*(order_facet[i][0]+1)/2;
1924
+ }
1925
+ }
1926
+ else
1927
+ {
1928
+ for (int i = 0; i < 4; i++)
1929
+ ii += 3*(order_facet[i][0])*(order_facet[i][0]+1)/2;
1930
+ }
1931
+
1932
+ if (ip.VB() == VOL && order_inner[0] >= 2)
1933
+ {
1934
+ DubinerBasis3D::Eval (order_inner[0]-2, lam[0], lam[1], lam[2], SBLambda([&](size_t j, T val)
1935
+ {
1936
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{1,0,0},{0,0,0},{0,0,0}}))*Trans(mip.GetJacobian());
1937
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,0,0},{0,1,0},{0,0,0}}))*Trans(mip.GetJacobian());
1938
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,0,0},{0,0,0},{0,0,1}}))*Trans(mip.GetJacobian());
1939
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,0,0},{0,0,1},{0,1,0}}))*Trans(mip.GetJacobian());
1940
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,0,1},{0,0,0},{1,0,0}}))*Trans(mip.GetJacobian());
1941
+ shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,1,0},{1,0,0},{0,0,0}}))*Trans(mip.GetJacobian());
1942
+ }));
1943
+
1944
+ }
1945
+ }
1946
+ };
1947
+
1948
+
1949
+
1950
+ template <> class HCurlCurlFE<ET_HEX> : public T_HCurlCurlFE<ET_HEX>
1951
+ {
1952
+ public:
1953
+ using T_HCurlCurlFE<ET_HEX> :: T_HCurlCurlFE;
1954
+
1955
+ virtual void ComputeNDof()
1956
+ {
1957
+ order = 0;
1958
+ ndof = 0;
1959
+ for (int i=0; i < 12; i++)
1960
+ {
1961
+ ndof += order_edge[i]+1;
1962
+ order = max2(order,order_edge[i]);
1963
+ }
1964
+ for (int i=0; i<6; i++)
1965
+ {
1966
+ ndof += order_facet[i][0]*order_facet[i][0] + 2*(order_facet[i][0]+2)*order_facet[i][0]+1;
1967
+ order = max2(order, order_facet[i][0]);
1968
+ }
1969
+ int p = order_inner[0];
1970
+ ndof += 3*(p*(p+1)*(p+1) + p*p*(p+1) );
1971
+
1972
+ order = 1 + max2(order, p);
1973
+ }
1974
+
1975
+
1976
+ template <typename Tx, typename TFA>
1977
+ void T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
1978
+ {
1979
+ Tx x = ip.x, y = ip.y, z = ip.z;
1980
+ Tx lx[2] ={ 1-x, x};
1981
+ Tx ly[2] ={ 1-y, y};
1982
+ Tx lz[2] ={ 1-z, z};
1983
+ Tx lami[8]={(1-x)*(1-y)*(1-z),x*(1-y)*(1-z),x*y*(1-z),(1-x)*y*(1-z),
1984
+ (1-x)*(1-y)*z,x*(1-y)*z,x*y*z,(1-x)*y*z};
1985
+ Tx sigma[8]={(1-x)+(1-y)+(1-z),x+(1-y)+(1-z),x+y+(1-z),(1-x)+y+(1-z),
1986
+ (1-x)+(1-y)+z,x+(1-y)+z,x+y+z,(1-x)+y+z};
1987
+ int ii = 0;
1988
+
1989
+ const FACE * faces = ElementTopology::GetFaces(ET_HEX);
1990
+
1991
+ ArrayMem<Tx,20> leg_u(order+2), leg_v(order+2), leg_w(order+2);
1992
+
1993
+ // edges
1994
+ for (int i = 0; i < 12; i++)
1995
+ {
1996
+ int p = order_edge[i];
1997
+ IVec<2> e = ET_trait<ET_HEX>::GetEdgeSort (i, vnums);
1998
+ Tx xi = sigma[e[1]]-sigma[e[0]];
1999
+ Tx lam_e = lami[e[0]]+lami[e[1]];
2000
+ auto symdyadic = MakeReggeAD(xi,xi);
2001
+
2002
+ //IntLegNoBubble::
2003
+ LegendrePolynomial::
2004
+ EvalMult (p, xi, 0.25*lam_e, SBLambda ([&](int i, auto val)
2005
+ {
2006
+ shape[ii++] = val*symdyadic;
2007
+ }));
2008
+ }
2009
+
2010
+
2011
+ for (int i = 0; i<6; i++)
2012
+ {
2013
+ int p = order_facet[i][0];
2014
+
2015
+ Tx lam_f(0);
2016
+ for (int j = 0; j < 4; j++)
2017
+ lam_f += lami[faces[i][j]];
2018
+
2019
+ IVec<4> f = ET_trait<ET_HEX>::GetFaceSort (i, vnums);
2020
+ Tx xi = sigma[f[0]] - sigma[f[1]];
2021
+ Tx eta = sigma[f[0]] - sigma[f[3]];
2022
+
2023
+ LegendrePolynomial (p, eta, leg_u);
2024
+ LegendrePolynomial (p, xi, leg_v);
2025
+
2026
+ auto symdyadic = 0.25*lam_f*MakeReggeAD(eta,xi);
2027
+ for (int j = 0; j <= p; j++)
2028
+ for (int k = 0; k <= p; k++)
2029
+ shape[ii++] = leg_u[j]*leg_v[k]*symdyadic;
2030
+
2031
+ symdyadic = 0.25*lam_f*(1-eta*eta)*MakeReggeAD(xi,xi);
2032
+ for (int j = 0; j < p; j++)
2033
+ for (int k = 0; k <= p; k++)
2034
+ shape[ii++] = leg_u[j]*leg_v[k]*symdyadic;
2035
+
2036
+ symdyadic = 0.25*lam_f*(1-xi*xi)*MakeReggeAD(eta,eta);
2037
+ for (int k = 0; k < p; k++)
2038
+ for (int j = 0; j <= p; j++)
2039
+ shape[ii++] = leg_u[j]*leg_v[k]*symdyadic;
2040
+
2041
+ }
2042
+
2043
+ int p = order_inner[0];
2044
+ if (p > 0)
2045
+ {
2046
+ Tx xi = sigma[0] - sigma[1];
2047
+ Tx eta = sigma[0] - sigma[3];
2048
+ Tx nv = sigma[0] - sigma[4];
2049
+
2050
+ LegendrePolynomial (p, xi, leg_u);
2051
+ LegendrePolynomial (p, eta, leg_v);
2052
+ LegendrePolynomial (p, nv, leg_w);
2053
+
2054
+ auto symdyadic1 = lz[0]*lz[1]*MakeReggeAD(eta,xi);
2055
+ auto symdyadic2 = lx[0]*lx[1]*MakeReggeAD(nv,eta);
2056
+ auto symdyadic3 = ly[0]*ly[1]*MakeReggeAD(xi,nv);
2057
+ for (int i = 0; i <= p; i++)
2058
+ for (int j = 0; j <= p; j++)
2059
+ for (int k = 0; k < p; k++)
2060
+ {
2061
+ shape[ii++] = leg_u[i]*leg_v[j]*leg_w[k]*symdyadic1;
2062
+ shape[ii++] = leg_v[i]*leg_w[j]*leg_u[k]*symdyadic2;
2063
+ shape[ii++] = leg_w[i]*leg_u[j]*leg_v[k]*symdyadic3;
2064
+ }
2065
+
2066
+ symdyadic1 = ly[0]*ly[1]*lz[0]*lz[1]*MakeReggeAD(xi,xi);
2067
+ symdyadic2 = lz[0]*lz[1]*lx[0]*lx[1]*MakeReggeAD(eta,eta);
2068
+ symdyadic3 = lx[0]*lx[1]*ly[0]*ly[1]*MakeReggeAD(nv,nv);
2069
+
2070
+ for (int i = 0; i <= p; i++)
2071
+ for (int j = 0; j < p; j++)
2072
+ for (int k = 0; k < p; k++)
2073
+ {
2074
+ shape[ii++] = leg_u[i]*leg_v[j]*leg_w[k]*symdyadic1;
2075
+ shape[ii++] = leg_v[i]*leg_w[j]*leg_u[k]*symdyadic2;
2076
+ shape[ii++] = leg_w[i]*leg_u[j]*leg_v[k]*symdyadic3;
2077
+ }
2078
+ }
2079
+ }
2080
+
2081
+ template <typename MIP, typename TFA>
2082
+ void CalcDualShape2 (const MIP & mip, TFA & shape) const
2083
+ {
2084
+ auto & ip = mip.IP();
2085
+ typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
2086
+
2087
+ T x = ip(0), y = ip(1), z = ip(2);
2088
+ // T lx[4] = { 1-x, x, x, 1-x };
2089
+ // T ly[4] = { 1-y, 1-y, y, y };
2090
+ // T lz[4] = { 1-z, 1-z, z, z };
2091
+ // T lam[4] = { 1-x-y+x*y, x*(1-y), x*y, y*(1-x) };
2092
+ T sigma[8]={(1-x)+(1-y)+(1-z),x+(1-y)+(1-z),x+y+(1-z),(1-x)+y+(1-z),
2093
+ (1-x)+(1-y)+z,x+(1-y)+z,x+y+z,(1-x)+y+z};
2094
+
2095
+ /*Vec<2,AutoDiff<2,T>> adip = ip;
2096
+ auto tip = TIP<2,AutoDiffDiff<2,T>>(adip);
2097
+ AutoDiffDiff<2,T> xxx = tip.x, yyy = tip.y;
2098
+ AutoDiff<2,T> xx(xxx.Value(), &xxx.DValue(0));
2099
+ AutoDiff<2,T> yy(yyy.Value(), &yyy.DValue(0));
2100
+ AutoDiff<2,T> lami[4] = {(1-xx)*(1-yy),xx*(1-yy),xx*yy,(1-xx)*yy};
2101
+ AutoDiff<2,T> sigma[4] = {(1-xx)+(1-yy),xx+(1-yy),xx+yy,(1-xx)+yy}; */
2102
+
2103
+ Vec<3,T> pnts[8] = { { 0, 0, 0 }, { 1, 0, 0 }, { 1, 1, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, { 1, 0, 1 }, { 1, 1, 1 }, { 0, 1, 1 } };
2104
+ int facetnr = ip.FacetNr();
2105
+
2106
+ int ii = 0;
2107
+
2108
+ ArrayMem<T,20> v(order+2), u(order+2), w(order+2);
2109
+
2110
+ if (mip.IP().VB() == BBND)
2111
+ { // edge shapes
2112
+ for (int i = 0; i < 12; i++)
2113
+ {
2114
+ int p = order_edge[i];
2115
+
2116
+ if (i == facetnr)
2117
+ {
2118
+ IVec<2> e = ET_trait<ET_HEX>::GetEdgeSort (i, vnums);
2119
+
2120
+ T xi = sigma[e[1]]-sigma[e[0]];
2121
+ Vec<3,T> tauref = pnts[e[0]] - pnts[e[1]];
2122
+
2123
+
2124
+ auto tv = mip.GetJacobian()*tauref;
2125
+
2126
+ auto tt = DyadProd(tv,tv);
2127
+ LegendrePolynomial::Eval
2128
+ (p, xi,
2129
+ SBLambda([&] (size_t nr, T val)
2130
+ {
2131
+ shape[nr+ii] = 1/mip.GetMeasure()*val*tt;
2132
+ }));
2133
+
2134
+ }
2135
+ ii += (p+1);
2136
+ }
2137
+ }
2138
+ else
2139
+ {
2140
+ for (int i = 0; i < 12; i++)
2141
+ ii += order_edge[i]+1;
2142
+ }
2143
+ if (mip.IP().VB() == BND)
2144
+ {
2145
+ for (int i = 0; i < 6; i++)
2146
+ {
2147
+ int p = order_facet[i][0];
2148
+
2149
+ if (i == facetnr)
2150
+ {
2151
+ IVec<4> f = ET_trait<ET_HEX>::GetFaceSort (i, vnums);
2152
+ Vec<3,T> tauref1 = pnts[f[0]] - pnts[f[1]];
2153
+ Vec<3,T> tauref2 = pnts[f[0]] - pnts[f[3]];
2154
+ T xi = sigma[f[0]] - sigma[f[1]];
2155
+ T eta = sigma[f[0]] - sigma[f[3]];
2156
+ //Vec<6, T> symdyadic = SymDyadProd(GetGradient(etaa),GetGradient(xia));
2157
+ auto tv1 = mip.GetJacobian()*tauref1;
2158
+ auto tv2 = mip.GetJacobian()*tauref2;
2159
+ auto symdyadic = SymDyadProd(tv1,tv2);
2160
+
2161
+ LegendrePolynomial (p, eta, u);
2162
+ LegendrePolynomial (p, xi, v);
2163
+ for (int j = 0; j <= p; j++)
2164
+ for (int k = 0; k <= p; k++)
2165
+ shape[ii + j*(p+1) + k] = u[j]*v[k]*symdyadic;
2166
+
2167
+ /* T eta = ly[2]-ly[1];
2168
+ T xi = lx[1]-lx[0];
2169
+ LegendrePolynomial (p, eta, v);
2170
+ LegendrePolynomial (p, xi, u);
2171
+
2172
+ for (int i = 0; i <= p; i++)
2173
+ for (int j = 0; j <= p; j++)
2174
+ {
2175
+ shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{0,1},{1,0}}))*Trans(mip.GetJacobian());
2176
+ }
2177
+
2178
+
2179
+ //auto symdyad = lx[1]*lx[0]*SymDyadProd(Vec<2,T>(0,1),Vec<2,T>(0,1));//x*(1-x)*(0,0, 0,1) * P(y) * P(x)
2180
+ for (int i = 0; i < p; i++)
2181
+ for (int j = 0; j <= p; j++)
2182
+ {
2183
+ shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{0,0},{0,1}}))*Trans(mip.GetJacobian());
2184
+ }
2185
+
2186
+ //symdyad = ly[2]*ly[1]*SymDyadProd(Vec<2,T>(1,0),Vec<2,T>(1,0)); //y*(1-y)*(1,0, 0,0) * P(x) * P(y)
2187
+
2188
+ for (int j = 0; j < p; j++)
2189
+ for (int i = 0; i <= p; i++)
2190
+ {
2191
+ shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{1,0},{0,0}}))*Trans(mip.GetJacobian());
2192
+ }*/
2193
+ }
2194
+ ii += p*p + (p+2)*p*2 + 1;
2195
+ }
2196
+ }
2197
+ else
2198
+ {
2199
+ for (int i = 0; i < 6; i++)
2200
+ ii += order_facet[i][0]*order_facet[i][0] + (order_facet[i][0]+2)*order_facet[i][0]*2 + 1;
2201
+ }
2202
+
2203
+ if (mip.IP().VB() == VOL)
2204
+ {
2205
+ if (order_inner[0])
2206
+ throw Exception ("Hcurlcurlfe calcdualshape2 not implementend for element type ET_HEX for high-order");
2207
+ }
2208
+ }
2209
+
2210
+ };
2211
+
2212
+
2213
+ HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_SEGM>;
2214
+ HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_TRIG>;
2215
+ HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_QUAD>;
2216
+ HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_TET>;
2217
+ HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_PRISM>;
2218
+ HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_HEX>;
2219
+ }
2220
+
2221
+ #endif