ngsolve 6.2.2501.post21.dev1__cp313-cp313-macosx_10_15_universal2.whl → 6.2.2501.post37.dev1__cp313-cp313-macosx_10_15_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ngsolve might be problematic. Click here for more details.

Files changed (286) hide show
  1. ngsolve/webgui.py +1 -1
  2. {ngsolve-6.2.2501.post21.dev1.dist-info → ngsolve-6.2.2501.post37.dev1.dist-info}/METADATA +2 -2
  3. ngsolve-6.2.2501.post37.dev1.dist-info/RECORD +25 -0
  4. netgen/include/arnoldi.hpp +0 -55
  5. netgen/include/bandmatrix.hpp +0 -334
  6. netgen/include/basematrix.hpp +0 -957
  7. netgen/include/basevector.hpp +0 -1268
  8. netgen/include/bdbequations.hpp +0 -2752
  9. netgen/include/bdbintegrator.hpp +0 -1659
  10. netgen/include/bessel.hpp +0 -1064
  11. netgen/include/bilinearform.hpp +0 -963
  12. netgen/include/bla.hpp +0 -29
  13. netgen/include/blockalloc.hpp +0 -95
  14. netgen/include/blockjacobi.hpp +0 -316
  15. netgen/include/bspline.hpp +0 -114
  16. netgen/include/calcinverse.hpp +0 -141
  17. netgen/include/cg.hpp +0 -368
  18. netgen/include/chebyshev.hpp +0 -44
  19. netgen/include/cholesky.hpp +0 -720
  20. netgen/include/clapack.h +0 -7254
  21. netgen/include/code_generation.hpp +0 -296
  22. netgen/include/coefficient.hpp +0 -2006
  23. netgen/include/coefficient_impl.hpp +0 -18
  24. netgen/include/coefficient_stdmath.hpp +0 -157
  25. netgen/include/commutingAMG.hpp +0 -106
  26. netgen/include/comp.hpp +0 -79
  27. netgen/include/compatibility.hpp +0 -41
  28. netgen/include/complex_wrapper.hpp +0 -73
  29. netgen/include/compressedfespace.hpp +0 -110
  30. netgen/include/contact.hpp +0 -231
  31. netgen/include/diagonalmatrix.hpp +0 -154
  32. netgen/include/differentialoperator.hpp +0 -276
  33. netgen/include/diffop.hpp +0 -1286
  34. netgen/include/diffop_impl.hpp +0 -326
  35. netgen/include/discontinuous.hpp +0 -84
  36. netgen/include/dump.hpp +0 -949
  37. netgen/include/eigen.hpp +0 -60
  38. netgen/include/eigensystem.hpp +0 -18
  39. netgen/include/elasticity_equations.hpp +0 -595
  40. netgen/include/elementbyelement.hpp +0 -195
  41. netgen/include/elementtopology.hpp +0 -1760
  42. netgen/include/elementtransformation.hpp +0 -339
  43. netgen/include/evalfunc.hpp +0 -405
  44. netgen/include/expr.hpp +0 -1655
  45. netgen/include/facetfe.hpp +0 -175
  46. netgen/include/facetfespace.hpp +0 -178
  47. netgen/include/facethofe.hpp +0 -111
  48. netgen/include/facetsurffespace.hpp +0 -112
  49. netgen/include/fe_interfaces.hpp +0 -32
  50. netgen/include/fem.hpp +0 -87
  51. netgen/include/fesconvert.hpp +0 -14
  52. netgen/include/fespace.hpp +0 -1445
  53. netgen/include/finiteelement.hpp +0 -286
  54. netgen/include/globalinterfacespace.hpp +0 -77
  55. netgen/include/globalspace.hpp +0 -115
  56. netgen/include/gridfunction.hpp +0 -525
  57. netgen/include/h1amg.hpp +0 -41
  58. netgen/include/h1hofe.hpp +0 -188
  59. netgen/include/h1hofe_impl.hpp +0 -1262
  60. netgen/include/h1hofefo.hpp +0 -148
  61. netgen/include/h1hofefo_impl.hpp +0 -185
  62. netgen/include/h1hofespace.hpp +0 -167
  63. netgen/include/h1lofe.hpp +0 -1237
  64. netgen/include/h1lumping.hpp +0 -35
  65. netgen/include/hcurl_equations.hpp +0 -1352
  66. netgen/include/hcurlcurlfe.hpp +0 -2221
  67. netgen/include/hcurlcurlfespace.hpp +0 -78
  68. netgen/include/hcurlfe.hpp +0 -259
  69. netgen/include/hcurlfe_utils.hpp +0 -107
  70. netgen/include/hcurlhdiv_dshape.hpp +0 -857
  71. netgen/include/hcurlhdivfes.hpp +0 -308
  72. netgen/include/hcurlhofe.hpp +0 -175
  73. netgen/include/hcurlhofe_impl.hpp +0 -1871
  74. netgen/include/hcurlhofespace.hpp +0 -193
  75. netgen/include/hcurllofe.hpp +0 -1146
  76. netgen/include/hdiv_equations.hpp +0 -865
  77. netgen/include/hdivdivfe.hpp +0 -2923
  78. netgen/include/hdivdivsurfacespace.hpp +0 -76
  79. netgen/include/hdivfe.hpp +0 -206
  80. netgen/include/hdivfe_utils.hpp +0 -716
  81. netgen/include/hdivfes.hpp +0 -75
  82. netgen/include/hdivhofe.hpp +0 -447
  83. netgen/include/hdivhofe_impl.hpp +0 -1107
  84. netgen/include/hdivhofefo.hpp +0 -229
  85. netgen/include/hdivhofespace.hpp +0 -175
  86. netgen/include/hdivhosurfacefespace.hpp +0 -106
  87. netgen/include/hdivlofe.hpp +0 -773
  88. netgen/include/hidden.hpp +0 -74
  89. netgen/include/householder.hpp +0 -181
  90. netgen/include/hypre_ams_precond.hpp +0 -123
  91. netgen/include/hypre_precond.hpp +0 -73
  92. netgen/include/integrator.hpp +0 -2024
  93. netgen/include/integratorcf.hpp +0 -253
  94. netgen/include/interpolate.hpp +0 -49
  95. netgen/include/intrule.hpp +0 -2541
  96. netgen/include/irspace.hpp +0 -49
  97. netgen/include/jacobi.hpp +0 -136
  98. netgen/include/l2hofe.hpp +0 -193
  99. netgen/include/l2hofe_impl.hpp +0 -564
  100. netgen/include/l2hofefo.hpp +0 -542
  101. netgen/include/l2hofespace.hpp +0 -344
  102. netgen/include/la.hpp +0 -38
  103. netgen/include/linearform.hpp +0 -266
  104. netgen/include/matrix.hpp +0 -2140
  105. netgen/include/memusage.hpp +0 -41
  106. netgen/include/meshaccess.hpp +0 -1358
  107. netgen/include/mgpre.hpp +0 -204
  108. netgen/include/mptools.hpp +0 -2145
  109. netgen/include/multigrid.hpp +0 -42
  110. netgen/include/multivector.hpp +0 -447
  111. netgen/include/mumpsinverse.hpp +0 -187
  112. netgen/include/mycomplex.hpp +0 -361
  113. netgen/include/ng_lapack.hpp +0 -1661
  114. netgen/include/ngblas.hpp +0 -1099
  115. netgen/include/ngs_defines.hpp +0 -30
  116. netgen/include/ngs_stdcpp_include.hpp +0 -106
  117. netgen/include/ngs_utils.hpp +0 -121
  118. netgen/include/ngsobject.hpp +0 -1019
  119. netgen/include/ngsstream.hpp +0 -113
  120. netgen/include/ngstd.hpp +0 -72
  121. netgen/include/nodalhofe.hpp +0 -96
  122. netgen/include/nodalhofe_impl.hpp +0 -141
  123. netgen/include/normalfacetfe.hpp +0 -223
  124. netgen/include/normalfacetfespace.hpp +0 -98
  125. netgen/include/normalfacetsurfacefespace.hpp +0 -84
  126. netgen/include/order.hpp +0 -251
  127. netgen/include/parallel_matrices.hpp +0 -222
  128. netgen/include/paralleldofs.hpp +0 -340
  129. netgen/include/parallelngs.hpp +0 -23
  130. netgen/include/parallelvector.hpp +0 -269
  131. netgen/include/pardisoinverse.hpp +0 -200
  132. netgen/include/periodic.hpp +0 -125
  133. netgen/include/plateaufespace.hpp +0 -25
  134. netgen/include/pml.hpp +0 -275
  135. netgen/include/pmltrafo.hpp +0 -631
  136. netgen/include/postproc.hpp +0 -142
  137. netgen/include/precomp.hpp +0 -60
  138. netgen/include/preconditioner.hpp +0 -602
  139. netgen/include/prolongation.hpp +0 -235
  140. netgen/include/python_comp.hpp +0 -107
  141. netgen/include/python_fem.hpp +0 -89
  142. netgen/include/python_linalg.hpp +0 -58
  143. netgen/include/python_ngstd.hpp +0 -385
  144. netgen/include/recursive_pol.hpp +0 -4844
  145. netgen/include/recursive_pol_tet.hpp +0 -395
  146. netgen/include/recursive_pol_trig.hpp +0 -492
  147. netgen/include/reorderedfespace.hpp +0 -81
  148. netgen/include/sample_sort.hpp +0 -105
  149. netgen/include/scalarfe.hpp +0 -335
  150. netgen/include/shapefunction_utils.hpp +0 -113
  151. netgen/include/simd_complex.hpp +0 -284
  152. netgen/include/smoother.hpp +0 -253
  153. netgen/include/solve.hpp +0 -89
  154. netgen/include/sparsecholesky.hpp +0 -313
  155. netgen/include/sparsematrix.hpp +0 -1038
  156. netgen/include/sparsematrix_dyn.hpp +0 -91
  157. netgen/include/sparsematrix_impl.hpp +0 -920
  158. netgen/include/special_matrix.hpp +0 -461
  159. netgen/include/specialelement.hpp +0 -125
  160. netgen/include/statushandler.hpp +0 -33
  161. netgen/include/stringops.hpp +0 -12
  162. netgen/include/superluinverse.hpp +0 -136
  163. netgen/include/symbolicintegrator.hpp +0 -849
  164. netgen/include/symmetricmatrix.hpp +0 -144
  165. netgen/include/tangentialfacetfe.hpp +0 -224
  166. netgen/include/tangentialfacetfespace.hpp +0 -106
  167. netgen/include/tensor.hpp +0 -522
  168. netgen/include/tensorcoefficient.hpp +0 -446
  169. netgen/include/tensorproductintegrator.hpp +0 -113
  170. netgen/include/thcurlfe.hpp +0 -128
  171. netgen/include/thcurlfe_impl.hpp +0 -380
  172. netgen/include/thdivfe.hpp +0 -80
  173. netgen/include/thdivfe_impl.hpp +0 -426
  174. netgen/include/tpdiffop.hpp +0 -461
  175. netgen/include/tpfes.hpp +0 -133
  176. netgen/include/tpintrule.hpp +0 -224
  177. netgen/include/triangular.hpp +0 -465
  178. netgen/include/tscalarfe.hpp +0 -245
  179. netgen/include/tscalarfe_impl.hpp +0 -1029
  180. netgen/include/umfpackinverse.hpp +0 -148
  181. netgen/include/vector.hpp +0 -1219
  182. netgen/include/voxelcoefficientfunction.hpp +0 -41
  183. netgen/include/vtkoutput.hpp +0 -198
  184. netgen/include/vvector.hpp +0 -208
  185. netgen/include/webgui.hpp +0 -92
  186. netgen/libngbla.dylib +0 -0
  187. netgen/libngcomp.dylib +0 -0
  188. netgen/libngfem.dylib +0 -0
  189. netgen/libngla.dylib +0 -0
  190. netgen/libngsolve.dylib +0 -0
  191. netgen/libngstd.dylib +0 -0
  192. ngsolve/__init__.pyi +0 -231
  193. ngsolve/bla.pyi +0 -1139
  194. ngsolve/bvp.pyi +0 -32
  195. ngsolve/cmake/NGSolveConfig.cmake +0 -102
  196. ngsolve/cmake/ngsolve-targets-release.cmake +0 -69
  197. ngsolve/cmake/ngsolve-targets.cmake +0 -163
  198. ngsolve/comp/__init__.pyi +0 -5382
  199. ngsolve/comp/pml.pyi +0 -89
  200. ngsolve/config/__init__.py +0 -1
  201. ngsolve/config/__init__.pyi +0 -43
  202. ngsolve/config/__main__.py +0 -4
  203. ngsolve/config/config.py +0 -60
  204. ngsolve/config/config.pyi +0 -45
  205. ngsolve/demos/TensorProduct/__init__.py +0 -0
  206. ngsolve/demos/TensorProduct/tp_dg_1d_1d.py +0 -80
  207. ngsolve/demos/TensorProduct/tp_dg_1d_2d.py +0 -73
  208. ngsolve/demos/TensorProduct/tp_dg_2d_1d.py +0 -72
  209. ngsolve/demos/TensorProduct/tp_dg_2d_2d.py +0 -66
  210. ngsolve/demos/__init__.py +0 -0
  211. ngsolve/demos/howto/__init__.py +0 -0
  212. ngsolve/demos/howto/hhj.py +0 -44
  213. ngsolve/demos/howto/hybrid_dg.py +0 -53
  214. ngsolve/demos/howto/mixed.py +0 -30
  215. ngsolve/demos/howto/nonlin.py +0 -29
  216. ngsolve/demos/howto/pickling.py +0 -26
  217. ngsolve/demos/howto/pml.py +0 -31
  218. ngsolve/demos/howto/taskmanager.py +0 -20
  219. ngsolve/demos/howto/tdnns.py +0 -47
  220. ngsolve/demos/howto/timeDG-skeleton.py +0 -45
  221. ngsolve/demos/howto/timeDG.py +0 -38
  222. ngsolve/demos/howto/timeDGlap.py +0 -42
  223. ngsolve/demos/howto/timeDGwave.py +0 -61
  224. ngsolve/demos/intro/__init__.py +0 -0
  225. ngsolve/demos/intro/adaptive.py +0 -123
  226. ngsolve/demos/intro/cmagnet.py +0 -62
  227. ngsolve/demos/intro/elasticity.py +0 -76
  228. ngsolve/demos/intro/navierstokes.py +0 -74
  229. ngsolve/demos/intro/poisson.ipynb +0 -170
  230. ngsolve/demos/intro/poisson.py +0 -41
  231. ngsolve/demos/mpi/__init__.py +0 -0
  232. ngsolve/demos/mpi/mpi_cmagnet.py +0 -87
  233. ngsolve/demos/mpi/mpi_navierstokes.py +0 -117
  234. ngsolve/demos/mpi/mpi_poisson.py +0 -89
  235. ngsolve/demos/mpi/mpi_timeDG.py +0 -82
  236. ngsolve/directsolvers.pyi +0 -18
  237. ngsolve/eigenvalues.pyi +0 -30
  238. ngsolve/fem.pyi +0 -1707
  239. ngsolve/krylovspace.pyi +0 -309
  240. ngsolve/la.pyi +0 -1218
  241. ngsolve/ngslib.so +0 -0
  242. ngsolve/ngstd.pyi +0 -58
  243. ngsolve/nonlinearsolvers.pyi +0 -98
  244. ngsolve/preconditioners.pyi +0 -6
  245. ngsolve/solve.pyi +0 -108
  246. ngsolve/solvers.pyi +0 -14
  247. ngsolve/timestepping.pyi +0 -34
  248. ngsolve/timing.pyi +0 -57
  249. ngsolve/utils.pyi +0 -279
  250. ngsolve-6.2.2501.post21.dev1.data/data/Netgen.icns +0 -0
  251. ngsolve-6.2.2501.post21.dev1.data/data/bin/ngscxx +0 -17
  252. ngsolve-6.2.2501.post21.dev1.data/data/bin/ngsld +0 -13
  253. ngsolve-6.2.2501.post21.dev1.data/data/bin/ngsolve.tcl +0 -648
  254. ngsolve-6.2.2501.post21.dev1.data/data/bin/ngspy +0 -2
  255. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/beam.geo +0 -17
  256. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/beam.vol +0 -240
  257. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/chip.in2d +0 -41
  258. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/chip.vol +0 -614
  259. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/coil.geo +0 -12
  260. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/coil.vol +0 -2560
  261. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/coilshield.geo +0 -24
  262. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/coilshield.vol +0 -3179
  263. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/cube.geo +0 -19
  264. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/cube.vol +0 -1832
  265. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d10_DGdoubleglazing.pde +0 -50
  266. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d11_chip_nitsche.pde +0 -40
  267. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d1_square.pde +0 -43
  268. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d2_chip.pde +0 -35
  269. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d3_helmholtz.pde +0 -22
  270. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d4_cube.pde +0 -46
  271. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d5_beam.pde +0 -74
  272. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d6_shaft.pde +0 -73
  273. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d7_coil.pde +0 -50
  274. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d8_coilshield.pde +0 -49
  275. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/d9_hybridDG.pde +0 -72
  276. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/doubleglazing.in2d +0 -27
  277. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/doubleglazing.vol +0 -737
  278. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/piezo2d40round4.vol.gz +0 -0
  279. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/shaft.geo +0 -73
  280. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/shaft.vol +0 -4291
  281. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/square.in2d +0 -17
  282. ngsolve-6.2.2501.post21.dev1.data/data/share/ngsolve/square.vol +0 -149
  283. ngsolve-6.2.2501.post21.dev1.dist-info/RECORD +0 -304
  284. {ngsolve-6.2.2501.post21.dev1.dist-info → ngsolve-6.2.2501.post37.dev1.dist-info}/LICENSE +0 -0
  285. {ngsolve-6.2.2501.post21.dev1.dist-info → ngsolve-6.2.2501.post37.dev1.dist-info}/WHEEL +0 -0
  286. {ngsolve-6.2.2501.post21.dev1.dist-info → ngsolve-6.2.2501.post37.dev1.dist-info}/top_level.txt +0 -0
@@ -1,2221 +0,0 @@
1
- #ifndef FILE_HCURLCURLFE
2
- #define FILE_HCURLCURLFE
3
-
4
- /*********************************************************************/
5
- /* File: hcurlcurlfe.hpp */
6
- /* Author: Michael Neunteufel */
7
- /* Date: June 2018 */
8
- /*********************************************************************/
9
-
10
-
11
- #include "finiteelement.hpp"
12
- #include "fe_interfaces.hpp"
13
- #include "hcurlfe.hpp"
14
- #include "hcurlfe_utils.hpp"
15
- #include "recursive_pol.hpp"
16
- #include "recursive_pol_trig.hpp"
17
- #include "recursive_pol_tet.hpp"
18
-
19
- namespace ngfem
20
- {
21
-
22
- template <typename T>
23
- Mat<3,3,T> TensorCrossProduct(Mat<3,3,T> A, Mat<3,3,T> B)
24
- {
25
- // return 0.5 * ( Cof(A+B) - Cof(A-B) ); // more cancelation
26
-
27
- Mat<3,3,T> prod;
28
- prod.Col(0) = Cross(A.Col(1), B.Col(2)) - Cross(A.Col(2), B.Col(1));
29
- prod.Col(1) = Cross(A.Col(2), B.Col(0)) - Cross(A.Col(0), B.Col(2));
30
- prod.Col(2) = Cross(A.Col(0), B.Col(1)) - Cross(A.Col(1), B.Col(0));
31
- return prod;
32
- }
33
-
34
- template <typename T>
35
- Mat<3,3,T> TensorCrossProduct(Vec<3,T> v, Mat<3,3,T> A)
36
- {
37
- Mat<3,3,T> result;
38
- for (int j = 0; j < 3; j++)
39
- result.Col(j) = Cross(v, A.Col(j));
40
- return result;
41
- }
42
-
43
- template <typename T>
44
- Mat<3,3,T> TensorCrossProduct(Mat<3,3,T> A, Vec<3,T> v)
45
- {
46
- Mat<3,3,T> result;
47
- for (int j = 0; j < 3; j++)
48
- result.Row(j) = Cross(A.Row(j), v);
49
- return result;
50
- }
51
-
52
-
53
-
54
- template <int DIM>
55
- class HCurlCurlFiniteElement : public FiniteElement
56
- {
57
- public:
58
- using FiniteElement::FiniteElement;
59
- using FiniteElement::ndof;
60
- using FiniteElement::order;
61
-
62
- virtual void CalcMappedShape (const BaseMappedIntegrationPoint & bmip,
63
- BareSliceMatrix<double> shape) const = 0;
64
-
65
- virtual void EvaluateMappedShape (const BaseMappedIntegrationPoint & bmip,
66
- BareSliceVector<double> coefs,
67
- BareSliceMatrix<double> shape) const = 0;
68
-
69
- virtual void CalcMappedCurlShape (const BaseMappedIntegrationPoint & bmip,
70
- BareSliceMatrix<double> shape) const = 0;
71
-
72
- virtual void CalcMappedIncShape (const BaseMappedIntegrationPoint & bmip,
73
- BareSliceMatrix<double> shape) const = 0;
74
-
75
- virtual void EvaluateMappedIncShape (const BaseMappedIntegrationPoint & bmip,
76
- BareSliceVector<double> coefs,
77
- BareSliceVector<double> inc) const = 0;
78
-
79
- virtual void CalcMappedIncShape (const SIMD_BaseMappedIntegrationRule & bmir,
80
- BareSliceMatrix<SIMD<double>> shape) const = 0;
81
-
82
- virtual void EvaluateIncShape (const SIMD_BaseMappedIntegrationRule & ir,
83
- BareSliceVector<> coefs,
84
- BareSliceMatrix<SIMD<double>> values) const = 0;
85
-
86
- virtual void AddTransIncShape (const SIMD_BaseMappedIntegrationRule & ir,
87
- BareSliceMatrix<SIMD<double>> values,
88
- BareSliceVector<> coefs) const = 0;
89
-
90
-
91
- virtual void CalcMappedShape (const SIMD_BaseMappedIntegrationRule & bmir,
92
- BareSliceMatrix<SIMD<double>> shapes) const = 0;
93
-
94
- virtual void Evaluate (const SIMD_BaseMappedIntegrationRule & ir,
95
- BareSliceVector<> coefs,
96
- BareSliceMatrix<SIMD<double>> values) const = 0;
97
-
98
- virtual void AddTrans (const SIMD_BaseMappedIntegrationRule & ir,
99
- BareSliceMatrix<SIMD<double>> values,
100
- BareSliceVector<> coefs) const = 0;
101
-
102
- virtual void CalcDualShape (const BaseMappedIntegrationPoint & bmip, BareSliceMatrix<> shape) const = 0;
103
- virtual void CalcDualShape (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceMatrix<SIMD<double>> shape) const = 0;
104
- virtual void EvaluateDual (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs, BareSliceMatrix<SIMD<double>> values) const = 0;
105
- virtual void AddDualTrans (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> values, BareSliceVector<double> coefs) const = 0;
106
-
107
- };
108
-
109
- template <int D,typename VEC,typename MAT>
110
- void VecToSymMat(const VEC & vec, MAT & mat)
111
- {
112
- switch(D)
113
- {
114
- case 1:
115
- mat(0) = vec(0);
116
- break;
117
- case 2:
118
- mat(0) = vec(0);
119
- mat(3) = vec(1);
120
- mat(1) = mat(2) = vec(2);
121
- break;
122
- case 3:
123
- mat(0) = vec(0);
124
- mat(4) = vec(1);
125
- mat(8) = vec(2);
126
- mat(1) = mat(3) = vec(5);
127
- mat(2) = mat(6) = vec(4);
128
- mat(5) = mat(7) = vec(3);
129
- break;
130
- }
131
- }
132
-
133
- template <int H, int W, typename T>
134
- Mat<H,W,T> DyadProd(Vec<H,T> a, Vec<W,T> b)
135
- {
136
- Mat<H,W,T> m;
137
- for (int i = 0; i < H; i++)
138
- for (int j = 0; j < W; j++)
139
- m(i,j) = a(i)*b(j);
140
- return m;
141
- }
142
-
143
- template <int S, typename T>
144
- Mat<S,S,T> SymDyadProd(Vec<S,T> a, Vec<S,T> b)
145
- {
146
- Mat<S,S,T> m;
147
- for (int i = 0; i < S; i++)
148
- for (int j = 0; j < S; j++)
149
- m(i,j) = a(i)*b(j)+a(j)*b(i);
150
- return m;
151
- }
152
-
153
-
154
- template <typename T>
155
- Vec<6, AutoDiff<3,T>> SymDyadProd(AutoDiff<3,T> a, AutoDiff<3,T> b)
156
- {
157
- return Vec<6, AutoDiff<3,T>>(2*a.DValue(0)*b.DValue(0),2*a.DValue(1)*b.DValue(1),2*a.DValue(2)*b.DValue(2), a.DValue(1)*b.DValue(2)+a.DValue(2)*b.DValue(1), a.DValue(0)*b.DValue(2)+a.DValue(2)*b.DValue(0),a.DValue(1)*b.DValue(0)+a.DValue(0)*b.DValue(1));
158
- }
159
-
160
- template <typename T>
161
- Vec<6, AutoDiff<3,T>> SymDyadProdAD(Vec<3,T> a, Vec<3,T> b)
162
- {
163
- return Vec<6, AutoDiff<3,T>>(2*a(0)*b(0),2*a(1)*b(1),2*a(2)*b(2), a(1)*b(2)+a(2)*b(1), a(0)*b(2)+a(2)*b(0),a(1)*b(0)+a(0)*b(1));
164
- }
165
-
166
- template <typename T>
167
- Vec<3,AutoDiff<2,T>> SymDyadProd(AutoDiff<2,T> a, AutoDiff<2,T> b)
168
- {
169
- return Vec<3,AutoDiff<2,T>>(2*a.DValue(0)*b.DValue(0),2*a.DValue(1)*b.DValue(1),a.DValue(1)*b.DValue(0)+a.DValue(0)*b.DValue(1));
170
- }
171
-
172
- template <typename T>
173
- Vec<3,AutoDiff<2,T>> SymDyadProdAD(Vec<2,T> a, Vec<2,T> b)
174
- {
175
- return Vec<3,AutoDiff<2,T>>(2*a(0)*b(0),2*a(1)*b(1),a(1)*b(0)+a(0)*b(1));
176
- }
177
-
178
- template <typename T>
179
- AutoDiff<1,T> SymDyadProd(AutoDiff<1,T> a, AutoDiff<1,T> b)
180
- {
181
- return a.DValue(0)*b.DValue(0);
182
- }
183
-
184
-
185
- //------------------REGGE_SHAPE---------------------
186
- template <int D, typename T> class T_REGGE_Shape;
187
- template <typename T> class T_REGGE_Shape<1,T>
188
- {
189
- AutoDiff<1,T> u;
190
- public:
191
- T_REGGE_Shape (AutoDiff<1,T> au) : u(au) { ; }
192
- Vec<1,T> Shape() { return u.Value(); }
193
- /*0 2
194
- 2 1*/
195
- Vec<1,T> CurlShape() { return 0.0; }
196
- };
197
-
198
- template <typename T> class T_REGGE_Shape<2,T>
199
- {
200
- Vec<3,AutoDiff<2,T>> u;
201
- public:
202
- T_REGGE_Shape (Vec<3,AutoDiff<2,T>> au) : u(au) { ; }
203
- Vec<3,T> Shape() { return Vec<3,T> (u(0).Value(), u(1).Value(), u(2).Value()); }
204
- /*0 2
205
- 2 1*/
206
- Vec<2,T> CurlShape() { return Vec<2,T> (u(2).DValue(0)-u(0).DValue(1), u(1).DValue(0)-u(2).DValue(1)); }
207
- };
208
-
209
- template <typename T> class T_REGGE_Shape<3,T>
210
- {
211
- Vec<6,AutoDiff<3,T>> u;
212
- public:
213
- T_REGGE_Shape (Vec<6,AutoDiff<3,T>> au) : u(au) { ; }
214
- Vec<6,T> Shape() { return Vec<6,T> (u(0).Value(), u(1).Value(), u(2).Value(), u(3).Value(), u(4).Value(), u(5).Value()); }
215
- /*0 5 4
216
- 5 1 3
217
- 4 3 2*/
218
- Vec<9,T> CurlShape() { return Vec<9,T> (u(4).DValue(1)-u(5).DValue(2), -u(4).DValue(0)+u(0).DValue(2), u(5).DValue(0)-u(0).DValue(1),
219
- u(3).DValue(1)-u(1).DValue(2), -u(3).DValue(0)+u(5).DValue(2), u(1).DValue(0)-u(5).DValue(1),
220
- u(2).DValue(1)-u(3).DValue(2), -u(2).DValue(0)+u(4).DValue(2), u(3).DValue(0)-u(4).DValue(1)); }
221
- };
222
- //---------------------------------------------------
223
-
224
-
225
- // ***************** EpsGrad ****************************** */
226
- // eps (nabla u)
227
-
228
- template <int D, typename T> class T_EpsGrad;
229
- template <typename T> class T_EpsGrad<2,T>
230
- {
231
- AutoDiffDiff<2,T> u;
232
- public:
233
- T_EpsGrad (AutoDiffDiff<2,T> au) : u(au) { ; }
234
- Vec<3,T> Shape()
235
- {
236
- return Vec<3,T> (u.DDValue(0,0), u.DDValue(1,1), u.DDValue(0,1));
237
- }
238
- Vec<2,T> CurlShape() { return Vec<2,T> (0.0, 0.0); }
239
- };
240
-
241
- template <int D, typename T>
242
- auto EpsGrad (AutoDiffDiff<D,T> au) { return T_EpsGrad<D,T>(au); }
243
-
244
- // ***************** wEpsGrad ****************************** */
245
- // w*eps (nabla u)
246
-
247
- template <int D, typename T> class T_wEpsGrad;
248
- template <typename T> class T_wEpsGrad<2,T>
249
- {
250
- AutoDiffDiff<2,T> u;
251
- AutoDiff<1,T> w;
252
- public:
253
- T_wEpsGrad (AutoDiffDiff<2,T> au, AutoDiff<1,T> aw) : u(au), w(aw) { ; }
254
- Vec<6,T> Shape()
255
- {
256
- return w.Value()*Vec<6,T> (u.DDValue(0,0), u.DDValue(1,1), u.DDValue(2,2), u.DDValue(1,2), u.DDValue(0,2), u.DDValue(0,1));
257
- }
258
- Vec<9,T> CurlShape() { return Vec<9,T> (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0); }
259
- };
260
-
261
- template <int D, typename T>
262
- auto wEpsGrad (AutoDiffDiff<D,T> au, AutoDiff<1,T> aw) { return T_wEpsGrad<D,T>(au, aw); }
263
-
264
-
265
- // ***************** Eps_u_Gradv ****************************** */
266
- // eps (u nabla v)
267
-
268
- template <int D, typename T> class T_Eps_u_Gradv;
269
- template <typename T> class T_Eps_u_Gradv<2,T>
270
- {
271
- AutoDiffDiff<2,T> u, v;
272
- public:
273
- T_Eps_u_Gradv (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av) : u(au), v(av) { ; }
274
- Vec<3,T> Shape() { return Vec<3,T> ((u.Value()*v.DDValue(0,0) + u.DValue(0)*v.DValue(0)),
275
- (u.Value()*v.DDValue(1,1) + u.DValue(1)*v.DValue(1)),
276
- u.Value()*v.DDValue(0,1) + 0.5 * (u.DValue(0)*v.DValue(1)+u.DValue(1)*v.DValue(0))); }
277
- Vec<2,T> CurlShape()
278
- {
279
- T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
280
- T ux = u.DValue(0), uy = u.DValue(1);
281
- T vxx = v.DDValue(0,0), vyy = v.DDValue(1,1), vxy = v.DDValue(0,1);
282
- T vx = v.DValue(0), vy = v.DValue(1);
283
-
284
- /*return -0.5 * Vec<2,T> (uyy*vx - uxy*vy + uy*vxy - ux*vyy,
285
- -uxy*vx + uxx*vy - uy*vxx + ux*vxy);*/
286
- return 0.5 * Vec<2,T>(ux*vxy - uy*vxx - uxy*vx + uxx*vy,
287
- ux*vyy + uxy*vy - uyy*vx - uy*vxy);
288
- }
289
- };
290
-
291
- template <int D, typename T>
292
- auto Eps_u_Gradv (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av) { return T_Eps_u_Gradv<D,T>(au, av); }
293
-
294
-
295
- template <int D, typename T> class T_vEpsGradu;
296
- template <typename T> class T_vEpsGradu<2,T>
297
- {
298
- AutoDiffDiff<2,T> u,v;
299
- public:
300
- T_vEpsGradu (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av) : u(au), v(av) { ; }
301
- Vec<3,T> Shape() { return Vec<3,T> (u.DDValue(0,0)*v.Value(),
302
- u.DDValue(1,1)*v.Value(), (u.DDValue(1,0)*v.Value()));}
303
- Vec<2,T> CurlShape()
304
- {
305
- T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
306
- T vx = v.DValue(0), vy = v.DValue(1);
307
-
308
- //return Vec<2,T> (uyy*vx- uxy*vy, uxx*vy- uxy*vx);
309
- return Vec<2,T> (uxy*vx - vy*uxx, uyy*vx - uxy*vy);
310
- }
311
- };
312
-
313
- template <int D, typename T>
314
- auto vEpsGradu (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av) { return T_vEpsGradu<D,T>(au, av); }
315
-
316
-
317
- template <int D, typename T>
318
- class ReggeAD
319
- {
320
- Mat<D,D,T> value;
321
-
322
- public:
323
- ReggeAD ()
324
- {
325
- value = T(0);
326
- }
327
-
328
- ReggeAD (AutoDiff<D,T> a, AutoDiff<D,T> b)
329
- {
330
- Vec<D,T> Da, Db;
331
- for(int i=0; i<D; i++)
332
- {
333
- Da(i) = a.DValue(i);
334
- Db(i) = b.DValue(i);
335
- }
336
- value = SymDyadProd(Da,Db);
337
- }
338
-
339
- auto Value() const { return value; }
340
-
341
- Mat<D,D,T> & Value() { return value; }
342
- };
343
-
344
- template <int D, typename T>
345
- auto MakeReggeAD(AutoDiff<D,T> a, AutoDiff<D,T> b)
346
- {
347
- return ReggeAD<D,T>(a, b);
348
- }
349
-
350
-
351
-
352
- template <int D, typename T>
353
- ReggeAD<D,T> operator* (AutoDiff<D,T> s, ReggeAD<D,T> A)
354
- {
355
- ReggeAD<D,T> result;
356
- result.Value() = s.Value()*A.Value();
357
- return result;
358
- }
359
-
360
-
361
- template <int D, typename T>
362
- ReggeAD<D,T> operator* (T s, ReggeAD<D,T> A)
363
- {
364
- ReggeAD<D,T> result = A;
365
- result.Value() *= s;
366
- return result;
367
- }
368
-
369
- template <int D, typename T>
370
- ReggeAD<D,T> operator+ (ReggeAD<D,T> A, ReggeAD<D,T> B)
371
- {
372
- ReggeAD<D,T> result = A;
373
- result.Value() += B.Value();
374
- return result;
375
- }
376
-
377
- template <int D, typename T>
378
- ReggeAD<D,T> operator- (ReggeAD<D,T> A, ReggeAD<D,T> B)
379
- {
380
- ReggeAD<D,T> result = A;
381
- result.Value() -= B.Value();
382
- return result;
383
- }
384
-
385
- template <int D, typename T> class ReggeADD;
386
-
387
- template <typename T>
388
- class ReggeADD<3,T>
389
- {
390
- Mat<3,3,T> value;
391
- Mat<3,3,T> curl;
392
- Mat<3,3,T> inc;
393
-
394
- public:
395
- ReggeADD ()
396
- {
397
- value = T(0);
398
- curl = T(0);
399
- inc = T(0);
400
- }
401
-
402
- ReggeADD (AutoDiffDiff<3,T> a, AutoDiffDiff<3,T> b)
403
- {
404
- auto Da = Vec<3,T>(a.DValue(0),a.DValue(1),a.DValue(2));
405
- auto Db = Vec<3,T>(b.DValue(0),b.DValue(1),b.DValue(2));
406
- value = SymDyadProd(Da,Db);
407
- // curl(s*v) = nabla s x v + s curl(v) in 3D
408
- // | nabla a_1 x b + a_1 curl(b) |
409
- // curl(a \otimes b) = | nabla a_2 x b + a_2 curl(b) |
410
- // | nabla a_3 x b + a_3 curl(b) |
411
-
412
- // curl( nabla s ) = 0
413
- // | nabla d_x a x nabla b |
414
- // -> curl( nabla a \otimes nabla b) = | nabla d_y a x nabla b |
415
- // | nabla d_z a x nabla b |
416
-
417
- Vec<3,T> Ddai [3] = { Vec<3,T>(a.DDValue(0,0), a.DDValue(0,1), a.DDValue(0,2)), Vec<3,T>(a.DDValue(1,0), a.DDValue(1,1), a.DDValue(1,2)), Vec<3,T>(a.DDValue(2,0), a.DDValue(2,1), a.DDValue(2,2)) };
418
- Vec<3,T> Ddbi [3] = { Vec<3,T>(b.DDValue(0,0), b.DDValue(0,1), b.DDValue(0,2)), Vec<3,T>(b.DDValue(1,0), b.DDValue(1,1), b.DDValue(1,2)), Vec<3,T>(b.DDValue(2,0), b.DDValue(2,1), b.DDValue(2,2)) };
419
-
420
- for (int i = 0; i < 3; i++)
421
- curl.Row(i) = Cross(Ddai[i], Db) + Cross(Ddbi[i], Da);
422
-
423
-
424
- // | nabla d_x a x nabla b |
425
- // curl( nabla a \otimes nabla b) = | nabla d_y a x nabla b |
426
- // | nabla d_z a x nabla b |
427
-
428
-
429
- // curl T curl ( nabla a \otimes nabla b):
430
- //11: d_yd_z(a) d_yd_z(b) - d^2_z(a) d^2_y(b) - d_y^2(a) d^2_z(b) + d_yd_z(a)d_yd_z(b)
431
- //12: d_xd_y(a) d_z^2(b) - d_xd_z(a) d_yd_z(b) - d_yd_z(a) d_xd_z(b) + d_z^2(a)d_xd_y(b)
432
- //13: d^2_y(a) d_xd_z(b) - d_yd_z(a) d_xd_y(b) - d_xd_y(a) d_yd_z(b) + d_xd_z(a)d^2_y(b)
433
- //22: d_xd_z(a) d_xd_z(b) - d^2_x(a) d^2_z(b) - d^2_z(a) d^2_x(b) + d_xd_z(a)d_xd_z(b)
434
- //23: d_yd_z(a) d^2_x(b) - d_xd_y(a) d_xd_z(b) - d_xd_z(a) d_xd_y(b) + d^2_x(a)d_yd_z(b)
435
- //33: d^2_x(a) d^2_y(b) - d_xd_y(a) d_xd_y(b) - d_xd_y(a) d_xd_y(b) + d^2_y(a)d^2_x(b)
436
-
437
- // = - hesse(a) x hesse(b) = -eps_imn eps_jlk d_md_l(a) d_nd_k b ??
438
-
439
- /*inc(0,0) = a.DDValue(1,2)*b.DDValue(1,2) - a.DDValue(2,2)*b.DDValue(1,1) - a.DDValue(1,1)*b.DDValue(2,2) + a.DDValue(1,2)*b.DDValue(1,2);
440
- inc(0,1) = a.DDValue(0,1)*b.DDValue(2,2) - a.DDValue(0,2)*b.DDValue(1,2) - a.DDValue(1,2)*b.DDValue(0,2) + a.DDValue(2,2)*b.DDValue(0,1);
441
- inc(0,2) = a.DDValue(1,1)*b.DDValue(0,2) - a.DDValue(1,2)*b.DDValue(0,1) - a.DDValue(0,1)*b.DDValue(1,2) + a.DDValue(0,2)*b.DDValue(1,1);
442
- inc(1,1) = a.DDValue(0,2)*b.DDValue(0,2) - a.DDValue(0,0)*b.DDValue(2,2) - a.DDValue(2,2)*b.DDValue(0,0) + a.DDValue(0,2)*b.DDValue(0,2);
443
- inc(1,2) = a.DDValue(1,2)*b.DDValue(0,0) - a.DDValue(0,1)*b.DDValue(0,2) - a.DDValue(0,2)*b.DDValue(0,1) + a.DDValue(0,0)*b.DDValue(1,2);
444
- inc(2,2) = a.DDValue(0,0)*b.DDValue(1,1) - a.DDValue(0,1)*b.DDValue(0,1) - a.DDValue(0,1)*b.DDValue(0,1) + a.DDValue(1,1)*b.DDValue(0,0);
445
- // curl T curl ( nabla b \otimes nabla a):
446
- inc(0,0) += b.DDValue(1,2)*a.DDValue(1,2) - b.DDValue(2,2)*a.DDValue(1,1) - b.DDValue(1,1)*a.DDValue(2,2) + b.DDValue(1,2)*a.DDValue(1,2);
447
- inc(0,1) += b.DDValue(0,1)*a.DDValue(2,2) - b.DDValue(0,2)*a.DDValue(1,2) - b.DDValue(1,2)*a.DDValue(0,2) + b.DDValue(2,2)*a.DDValue(0,1);
448
- inc(0,2) += b.DDValue(1,1)*a.DDValue(0,2) - b.DDValue(1,2)*a.DDValue(0,1) - b.DDValue(0,1)*a.DDValue(1,2) + b.DDValue(0,2)*a.DDValue(1,1);
449
- inc(1,1) += b.DDValue(0,2)*a.DDValue(0,2) - b.DDValue(0,0)*a.DDValue(2,2) - b.DDValue(2,2)*a.DDValue(0,0) + b.DDValue(0,2)*a.DDValue(0,2);
450
- inc(1,2) += b.DDValue(1,2)*a.DDValue(0,0) - b.DDValue(0,1)*a.DDValue(0,2) - b.DDValue(0,2)*a.DDValue(0,1) + b.DDValue(0,0)*a.DDValue(1,2);
451
- inc(2,2) += b.DDValue(0,0)*a.DDValue(1,1) - b.DDValue(0,1)*a.DDValue(0,1) - b.DDValue(0,1)*a.DDValue(0,1) + b.DDValue(1,1)*a.DDValue(0,0);
452
- // symmetry
453
- inc(1,0) = inc(0,1);
454
- inc(2,0) = inc(0,2);
455
- inc(2,1) = inc(1,2);*/
456
-
457
- Mat<3,3,T> hesse1, hesse2;
458
- a.StoreHessian(hesse1.Data());
459
- b.StoreHessian(hesse2.Data());
460
- inc = -2*TensorCrossProduct(hesse1,hesse2);
461
- }
462
-
463
- auto Value() const { return value; }
464
- auto Curl() const { return curl; }
465
- auto Inc() const { return inc; }
466
-
467
- Mat<3,3,T> & Value() { return value; }
468
- Mat<3,3,T> & Curl() { return curl; }
469
- Mat<3,3,T> & Inc() { return inc; }
470
- };
471
-
472
-
473
- template <typename T>
474
- class ReggeADD<2,T>
475
- {
476
- Mat<2,2,T> value;
477
- Vec<2,T> curl;
478
- T inc;
479
-
480
- public:
481
- ReggeADD ()
482
- {
483
- value = T(0);
484
- curl = T(0);
485
- inc = T(0);
486
- }
487
-
488
- ReggeADD (AutoDiffDiff<2,T> a, AutoDiffDiff<2,T> b)
489
- {
490
- auto Da = Vec<2,T>(a.DValue(0),a.DValue(1));
491
- auto Db = Vec<2,T>(b.DValue(0),b.DValue(1));
492
- value = SymDyadProd(Da,Db);
493
- // curl(s*v) = v* nabla s^perp + s curl(v) in 2D
494
- // | b * nabla a_1^perp + a_1 curl(b) |
495
- // curl(a \otimes b) = | b * nabla a_2^perp + a_2 curl(b) |
496
-
497
- // curl( nabla s ) = 0
498
- // | Db * nabla d_x a^perp |
499
- // -> curl( nabla a \otimes nabla b) = | Db * nabla d_y a^perp |
500
-
501
- Vec<2,T> Ddai_p [2] = { Vec<2,T>(-a.DDValue(0,1), a.DDValue(0,0)), Vec<2,T>(-a.DDValue(1,1), a.DDValue(1,0)) };
502
- Vec<2,T> Ddbi_p [2] = { Vec<2,T>(-b.DDValue(0,1), b.DDValue(0,0)), Vec<2,T>(-b.DDValue(1,1), b.DDValue(1,0)) };
503
-
504
- for (int i=0; i<2; i++)
505
- curl(i) = InnerProduct(Db,Ddai_p[i]) + InnerProduct(Da,Ddbi_p[i]);
506
-
507
- // | Db * nabla d_x a^perp |
508
- // curl( nabla a \otimes nabla b) = | Db * nabla d_y a^perp |
509
-
510
-
511
- // curl T curl ( nabla a \otimes nabla b) = d_x(Db * nabla d_y a^perp) - d_y(Db * nabla d_x a^perp)
512
- // = (d_x Db) * nabla(d_y a)^perp - (d_y Db) * nabla(d_x a)^perp
513
-
514
- inc = InnerProduct(Vec<2,T>(b.DDValue(0,0), b.DDValue(0,1)),Ddai_p[1]) - InnerProduct(Vec<2,T>(b.DDValue(1,0), b.DDValue(1,1)),Ddai_p[0]) + InnerProduct(Vec<2,T>(a.DDValue(0,0), a.DDValue(0,1)),Ddbi_p[1]) - InnerProduct(Vec<2,T>(a.DDValue(1,0), a.DDValue(1,1)),Ddbi_p[0]);
515
- }
516
-
517
- auto Value() const { return value; }
518
- auto Curl() const { return curl; }
519
- auto Inc() const { return inc; }
520
-
521
- Mat<2,2,T> & Value() { return value; }
522
- Vec<2,T> & Curl() { return curl; }
523
- T & Inc() { return inc; }
524
- };
525
-
526
- template <int D, typename T>
527
- auto MakeReggeAD(AutoDiffDiff<D,T> a, AutoDiffDiff<D,T> b)
528
- {
529
- return ReggeADD<D,T>(a, b);
530
- }
531
-
532
- template <typename T>
533
- ReggeADD<3,T> operator* (AutoDiffDiff<3,T> s, ReggeADD<3,T> A)
534
- {
535
- ReggeADD<3,T> result;
536
- result.Value() = s.Value()*A.Value();
537
-
538
- // s scalar, v vector
539
- // curl(s*v) = nabla s x v + s curl(v) in 3D
540
- Vec<3,T> gradient;
541
- s.StoreGradient(gradient.Data());
542
-
543
- result.Curl() = s.Value()*A.Curl();
544
- for (int i = 0; i < 3; i++)
545
- result.Curl().Row(i) += Cross(gradient, Vec<3,T>(A.Value().Row(i)));
546
-
547
- // inc(s A) = s inc(A) + 2sym(grad(s) x curl A) + hesse(s) x A, x...Tensor-Cross-Product
548
- Mat<3,3,T> hesse;
549
- s.StoreHessian(hesse.Data());
550
-
551
- result.Inc() = s.Value()*A.Inc() + TensorCrossProduct(gradient,A.Curl()) + Trans(TensorCrossProduct(gradient,A.Curl())) + TensorCrossProduct(hesse,A.Value());
552
-
553
- return result;
554
- }
555
-
556
-
557
- template <int D, typename T>
558
- ReggeADD<D,T> operator* (T s, ReggeADD<D,T> A)
559
- {
560
- ReggeADD<D,T> result = A;
561
- result.Value() *= s;
562
- result.Curl() *= s;
563
- result.Inc() *= s;
564
- return result;
565
- }
566
-
567
- template <int D, typename T>
568
- ReggeADD<D,T> operator+ (ReggeADD<D,T> A, ReggeADD<D,T> B)
569
- {
570
- ReggeADD<D,T> result = A;
571
- result.Value() += B.Value();
572
- result.Curl() += B.Curl();
573
- result.Inc() += B.Inc();
574
- return result;
575
- }
576
-
577
- template <int D, typename T>
578
- ReggeADD<D,T> operator- (ReggeADD<D,T> A, ReggeADD<D,T> B)
579
- {
580
- ReggeADD<D,T> result = A;
581
- result.Value() -= B.Value();
582
- result.Curl() -= B.Curl();
583
- result.Inc() -= B.Inc();
584
- return result;
585
- }
586
-
587
-
588
- template <typename T>
589
- ReggeADD<2,T> operator* (AutoDiffDiff<2,T> s, ReggeADD<2,T> A)
590
- {
591
- ReggeADD<2,T> result;
592
- result.Value() = s.Value()*A.Value();
593
-
594
- // s scalar, v vector
595
- // curl(s*v) = v* nabla s^perp + s curl(v) in 2D
596
- result.Curl() = A.Value()*Vec<2,T>(-s.DValue(1),s.DValue(0)) + s.Value()*A.Curl();
597
-
598
- // inc(sA) = A:( dydy s & -dxdy s \\ -dxdy s & dxdx s) + 2*nabla s^\perp*curl(A) + s*inc(A)
599
- Mat<2,2,T> hesse;
600
- hesse(0,0) = s.DDValue(1,1);
601
- hesse(1,0) = -s.DDValue(1,0);
602
- hesse(0,1) = -s.DDValue(0,1);
603
- hesse(1,1) = s.DDValue(0,0);
604
-
605
- result.Inc() = s.Value()*A.Inc() + InnerProduct(hesse,A.Value()) + 2*InnerProduct(Vec<2,T>(-s.DValue(1),s.DValue(0)),A.Curl());
606
-
607
- return result;
608
- }
609
-
610
-
611
-
612
-
613
- template <ELEMENT_TYPE ET> class HCurlCurlFE;
614
-
615
-
616
- template <ELEMENT_TYPE ET>
617
- class T_HCurlCurlFE : public HCurlCurlFiniteElement<ET_trait<ET>::DIM>,
618
- public VertexOrientedFE<ET>
619
- {
620
- protected:
621
- static constexpr int DIM = ET_trait<ET>::DIM;
622
- enum { DIM_STRESS = (DIM*(DIM+1))/2 };
623
- // enum { DIM_DMAT = 7*DIM-12 };
624
- // enum { DIM_DDMAT = 8*DIM-15 };
625
- enum { DIM_DMAT = (5*DIM*DIM-11*DIM+6)/2 };
626
- enum { DIM_DDMAT = (7*DIM*DIM-19*DIM+12)/2 };
627
-
628
- using VertexOrientedFE<ET>::vnums;
629
- using HCurlCurlFiniteElement<ET_trait<ET>::DIM>::ndof;
630
- using HCurlCurlFiniteElement<ET_trait<ET>::DIM>::order;
631
-
632
-
633
- int order_edge[ET_trait<ET>::N_EDGE];
634
- IVec<DIM-1> order_facet[ET_trait<ET>::N_FACET];
635
- IVec<DIM> order_inner;
636
-
637
-
638
- public:
639
- using VertexOrientedFE<ET>::SetVertexNumbers;
640
-
641
- T_HCurlCurlFE (int aorder)
642
- {
643
- order = aorder;
644
- for (auto & of : order_facet) of = aorder;
645
- order_inner = aorder;
646
-
647
- }
648
-
649
- virtual ELEMENT_TYPE ElementType() const override { return ET; }
650
- const HCurlCurlFE<ET> * Cast() const { return static_cast<const HCurlCurlFE<ET>*> (this); }
651
-
652
- INLINE void SetOrderFacet (int nr, IVec<DIM-1,int> order) { order_facet[nr] = order; }
653
- INLINE void SetOrderEdge (int nr, int order) { order_edge[nr] = order; }
654
- INLINE void SetOrderInner (IVec<DIM,int> order) { order_inner = order; }
655
-
656
- virtual void ComputeNDof()
657
- {
658
- cout << "Error, T_HCurlCurlFE<ET>:: ComputeNDof not available, only for ET == TRIG" << endl;
659
- }
660
-
661
-
662
- virtual void CalcMappedShape (const BaseMappedIntegrationPoint & bmip,
663
- BareSliceMatrix<double> shapes) const override
664
- {
665
- Switch<4-DIM>
666
- (bmip.DimSpace()-DIM,[this, &bmip, shapes](auto CODIM)
667
- {
668
- constexpr auto DIMSPACE = DIM+CODIM.value;
669
- auto & mip = static_cast<const MappedIntegrationPoint<DIM, DIM+CODIM.value>&> (bmip);
670
-
671
- Cast() -> T_CalcShape (GetTIP(mip),SBLambda([shapes,DIMSPACE](int nr,auto val)
672
- {
673
- shapes.Row(nr).Range(DIMSPACE*DIMSPACE) = val.Value().AsVector();
674
- }));
675
- });
676
- }
677
-
678
-
679
-
680
- virtual void EvaluateMappedShape (const BaseMappedIntegrationPoint & bmip,
681
- BareSliceVector<double> coefs,
682
- BareSliceMatrix<double> shape) const override
683
- {
684
- Switch<4-DIM>
685
- (bmip.DimSpace()-DIM,[this, &bmip, coefs, shape](auto CODIM)
686
- {
687
- auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM+CODIM.value>&> (bmip);
688
-
689
- Mat<DIM+CODIM.value,DIM+CODIM.value> summat(0);
690
- Cast() -> T_CalcShape (GetTIP(mip), SBLambda ([&summat,coefs] (int nr, auto val)
691
- {
692
- summat += coefs(nr) * val.Value();
693
-
694
- }));
695
- for (int k = 0; k < sqr(DIM+CODIM.value); k++)
696
- shape(k) = summat(k);
697
- });
698
-
699
- }
700
-
701
- virtual void CalcMappedIncShape (const BaseMappedIntegrationPoint & bmip,
702
- BareSliceMatrix<double> shapes) const override
703
- {
704
- auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM>&> (bmip);
705
- if constexpr (ET == ET_TET || ET == ET_TRIG || ET == ET_QUAD)
706
- Cast() -> T_CalcShape (GetTIPHesse(mip),SBLambda([shapes](int nr,auto val)
707
- {
708
- if constexpr (DIM==3)
709
- shapes.Row(nr).Range(DIM_DDMAT) = val.Inc().AsVector();
710
- else
711
- shapes.Row(nr).Range(DIM_DDMAT) = val.Inc();
712
- }));
713
- else
714
- throw Exception("HCurlCurl::CalcMappedIncShape implemented only for TRIG and TET");
715
-
716
- }
717
-
718
- virtual void EvaluateMappedIncShape (const BaseMappedIntegrationPoint & bmip,
719
- BareSliceVector<double> coefs,
720
- BareSliceVector<double> inc) const override
721
- {
722
- auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM>&> (bmip);
723
-
724
- Mat<DIM*(DIM-1)/2,DIM*(DIM-1)/2> sum = 0.0;
725
- if constexpr (ET == ET_TET || ET == ET_TRIG || ET == ET_QUAD)
726
- Cast() -> T_CalcShape (GetTIPHesse(mip),SBLambda([coefs, &sum](int nr,auto val)
727
- {
728
- sum += coefs(nr) * Mat<DIM*(DIM-1)/2,DIM*(DIM-1)/2>(val.Inc());
729
- }));
730
- else
731
- throw Exception("HCurlCurl::EvaluateMappedIncShape implemented only for TRIG and TET");
732
-
733
- inc.Range(0,DIM_DDMAT) = sum.AsVector();
734
- }
735
-
736
- virtual void CalcMappedIncShape (const SIMD_BaseMappedIntegrationRule & bmir,
737
- BareSliceMatrix<SIMD<double>> shapes) const override
738
- {
739
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
740
- for (size_t i = 0; i < mir.Size(); i++)
741
- {
742
- if constexpr (ET == ET_TET || ET == ET_TRIG || ET == ET_QUAD)
743
- {
744
- Cast() -> T_CalcShape (GetTIPHesse(mir[i]),SBLambda([shapes,i](int j,auto val)
745
- {
746
- if constexpr (DIM==3)
747
- shapes.Rows(j*sqr(DIM), (j+1)*sqr(DIM)).Col(i).Range(0,DIM_DDMAT) = val.Inc().AsVector();
748
- else
749
- shapes.Rows(j,j+1).Col(i).Range(0,DIM_DDMAT) = val.Inc();
750
- }));
751
- }
752
- else
753
- throw Exception("HCurlCurl::CalcMappedIncShape implemented only for TRIG and TET");
754
-
755
- }
756
- }
757
-
758
- void EvaluateIncShape (const SIMD_BaseMappedIntegrationRule & bmir,
759
- BareSliceVector<> coefs,
760
- BareSliceMatrix<SIMD<double>> values) const override
761
- {
762
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
763
- for (size_t i = 0; i < bmir.Size(); i++)
764
- {
765
- double *pcoefs = &coefs(0);
766
- const size_t dist = coefs.Dist();
767
- if constexpr (ET == ET_TET && DIM == 3)
768
- {
769
- Mat<DIM,DIM,SIMD<double>> summat(0);
770
- Cast() -> T_CalcShape (GetTIPHesse(mir[i]),
771
- SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
772
- {
773
- summat += (*pcoefs)*val.Inc();
774
- pcoefs += dist;
775
- }));
776
- for (size_t k = 0; k < sqr(DIM); k++)
777
- values(k,i) = summat(k);
778
- }
779
- if constexpr ((ET == ET_TRIG || ET == ET_QUAD) && DIM == 2)
780
- {
781
- SIMD<double> summat(0);
782
- Cast() -> T_CalcShape (GetTIPHesse(mir[i]),
783
- SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
784
- {
785
- summat += (*pcoefs)*val.Inc();
786
- pcoefs += dist;
787
- }));
788
- values(0,i) = summat;
789
- }
790
- }
791
-
792
- /*if constexpr (ET == ET_TET || ET == ET_TRIG)
793
- {
794
- Switch<1>
795
- (bmir.DimSpace()-DIM,[values,&bmir,coefs,this](auto CODIM)
796
- {
797
- constexpr auto DIMSPACE = DIM+CODIM.value;
798
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
799
- for (size_t i = 0; i < bmir.Size(); i++)
800
- {
801
- double *pcoefs = &coefs(0);
802
- const size_t dist = coefs.Dist();
803
-
804
-
805
- if constexpr (DIMSPACE==3)
806
- {
807
- Mat<DIMSPACE,DIMSPACE,SIMD<double>> summat(0);
808
- Cast() -> T_CalcShape (GetTIPHesse(mir[i]),
809
- SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
810
- {
811
- summat += (*pcoefs)*val.Inc();
812
- pcoefs += dist;
813
- }));
814
- for (size_t k = 0; k < sqr(DIMSPACE); k++)
815
- values(k,i) = summat(k);
816
- }
817
- if constexpr (DIMSPACE==2)
818
- {
819
- SIMD<double> summat(0);
820
- Cast() -> T_CalcShape (GetTIPHesse(mir[i]),
821
- SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
822
- {
823
- summat += (*pcoefs)*val.Inc();
824
- pcoefs += dist;
825
- }));
826
- values(0,i) = summat;
827
- }
828
-
829
- }
830
- });
831
- }*/
832
- }
833
-
834
- void AddTransIncShape (const SIMD_BaseMappedIntegrationRule & ir,
835
- BareSliceMatrix<SIMD<double>> values,
836
- BareSliceVector<> coefs) const override
837
- {
838
- throw ExceptionNOSIMD("HCurlCurl::AddTransIncShape not implemented yet");
839
- }
840
-
841
-
842
-
843
- virtual void CalcDualShape (const BaseMappedIntegrationPoint & bmip, BareSliceMatrix<> shape) const override
844
- {
845
- shape.AddSize(ndof, sqr(bmip.DimSpace())) = 0.0;
846
- Switch<4-DIM>
847
- (bmip.DimSpace()-DIM,[this, &bmip, shape](auto CODIM)
848
- {
849
- auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM+CODIM.value>&> (bmip);
850
-
851
- Cast() -> CalcDualShape2 (mip, SBLambda([shape] (size_t nr, auto val)
852
- {
853
- shape.Row(nr) = val.AsVector();
854
- }));
855
- });
856
- }
857
-
858
- virtual void CalcDualShape (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> shapes) const override
859
- {
860
- Switch<4-DIM>
861
- (bmir.DimSpace()-DIM,[this, &bmir, shapes](auto CODIM)
862
- {
863
- constexpr int DIMSPACE = DIM+CODIM.value;
864
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
865
-
866
- shapes.AddSize(ndof*sqr(DIMSPACE), mir.Size()) = 0.0;
867
- for (size_t i = 0; i < mir.Size(); i++)
868
- {
869
- Cast() -> CalcDualShape2 (mir[i], SBLambda([shapes,i,DIMSPACE] (size_t j, auto val)
870
- {
871
- shapes.Rows(j*sqr(DIMSPACE), (j+1)*sqr(DIMSPACE)).Col(i).Range(0,sqr(DIMSPACE)) = val.AsVector();
872
- }));
873
- }
874
- });
875
- }
876
-
877
- virtual void EvaluateDual (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs, BareSliceMatrix<SIMD<double>> values) const override
878
- {
879
- Switch<4-DIM>
880
- (bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
881
- {
882
- constexpr int DIMSPACE = DIM+CODIM.value;
883
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
884
- for (size_t i = 0; i < mir.Size(); i++)
885
- {
886
- Mat<DIMSPACE,DIMSPACE,SIMD<double>> sum (SIMD<double>(0.0));
887
- Cast() -> CalcDualShape2 (mir[i], SBLambda([&sum, coefs] (size_t j, auto val)
888
- {
889
- sum += coefs(j) * val;
890
- }));
891
- for (size_t k = 0; k < sqr(DIMSPACE); k++)
892
- values(k, i) = sum(k);
893
- }
894
- });
895
- }
896
-
897
- virtual void AddDualTrans (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> values, BareSliceVector<double> coefs) const override
898
- {
899
- Switch<4-DIM>
900
- (bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
901
- {
902
- constexpr int DIMSPACE = DIM+CODIM.value;
903
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
904
- for (size_t i = 0; i < mir.Size(); i++)
905
- {
906
- Mat<DIMSPACE,DIMSPACE,SIMD<double>> value;
907
- for (size_t k = 0; k < sqr(DIMSPACE); k++)
908
- value(k) = values(k, i);
909
-
910
- Cast()-> CalcDualShape2 (mir[i], SBLambda([value, coefs] (size_t j, auto val)
911
- {
912
- coefs(j) += HSum(InnerProduct(val,value));
913
- }));
914
- }
915
- });
916
- }
917
-
918
- virtual void CalcMappedCurlShape (const BaseMappedIntegrationPoint & bmip,
919
- BareSliceMatrix<double> shape) const override
920
- {
921
- auto mip = static_cast<const MappedIntegrationPoint<DIM,DIM> &>(bmip);
922
-
923
- if constexpr (ET == ET_TET || ET == ET_TRIG)
924
- Cast() -> T_CalcShape (GetTIPHesse(mip),SBLambda([shape](int nr,auto val)
925
- {
926
- if constexpr (DIM==3)
927
- shape.Row(nr).Range(DIM_DMAT) = val.Curl().AsVector();
928
- else
929
- shape.Row(nr).Range(DIM_DMAT) = val.Curl();
930
- }));
931
- else
932
- throw Exception("HCurlCurl::CalcMappedCurlShape implemented only for TRIG and TET");
933
- }
934
-
935
- virtual void CalcMappedShape (const SIMD_BaseMappedIntegrationRule & bmir,
936
- BareSliceMatrix<SIMD<double>> shapes) const override
937
- {
938
- Switch<4-DIM>
939
- (bmir.DimSpace()-DIM,[this, &bmir, shapes](auto CODIM)
940
- {
941
- constexpr auto DIMSPACE = DIM+CODIM.value;
942
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
943
- for (size_t i = 0; i < mir.Size(); i++)
944
- {
945
- this->Cast() -> T_CalcShape (GetTIP(mir[i]),
946
- SBLambda ([i,shapes,DIMSPACE] (size_t j, auto val)
947
- {
948
- shapes.Rows(j*sqr(DIMSPACE), (j+1)*sqr(DIMSPACE)).Col(i).Range(0,sqr(DIMSPACE)) = val.Value().AsVector();
949
- }));
950
- }
951
- });
952
- }
953
-
954
-
955
- virtual void Evaluate (const SIMD_BaseMappedIntegrationRule & bmir,
956
- BareSliceVector<> coefs,
957
- BareSliceMatrix<SIMD<double>> values) const override
958
- {
959
- Switch<4-DIM>
960
- (bmir.DimSpace()-DIM,[values,&bmir, coefs,this](auto CODIM)
961
- {
962
- constexpr auto DIMSPACE = DIM+CODIM.value;
963
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
964
- for (size_t i = 0; i < bmir.Size(); i++)
965
- {
966
- double *pcoefs = &coefs(0);
967
- const size_t dist = coefs.Dist();
968
-
969
- Mat<DIMSPACE,DIMSPACE,SIMD<double>> summat(0);
970
- Cast() -> T_CalcShape (GetTIP(mir[i]),
971
- SBLambda ([&summat,&pcoefs,dist] (size_t j, auto val)
972
- {
973
- summat += (*pcoefs)*val.Value();
974
- pcoefs += dist;
975
- }));
976
- for (size_t k = 0; k < sqr(DIMSPACE); k++)
977
- values(k,i) = summat(k);
978
- }
979
- });
980
- }
981
-
982
- virtual void AddTrans (const SIMD_BaseMappedIntegrationRule & bmir,
983
- BareSliceMatrix<SIMD<double>> values,
984
- BareSliceVector<> coefs) const override
985
- {
986
- Switch<4-DIM>
987
- (bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
988
- {
989
- constexpr int DIMSPACE = DIM+CODIM.value;
990
- auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
991
- for (size_t i = 0; i < mir.Size(); i++)
992
- {
993
- Mat<DIMSPACE,DIMSPACE,SIMD<double>> vali;
994
- vali.AsVector()= values.Col(i);
995
-
996
- double *pcoefs = &coefs(0);
997
- const size_t dist = coefs.Dist();
998
- Cast()->T_CalcShape (GetTIP(mir[i]),
999
- SBLambda ([vali,&pcoefs,dist] (size_t j, auto s)
1000
- {
1001
- *pcoefs += HSum(InnerProduct(s.Value(), vali));
1002
- pcoefs += dist;
1003
- }));
1004
- }
1005
- });
1006
-
1007
- }
1008
-
1009
- };
1010
-
1011
-
1012
-
1013
-
1014
- #ifdef FILE_HCURLCURLFE_CPP
1015
- #define HCURLCURLFE_EXTERN
1016
- #else
1017
- #define HCURLCURLFE_EXTERN extern
1018
- #endif
1019
-
1020
- HCURLCURLFE_EXTERN template class HCurlCurlFiniteElement<2>;
1021
- HCURLCURLFE_EXTERN template class HCurlCurlFiniteElement<3>;
1022
-
1023
- template <> class HCurlCurlFE<ET_SEGM> : public T_HCurlCurlFE<ET_SEGM>
1024
- {
1025
-
1026
- public:
1027
- using T_HCurlCurlFE<ET_SEGM> :: T_HCurlCurlFE;
1028
-
1029
- virtual void ComputeNDof()
1030
- {
1031
- order = 0;
1032
- ndof = 0;
1033
- ndof += order_inner[0]+1;
1034
- order = max2(order,order_inner[0]);
1035
-
1036
- }
1037
-
1038
- template <typename Tx, typename TFA>
1039
- void T_CalcShape (TIP<1,Tx> ip, TFA & shape) const
1040
- {
1041
- Tx x = ip.x;
1042
- Tx lami[2] ={ x, 1-x };
1043
- int ii = 0;
1044
-
1045
- IVec<2> e = ET_trait<ET_SEGM>::GetEdgeSort (0, vnums);
1046
- Tx ls = lami[e[0]], le = lami[e[1]];
1047
-
1048
- auto symdyadic = MakeReggeAD(ls, le);
1049
-
1050
- LegendrePolynomial::Eval(order_inner[0], ls-le, SBLambda([symdyadic, &ii, shape] (size_t nr, auto val)
1051
- {
1052
- shape[ii++] = 0.5*val*symdyadic;
1053
- }));
1054
- }
1055
-
1056
- template <typename MIP, typename TFA>
1057
- void CalcDualShape2 (const MIP & mip, TFA & shape) const
1058
- {
1059
- auto & ip = mip.IP();
1060
- typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
1061
- T x = ip(0);
1062
- T lam[2] = { x, 1-x };
1063
-
1064
- int ii = 0;
1065
-
1066
- IVec<2> e = ET_trait<ET_SEGM>::GetEdgeSort (0, vnums);
1067
- T xi = lam[e[0]]-lam[e[1]];
1068
-
1069
- auto tv = mip.GetJacobian()*Vec<1,T>(1);
1070
- auto tt = DyadProd(tv,tv);
1071
-
1072
- LegendrePolynomial::Eval(order_inner[0], xi, SBLambda([shape,mip,tt,&ii] (size_t nr, T val)
1073
- {
1074
- shape[ii++] = 1/mip.GetMeasure()*val*tt;
1075
- }));
1076
-
1077
- }
1078
- };
1079
-
1080
-
1081
- template <> class HCurlCurlFE<ET_TRIG> : public T_HCurlCurlFE<ET_TRIG>
1082
- {
1083
-
1084
- public:
1085
- using T_HCurlCurlFE<ET_TRIG> :: T_HCurlCurlFE;
1086
-
1087
- virtual void ComputeNDof()
1088
- {
1089
- order = 0;
1090
- ndof = 0;
1091
- for (int i=0; i<3; i++)
1092
- {
1093
- ndof += order_facet[i][0]+1;
1094
- order = max2(order, order_facet[i][0]);
1095
- }
1096
- int ninner = 3*order_inner[0]*(order_inner[0]+1)/2 ;
1097
- order = max2(order, order_inner[0]);
1098
-
1099
- ndof += ninner;
1100
-
1101
- }
1102
-
1103
-
1104
- template <typename Tx, typename TFA>
1105
- void T_CalcShape (TIP<2,Tx> ip, TFA & shape) const
1106
- {
1107
- Tx x = ip.x, y = ip.y;
1108
- Tx lami[3] ={ x, y, 1-x-y };
1109
- int ii = 0;
1110
-
1111
- // /*int maxorder_facet =
1112
- // max2(order_facet[0][0],max2(order_facet[1][0],order_facet[2][0]));
1113
- // ArrayMem<Tx,20> ha(maxorder_facet+1);
1114
- // ArrayMem<Tx,20> u(order_inner[0]+2), v(order_inner[0]+2);
1115
-
1116
- // for (int i = 0; i < 3; i++)
1117
- // {
1118
- // IVec<2> e = ET_trait<ET_TRIG>::GetEdgeSort(i,vnums);
1119
- // Tx ls = llami[e[0]], le = llami[e[1]];
1120
-
1121
- // // edge functions are all curl-free!
1122
- // IntegratedLegendreMonomialExt::CalcTrigExt(maxorder_facet+2,
1123
- // le-ls, 1-le-ls, ha);
1124
-
1125
- // for (int l = 0; l <= order_facet[i][0]; l++)
1126
- // shape[ii++] = EpsGrad (ha[l]);
1127
- // }*/
1128
-
1129
- for (int i = 0; i < 3; i++)
1130
- {
1131
- IVec<2> e = ET_trait<ET_TRIG>::GetEdgeSort (i, vnums);
1132
- Tx ls = lami[e[1]], le = lami[e[0]];
1133
-
1134
- auto symdyadic = MakeReggeAD(ls, le);
1135
-
1136
- LegendrePolynomial::EvalScaled(order_facet[i][0], ls-le,ls+le, SBLambda([symdyadic, &ii, shape] (size_t nr, auto val)
1137
- {
1138
- shape[ii++] = -val*symdyadic;
1139
- }));
1140
- }
1141
-
1142
-
1143
- if (order_inner[0] > 0)
1144
- {
1145
- IVec<4> f = ET_trait<ET_TRIG>::GetFaceSort(0, vnums);
1146
- Tx ls = lami[f[0]], le = lami[f[1]], lt = lami[f[2]];
1147
-
1148
- auto symdyadic1 = lt*MakeReggeAD(ls, le);
1149
- auto symdyadic2 = ls*MakeReggeAD(lt, le);
1150
- auto symdyadic3 = le*MakeReggeAD(ls, lt);
1151
-
1152
-
1153
- DubinerBasis::Eval(order_inner[0]-1, ls,le,
1154
- SBLambda([symdyadic1,symdyadic2,symdyadic3, &ii, shape] (size_t nr, auto val)
1155
- {
1156
- shape[ii++] = 2*val*symdyadic1;
1157
- shape[ii++] = 2*val*symdyadic2;
1158
- shape[ii++] = 2*val*symdyadic3;
1159
- }));
1160
- }
1161
-
1162
- };
1163
-
1164
- template <typename MIP, typename TFA>
1165
- void CalcDualShape2 (const MIP & mip, TFA & shape) const
1166
- {
1167
- auto & ip = mip.IP();
1168
- typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
1169
- T x = ip(0), y = ip(1);
1170
- T lam[3] = { x, y, 1-x-y };
1171
- Vec<2,T> pnts[3] = { { 1, 0 }, { 0, 1 } , { 0, 0 } };
1172
- int facetnr = ip.FacetNr();
1173
-
1174
- int ii = 0;
1175
-
1176
-
1177
- if (ip.VB() == BND)
1178
- { // facet shapes
1179
- for (int i = 0; i < 3; i++)
1180
- {
1181
- int p = order_facet[i][0];
1182
-
1183
- if (i == facetnr)
1184
- {
1185
- IVec<2> e = ET_trait<ET_TRIG>::GetEdgeSort (i, vnums);
1186
-
1187
- T xi = lam[e[0]]-lam[e[1]];
1188
- Vec<2,T> tauref = pnts[e[0]] - pnts[e[1]];
1189
-
1190
-
1191
- auto tv = mip.GetJacobian()*tauref;
1192
-
1193
- auto tt = DyadProd(tv,tv);
1194
- LegendrePolynomial::Eval
1195
- (p, xi,
1196
- SBLambda([&] (size_t nr, T val)
1197
- {
1198
- shape[nr+ii] = 1/mip.GetMeasure()*val*tt;
1199
- }));
1200
- }
1201
- ii += (p+1);
1202
- }
1203
- }
1204
- else
1205
- {
1206
- for (int i = 0; i < 3; i++)
1207
- ii += order_facet[i][0]+1;
1208
- }
1209
- if (ip.VB() == VOL)
1210
- {
1211
- auto p = order_inner[0]-1;
1212
- if( p >= 0 )
1213
- {
1214
- IVec<4> f = ET_trait<ET_TRIG>::GetFaceSort(0, vnums);
1215
-
1216
- DubinerBasis::Eval (p, lam[f[0]], lam[f[1]],
1217
- SBLambda([&] (size_t nr, T val)
1218
- {
1219
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<2,2>({{1,0},{0,0}})*Trans(mip.GetJacobian());
1220
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<2,2>({{0,0},{0,1}})*Trans(mip.GetJacobian());
1221
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<2,2>({{0,1},{1,0}})*Trans(mip.GetJacobian());
1222
- }));
1223
- }
1224
- }
1225
- }
1226
-
1227
-
1228
- };
1229
-
1230
- template <> class HCurlCurlFE<ET_QUAD> : public T_HCurlCurlFE<ET_QUAD>
1231
- {
1232
-
1233
- public:
1234
- using T_HCurlCurlFE<ET_QUAD> :: T_HCurlCurlFE;
1235
-
1236
- virtual void ComputeNDof()
1237
- {
1238
- order = 0;
1239
- ndof = 0;
1240
- for (int i=0; i<4; i++)
1241
- {
1242
- ndof += order_facet[i][0]+1;
1243
- order = max2(order, order_facet[i][0]);
1244
- }
1245
- int ninner = order_inner[0]*order_inner[0] + (order_inner[0]+2)*order_inner[0]*2 +1;//+ 2*order_inner[0];
1246
- order = max2(order, order_inner[0]);
1247
- order += 1;
1248
- ndof += ninner;
1249
-
1250
- }
1251
-
1252
-
1253
-
1254
- template <typename Tx, typename TFA>
1255
- void T_CalcShape (TIP<2,Tx> ip, TFA & shape) const
1256
- {
1257
- Tx x = ip.x, y = ip.y;
1258
- Tx lx[4] ={ 1-x, x, x, 1-x };
1259
- Tx ly[4] ={ 1-y, 1-y, y, y };
1260
- Tx lami[4] = {(1-x)*(1-y),x*(1-y),x*y,(1-x)*y};
1261
- Tx sigma[4] = {(1-x)+(1-y),x+(1-y),x+y,(1-x)+y};
1262
- int ii = 0;
1263
-
1264
- ArrayMem<Tx,20> v(order+2), u(order+2);
1265
-
1266
-
1267
- for (int i = 0; i < 4; i++)
1268
- {
1269
- IVec<2> e = ET_trait<ET_QUAD>::GetEdgeSort (i, vnums);
1270
- Tx xi = sigma[e[1]]-sigma[e[0]];
1271
- Tx lam_e = lami[e[0]]+lami[e[1]];
1272
- auto symdyadic = MakeReggeAD(xi, xi);
1273
-
1274
-
1275
- //IntLegNoBubble::
1276
- LegendrePolynomial::
1277
- EvalMult (order_facet[i][0],
1278
- xi, 0.25*lam_e, SBLambda ([&](int i, auto val)
1279
- {
1280
- shape[ii++] = val*symdyadic;
1281
- }));
1282
- }
1283
-
1284
-
1285
-
1286
- int oi = order_inner[0];
1287
-
1288
- auto symdyadic = MakeReggeAD(0.5*x,0.5*y); //(0,0.5, 0.5,0) * P(y) * P(x)
1289
-
1290
- Tx eta = ly[2]-ly[1];
1291
- Tx xi = lx[1]-lx[0];
1292
- LegendrePolynomial (oi, eta, v);
1293
- LegendrePolynomial (oi, xi, u);
1294
-
1295
- for (int i = 0; i <= oi; i++)
1296
- for (int j = 0; j <= oi; j++)
1297
- {
1298
- shape[ii++] = u[i]*v[j]*symdyadic;
1299
- }
1300
-
1301
-
1302
- auto symdyad = lx[1]*lx[0]*MakeReggeAD(y,y);//x*(1-x)*(0,0, 0,1) * P(y) * P(x)
1303
- for (int i = 0; i < oi; i++)
1304
- for (int j = 0; j <= oi; j++)
1305
- {
1306
- shape[ii++] = u[i]*v[j]*symdyad;
1307
- }
1308
-
1309
- symdyad = ly[2]*ly[1]*MakeReggeAD(x,x); //y*(1-y)*(1,0, 0,0) * P(x) * P(y)
1310
-
1311
- for (int j = 0; j < oi; j++)
1312
- for (int i = 0; i <= oi; i++)
1313
- {
1314
- shape[ii++] = u[i]*v[j]*symdyad;
1315
- }
1316
-
1317
- //old version
1318
- //ArrayMem<Tx,20> u(order+2);
1319
- /*for (int i = 0; i < 4; i++)
1320
- {
1321
- IVec<2> e = ET_trait<ET_QUAD>::GetEdgeSort (i, vnums);
1322
- Tx xi = llx[e[1]]+lly[e[1]]-llx[e[0]]-lly[e[0]];
1323
- Tx eta = llx[e[0]]*lly[e[0]]+llx[e[1]]*lly[e[1]];
1324
-
1325
- IntegratedLegendreMonomialExt::Calc(order_facet[i][0]+2,xi,u);
1326
-
1327
-
1328
- for (int l = 0; l <= order_facet[i][0]; l++)
1329
- shape[ii++] = Eps_u_Gradv (eta, u[l]);
1330
- }
1331
-
1332
- IntegratedLegendreMonomialExt::Calc(oi+3,llx[0]-llx[1],u);
1333
- IntegratedLegendreMonomialExt::Calc(oi+3,lly[0]-lly[2],v);
1334
-
1335
- for(int i = 0; i <= oi-1; i++)
1336
- for(int j = 0; j <= oi-1; j++)
1337
- shape[ii++] = EpsGrad(u[i]*v[j]);
1338
-
1339
- for(int i = 0; i <= oi+1; i++)
1340
- for(int j = 0; j <= oi-1; j++)
1341
- {
1342
- shape[ii++] = vEpsGradu(u[i],v[j]);
1343
- shape[ii++] = vEpsGradu(v[i],u[j]);
1344
- }
1345
- shape[ii++] = Eps_u_Gradv(lx[0], ly[0]);
1346
-
1347
- for(int i = 0; i <= oi-1; i++)
1348
- {
1349
- shape[ii++] = Eps_u_Gradv(u[i], ly[0]);
1350
- shape[ii++] = Eps_u_Gradv(v[i], lx[0]);
1351
- }*/
1352
-
1353
-
1354
-
1355
- };
1356
-
1357
- template <typename MIP, typename TFA>
1358
- void CalcDualShape2 (const MIP & mip, TFA & shape) const
1359
- {
1360
- auto & ip = mip.IP();
1361
- typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
1362
-
1363
- T x = ip(0), y = ip(1);
1364
- T lx[4] = { 1-x, x, x, 1-x };
1365
- T ly[4] = { 1-y, 1-y, y, y };
1366
- T sigma[4] = {(1-x)+(1-y),x+(1-y),x+y,(1-x)+y};
1367
-
1368
- Vec<2,T> pnts[4] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } };
1369
- int facetnr = ip.FacetNr();
1370
-
1371
- int ii = 0;
1372
-
1373
- ArrayMem<T,20> v(order+2), u(order+2);
1374
-
1375
-
1376
- if (mip.IP().VB() == BND)
1377
- { // facet shapes
1378
- for (int i = 0; i < 4; i++)
1379
- {
1380
- int p = order_facet[i][0];
1381
-
1382
- if (i == facetnr)
1383
- {
1384
- IVec<2> e = ET_trait<ET_QUAD>::GetEdgeSort (i, vnums);
1385
-
1386
- //T xi = lam[e[0]]-lam[e[1]];
1387
- T xi = sigma[e[1]]-sigma[e[0]];
1388
- Vec<2,T> tauref = pnts[e[0]] - pnts[e[1]];
1389
-
1390
-
1391
- auto tv = mip.GetJacobian()*tauref;
1392
-
1393
- auto tt = DyadProd(tv,tv);
1394
- LegendrePolynomial::Eval
1395
- (p, xi,
1396
- SBLambda([&] (size_t nr, T val)
1397
- {
1398
- shape[nr+ii] = 1/mip.GetMeasure()*val*tt;
1399
- }));
1400
- /*IVec<2> e = ET_trait<ET_QUAD>::GetEdgeSort (i, vnums);
1401
- AutoDiff<2,T> xi = sigma[e[1]]-sigma[e[0]];
1402
- AutoDiff<2,T> lam_e = lami[e[0]]+lami[e[1]];
1403
- Vec<3, AutoDiff<2,T>> symdyadic = SymDyadProd(xi,xi);
1404
-
1405
-
1406
- IntLegNoBubble::
1407
- EvalMult (order_edge[i],
1408
- xi, lam_e, SBLambda ([&](int nr, auto val)
1409
- {
1410
- VecToSymMat<2>(T_REGGE_Shape<2,T>(val*symdyadic).Shape(),tmp);
1411
- shape[nr + ii] = mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1412
- }));*/
1413
- /*AutoDiff<2,T> xi = sigma[e[1]]-sigma[e[0]];
1414
- AutoDiff<2,T> lam_e = lami[e[0]]+lami[e[1]];
1415
- Vec<3, AutoDiff<2,T>> symdyadic = SymDyadProd(xi,xi);
1416
-
1417
-
1418
- IntLegNoBubble::
1419
- EvalMult (p,xi, lam_e, SBLambda ([&](int nr, auto val)
1420
- {
1421
- VecToSymMat<2>(T_REGGE_Shape<2,T>(val*symdyadic).Shape(),tmp);
1422
- shape[nr + ii] = 1/mip.GetMeasure()*tmp;
1423
- }));*/
1424
- }
1425
- ii += (p+1);
1426
- }
1427
- }
1428
- else
1429
- {
1430
- for (int i = 0; i < 4; i++)
1431
- ii += order_facet[i][0]+1;
1432
- }
1433
-
1434
- if (mip.IP().VB() == VOL)
1435
- {
1436
- auto p = order_inner[0];
1437
-
1438
- T eta = ly[2]-ly[1];
1439
- T xi = lx[1]-lx[0];
1440
- LegendrePolynomial (p, eta, v);
1441
- LegendrePolynomial (p, xi, u);
1442
-
1443
- for (int i = 0; i <= p; i++)
1444
- for (int j = 0; j <= p; j++)
1445
- {
1446
- shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{0,1},{1,0}}))*Trans(mip.GetJacobian());
1447
- }
1448
-
1449
-
1450
- //auto symdyad = lx[1]*lx[0]*SymDyadProd(Vec<2,T>(0,1),Vec<2,T>(0,1));//x*(1-x)*(0,0, 0,1) * P(y) * P(x)
1451
- for (int i = 0; i < p; i++)
1452
- for (int j = 0; j <= p; j++)
1453
- {
1454
- shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{0,0},{0,1}}))*Trans(mip.GetJacobian());
1455
- }
1456
-
1457
- //symdyad = ly[2]*ly[1]*SymDyadProd(Vec<2,T>(1,0),Vec<2,T>(1,0)); //y*(1-y)*(1,0, 0,0) * P(x) * P(y)
1458
-
1459
- for (int j = 0; j < p; j++)
1460
- for (int i = 0; i <= p; i++)
1461
- {
1462
- shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{1,0},{0,0}}))*Trans(mip.GetJacobian());
1463
- }
1464
-
1465
- //IVec<4> f = ET_trait<ET_QUAD>::GetFaceSort(0, vnums);
1466
-
1467
- /*IntegratedLegendreMonomialExt::Calc(p+3,lx[0]-lx[1],u);
1468
- IntegratedLegendreMonomialExt::Calc(p+3,ly[0]-ly[2],v);
1469
-
1470
- Mat<2,2,T> tmp;
1471
-
1472
- for(int i = 0; i <= p-1; i++)
1473
- for(int j = 0; j <= p-1; j++)
1474
- {
1475
- VecToSymMat<2>(EpsGrad(u[i]*v[j]).Shape(),tmp);
1476
- shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1477
- }
1478
-
1479
- for(int i = 0; i <= p+1; i++)
1480
- for(int j = 0; j <= p-1; j++)
1481
- {
1482
- VecToSymMat<2>(vEpsGradu(u[i],v[j]).Shape(),tmp);
1483
- shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1484
- VecToSymMat<2>(vEpsGradu(v[i],u[j]).Shape(),tmp);
1485
- shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1486
- }
1487
-
1488
- VecToSymMat<2>(Eps_u_Gradv(lx[0], ly[0]).Shape(),tmp);
1489
- shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1490
-
1491
- for(int i = 0; i <= p-1; i++)
1492
- {
1493
- VecToSymMat<2>(Eps_u_Gradv(u[i], ly[0]).Shape(),tmp);
1494
- shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1495
- VecToSymMat<2>(Eps_u_Gradv(v[i], lx[0]).Shape(),tmp);
1496
- shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*tmp*Trans(mip.GetJacobian());
1497
- }*/
1498
- }
1499
- }
1500
- };
1501
-
1502
-
1503
- template <> class HCurlCurlFE<ET_PRISM> : public T_HCurlCurlFE<ET_PRISM>
1504
- {
1505
- public:
1506
- enum { incrorder_xx1 = 0};
1507
- enum { incrorder_zz1 = 0};
1508
- enum { incrorder_xx2 = 0};
1509
- enum { incrorder_zz2 = 0};
1510
- enum { incrorder_xx1_bd = 0};
1511
- enum { incrorder_zz1_bd = 0};
1512
- enum { incrorder_xx2_bd = 0};
1513
- enum { incrorder_zz2_bd = 0};
1514
- using T_HCurlCurlFE<ET_PRISM> :: T_HCurlCurlFE;
1515
-
1516
- virtual void ComputeNDof()
1517
- {
1518
- order = 0;
1519
- ndof = 0;
1520
-
1521
- for (int i=0; i < 9; i++)
1522
- {
1523
- ndof += order_edge[i]+1;
1524
- order = max2(order,order_edge[i]);
1525
- }
1526
-
1527
- for (int i=0; i<2; i++)
1528
- {
1529
- ndof += 3*(order_facet[i][0])*(order_facet[i][0]+1)/2;
1530
- order = max2(order, order_facet[i][0]);
1531
- }
1532
-
1533
- for (int i=2; i<5; i++)
1534
- {
1535
- ndof += order_facet[i][0]*order_facet[i][0] + (order_facet[i][0]+2)*order_facet[i][0]*2 +1;
1536
- order = max2(order, order_facet[i][0]);
1537
- }
1538
- int p = order_inner[0];
1539
- int ninner = 3*p*(p+1)/2*p + (p-1)*(p)/2*(p+1) + (p+1)*p*(p+1);
1540
- ndof += ninner;
1541
-
1542
- order = 1+max2(order, p);
1543
- }
1544
-
1545
-
1546
- template <typename Tx, typename TFA>
1547
- void T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
1548
- {
1549
- Tx x = ip.x, y = ip.y, z = ip.z;
1550
- Tx lx[6] ={ x, y, 1-x-y, x, y, 1-x-y };
1551
- Tx lz[6] ={ 1-z,1-z,1-z,z,z,z };
1552
-
1553
- int ii = 0;
1554
-
1555
-
1556
- const FACE * faces = ElementTopology::GetFaces(ET_PRISM);
1557
-
1558
- ArrayMem<Tx,20> leg_u(order+2), leg_v(order+3);
1559
- ArrayMem<Tx,20> leg_w(order+2);
1560
-
1561
- //horizontal edge shapes
1562
- for (int i = 0; i < 6; i++)
1563
- {
1564
- IVec<2> e = ET_trait<ET_PRISM>::GetEdgeSort (i, vnums);
1565
- Tx ls = lx[e[1]], le = lx[e[0]], lm = lz[e[0]];
1566
-
1567
- auto symdyadic = lm*MakeReggeAD(ls,le);
1568
-
1569
- LegendrePolynomial::EvalScaled(order_edge[i], ls-le,ls+le, SBLambda([symdyadic, &ii, shape] (size_t nr, auto val)
1570
- {
1571
- shape[ii++] = -val*symdyadic;
1572
- }));
1573
- }
1574
-
1575
-
1576
-
1577
- //vertical edge shapes
1578
- for (int i = 6; i < 9; i++)
1579
- {
1580
- IVec<2> e = ET_trait<ET_PRISM>::GetEdgeSort (i, vnums);
1581
- Tx ls = lx[e[0]], lm1 = lz[e[0]], lm2 = lz[e[1]];
1582
- auto symdyadic = ls*MakeReggeAD(lm1,lm1);
1583
- LegendrePolynomial (order_edge[i],lm1-lm2, leg_v);
1584
-
1585
- for (int j=0; j <= order_edge[i]; j++)
1586
- shape[ii++] = leg_v[j]*symdyadic;
1587
- }
1588
-
1589
-
1590
-
1591
- //horizontal face shaps
1592
- for(int fa = 0; fa < 2; fa++)
1593
- {
1594
- if (order_facet[fa][0] > 0)
1595
- {
1596
- IVec<4> f = ET_trait<ET_PRISM>::GetFaceSort(fa, vnums);
1597
- Tx ls = lx[f[0]], le = lx[f[1]], lt = lx[f[2]], lm = lz[f[0]];
1598
-
1599
- auto symdyadic1 = lm*lt*MakeReggeAD(ls,le);
1600
- auto symdyadic2 = lm*ls*MakeReggeAD(lt,le);
1601
- auto symdyadic3 = lm*le*MakeReggeAD(ls,lt);
1602
-
1603
- DubinerBasis::Eval(order_facet[fa][0]-1, ls,le,
1604
- SBLambda([symdyadic1,symdyadic2,symdyadic3, &ii, shape] (size_t nr, auto val)
1605
- {
1606
- shape[ii++] = val*symdyadic1;
1607
- shape[ii++] = val*symdyadic2;
1608
- shape[ii++] = val*symdyadic3;
1609
- }));
1610
- }
1611
- }
1612
-
1613
-
1614
- //vertical face shaps
1615
- for(int fa = 2; fa < 5; fa++)
1616
- {
1617
- int of = order_facet[fa][0];
1618
-
1619
- int fmax = 0;
1620
- for(int j = 1; j < 4; j++)
1621
- if(vnums[faces[fa][j]] > vnums[faces[fa][fmax]]) fmax = j;
1622
- int fz,ftrig;
1623
- fz = 3 - fmax;
1624
- ftrig = fmax^1;
1625
- fmax = faces[fa][fmax];
1626
- fz = faces[fa][fz];
1627
- ftrig = faces[fa][ftrig];
1628
-
1629
- Tx eta = lz[fz]-lz[fmax];
1630
- Tx xi = lx[ftrig]-lx[fmax];
1631
-
1632
- LegendrePolynomial (of, eta, leg_v);
1633
- LegendrePolynomial (of, xi, leg_u);
1634
-
1635
- auto W = uDv_minus_vDu(lx[ftrig],lx[fmax]);
1636
- Tx W_AD;
1637
- W_AD.DValue(0) = W.Value()(0);
1638
- W_AD.DValue(1) = W.Value()(1);
1639
- W_AD.DValue(2) = W.Value()(2);
1640
- auto symdyadic = MakeReggeAD(eta,0.25*W_AD); //^= (0,1, 1,0) * P(x)*P(y)
1641
- for (int j = 0; j <= of; j++)
1642
- for (int k = 0; k <= of; k++)
1643
- shape[ii++] = leg_v[j]*leg_u[k]*symdyadic;
1644
-
1645
-
1646
- auto symdyad = 0.25*lx[ftrig]*lx[fmax]*MakeReggeAD(eta,eta); //^= x*(1-x)*(0,0, 0,1) * P(x) * P(y)
1647
- for (int i = 0; i < of; i++)
1648
- for (int j = 0; j <= of; j++)
1649
- shape[ii++] = leg_u[i]*leg_v[j]*symdyad;
1650
-
1651
- symdyad = 0.25*lz[fz]*lz[fmax]*MakeReggeAD(lx[ftrig],lx[fmax]); //^= y*(1-y)*(1,0, 0,0) * P(x)*P(y)
1652
- for (int j = 0; j < of; j++)
1653
- for (int i = 0; i <= of; i++)
1654
- shape[ii++] = leg_u[i]*leg_v[j]*symdyad;
1655
- }
1656
-
1657
- //inner shapes
1658
- int p = order_inner[0];
1659
- if (p > 0)
1660
- {
1661
-
1662
- IVec<4> f = ET_trait<ET_PRISM>::GetFaceSort(0, vnums);
1663
-
1664
- Tx ls = lx[f[0]], le = lx[f[1]], lt = lx[f[2]], lm = lz[0], ln = lz[3];
1665
-
1666
- auto symdyadic1 = lm*ln*lt*MakeReggeAD(ls,le);
1667
- auto symdyadic2 = lm*ln*ls*MakeReggeAD(lt,le);
1668
- auto symdyadic3 = lm*ln*le*MakeReggeAD(ls,lt);
1669
-
1670
- Tx eta = lz[0]-lz[4];
1671
- LegendrePolynomial (p, eta, leg_w);
1672
-
1673
- // Reg(T) x [0,1]
1674
- DubinerBasis::Eval(p-1, ls,le,
1675
- SBLambda([symdyadic1,symdyadic2,symdyadic3, &ii, shape,p,leg_w] (size_t nr, auto val)
1676
- {
1677
- for(int j=0; j < p; j++)
1678
- {
1679
- shape[ii++] = leg_w[j]*val*symdyadic1;
1680
- shape[ii++] = leg_w[j]*val*symdyadic2;
1681
- shape[ii++] = leg_w[j]*val*symdyadic3;
1682
- }
1683
- }));
1684
-
1685
-
1686
- // H1(T) x [0,1]
1687
- auto symdyadic = ls*le*lt*MakeReggeAD(eta,eta);
1688
- DubinerBasis::Eval(p-2, ls,le,
1689
- SBLambda([symdyadic, &ii, shape,p,leg_w] (size_t nr, auto val)
1690
- {
1691
- for(int j=0; j <= p; j++)
1692
- {
1693
- shape[ii++] = val*leg_w[j]*symdyadic;
1694
- }
1695
- }));
1696
-
1697
-
1698
- // Nedelec_1 x [0,1]
1699
- DubinerBasis::EvalMult(p-2, lx[f[0]], lx[f[1]],lx[f[0]]*lx[f[1]]*lx[f[2]],
1700
- SBLambda([&](int nr, auto val)
1701
- {
1702
- auto tmp = Du(val);
1703
- Tx tmp_AD;
1704
- tmp_AD.DValue(0) = tmp.Value()(0);
1705
- tmp_AD.DValue(1) = tmp.Value()(1);
1706
- tmp_AD.DValue(2) = tmp.Value()(2);
1707
- auto symdyadic = MakeReggeAD(tmp_AD,eta);
1708
- for(int j=0; j <= p; j++)
1709
- shape[ii++] = leg_w[j]*symdyadic;
1710
- }));
1711
-
1712
- DubinerBasis::EvalMult(p-1, lx[f[0]], lx[f[1]], lx[f[0]],
1713
- SBLambda([&ii,shape,p,leg_w,eta,f,lx](int nr, auto val)
1714
- {
1715
- auto tmp = wuDv_minus_wvDu (lx[f[1]], lx[f[2]], val);
1716
- Tx tmp_AD;
1717
- tmp_AD.DValue(0) = tmp.Value()(0);
1718
- tmp_AD.DValue(1) = tmp.Value()(1);
1719
- tmp_AD.DValue(2) = tmp.Value()(2);
1720
- auto symdyadic = MakeReggeAD(tmp_AD,eta);
1721
- for(int j=0; j <= p; j++)
1722
- shape[ii++] = leg_w[j]*symdyadic;
1723
- }));
1724
-
1725
- LegendrePolynomial::EvalMult(p-1, lx[f[2]]-lx[f[1]], lx[f[2]],
1726
- SBLambda([&ii,shape,p,leg_w,eta,lx,f] (int j, auto val)
1727
- {
1728
- auto tmp = wuDv_minus_wvDu (lx[f[1]], lx[f[0]], val);
1729
- Tx tmp_AD;
1730
- tmp_AD.DValue(0) = tmp.Value()(0);
1731
- tmp_AD.DValue(1) = tmp.Value()(1);
1732
- tmp_AD.DValue(2) = tmp.Value()(2);
1733
- auto symdyadic = MakeReggeAD(tmp_AD,eta);
1734
- for(int j=0; j <= p; j++)
1735
- shape[ii++] = leg_w[j]*symdyadic;
1736
- }));
1737
-
1738
- }
1739
-
1740
- }
1741
-
1742
-
1743
- template <typename MIP, typename TFA>
1744
- void CalcDualShape2 (const MIP & mip, TFA & shape) const
1745
- {
1746
- throw Exception ("Hcurlcurlfe calcdualshape2 not implementend for element type ET_PRISM");
1747
- }
1748
-
1749
- };
1750
-
1751
-
1752
-
1753
- template <> class HCurlCurlFE<ET_TET> : public T_HCurlCurlFE<ET_TET>
1754
- {
1755
- public:
1756
- using T_HCurlCurlFE<ET_TET> :: T_HCurlCurlFE;
1757
-
1758
- virtual void ComputeNDof()
1759
- {
1760
- order = 0;
1761
- ndof = 0;
1762
-
1763
- for (int i=0; i<6; i++)
1764
- {
1765
- ndof += order_edge[i]+1;
1766
- order = max2(order, order_edge[i]);
1767
- }
1768
-
1769
- for (int i=0; i<4; i++)
1770
- {
1771
- ndof += 3*(order_facet[i][0])*(order_facet[i][0]+1)/2;
1772
- order = max2(order, order_facet[i][0]);
1773
- }
1774
-
1775
- int p = order_inner[0];
1776
- int ninner = p > 1 ? 6*(p+1)*(p)*(p-1)/6 : 0;
1777
- ndof += ninner;
1778
-
1779
- order = max2(order, p);
1780
- }
1781
-
1782
-
1783
-
1784
- template <typename Tx, typename TFA>
1785
- void T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
1786
- {
1787
- Tx x = ip.x, y = ip.y, z = ip.z;
1788
- Tx lam[4] = {x, y, z, 1-x-y-z};
1789
- int ii = 0;
1790
-
1791
- for (int i = 0; i < 6; i++)
1792
- {
1793
- IVec<2> e = ET_trait<ET_TET>::GetEdgeSort (i, vnums);
1794
- Tx ls = lam[e[1]], le = lam[e[0]];
1795
-
1796
- auto symdyadic = MakeReggeAD(ls, le);
1797
- LegendrePolynomial::EvalScaled(order_edge[i], ls-le,ls+le, SBLambda([symdyadic, &ii, shape] (size_t nr, auto val)
1798
- {
1799
- shape[ii++] = -val*symdyadic;
1800
- }));
1801
- }
1802
-
1803
-
1804
- for(int fa = 0; fa < 4; fa++)
1805
- {
1806
- if (order_facet[fa][0] > 0)
1807
- {
1808
- IVec<4> f = ET_trait<ET_TET>::GetFaceSort(fa, vnums);
1809
- Tx ls = lam[f[0]], le = lam[f[1]], lt = lam[f[2]];
1810
-
1811
- auto symdyadic1 = lt*MakeReggeAD(ls, le);
1812
- auto symdyadic2 = ls*MakeReggeAD(lt, le);
1813
- auto symdyadic3 = le*MakeReggeAD(ls, lt);
1814
-
1815
- DubinerBasis::Eval(order_facet[fa][0]-1, ls,le,
1816
- SBLambda([symdyadic1,symdyadic2,symdyadic3, &ii, shape] (size_t nr, auto val)
1817
- {
1818
- shape[ii++] = val*symdyadic1;
1819
- shape[ii++] = val*symdyadic2;
1820
- shape[ii++] = val*symdyadic3;
1821
- }));
1822
- }
1823
- }
1824
-
1825
- if (order_inner[0] > 1)
1826
- {
1827
- Tx li = lam[0], lj = lam[1], lk = lam[2], ll = lam[3];
1828
-
1829
- auto symdyadic1 = li*lj*MakeReggeAD(lk, ll);
1830
- auto symdyadic2 = lj*lk*MakeReggeAD(ll, li);
1831
- auto symdyadic3 = lk*ll*MakeReggeAD(li, lj);
1832
- auto symdyadic4 = ll*li*MakeReggeAD(lj, lk);
1833
- auto symdyadic5 = li*lk*MakeReggeAD(lj, ll);
1834
- auto symdyadic6 = lj*ll*MakeReggeAD(li, lk);
1835
-
1836
-
1837
- DubinerBasis3D::Eval (order_inner[0]-2, lam[0], lam[1], lam[2], SBLambda([&ii, shape, symdyadic1, symdyadic2, symdyadic3, symdyadic4, symdyadic5, symdyadic6](size_t j, auto val)
1838
- {
1839
- shape[ii++] = val*symdyadic1;
1840
- shape[ii++] = val*symdyadic2;
1841
- shape[ii++] = val*symdyadic3;
1842
- shape[ii++] = val*symdyadic4;
1843
- shape[ii++] = val*symdyadic5;
1844
- shape[ii++] = val*symdyadic6;
1845
- }));
1846
- }
1847
-
1848
- }
1849
-
1850
-
1851
-
1852
- template <typename MIP, typename TFA>
1853
- void CalcDualShape2 (const MIP & mip, TFA & shape) const
1854
- {
1855
- auto & ip = mip.IP();
1856
- typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
1857
- T x = ip(0), y = ip(1), z = ip(2);
1858
- T lam[4] = { x, y, z, 1-x-y-z };
1859
- Vec<3,T> pnts[4] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } , { 0, 0, 0 } };
1860
- int facetnr = ip.FacetNr();
1861
-
1862
- int ii = 0;
1863
-
1864
- if (ip.VB() == BBND)
1865
- { // facet shapes
1866
- for (int i = 0; i < 6; i++)
1867
- {
1868
- int p = order_edge[i];
1869
-
1870
- if (i == facetnr)
1871
- {
1872
- IVec<2> e = ET_trait<ET_TET>::GetEdgeSort (i, vnums);
1873
-
1874
- T xi = lam[e[1]]-lam[e[0]];
1875
- Vec<3,T> tauref = pnts[e[1]] - pnts[e[0]];
1876
- Vec<3,T> tau = mip.GetJacobian()*tauref;
1877
- Mat<3,3,T> tt = DyadProd(tau,tau);
1878
- LegendrePolynomial::Eval
1879
- (p, xi,
1880
- SBLambda([&] (size_t nr, T val)
1881
- {
1882
- shape[nr+ii] = 1/mip.GetMeasure()*val*tt;
1883
- }));
1884
- }
1885
- ii += (p+1);
1886
- }
1887
- }
1888
- else
1889
- {
1890
- for (int i = 0; i < 6; i++)
1891
- ii += order_edge[i]+1;
1892
- }
1893
- if (ip.VB() == BND)
1894
- {
1895
- for (int i = 0; i < 4; i++)
1896
- {
1897
- auto p = order_facet[i][0]-1;
1898
- if( p >= 0 && i == facetnr )
1899
- {
1900
- IVec<4> fav = ET_trait<ET_TET>:: GetFaceSort(facetnr, vnums);
1901
- Vec<3,T> adxi = pnts[fav[0]] - pnts[fav[2]];
1902
- Vec<3,T> adeta = pnts[fav[1]] - pnts[fav[2]];
1903
- T xi = lam[fav[0]];
1904
- T eta = lam[fav[1]];
1905
-
1906
- Matrix<T> F(3,2);
1907
- F.Col(0) = adxi;
1908
- F.Col(1) = adeta;
1909
-
1910
- Matrix<T> Ftmp(2,2);
1911
- Ftmp = Trans(F)*F;
1912
- auto det = sqrt(Ftmp(0,0)*Ftmp(1,1)-Ftmp(1,0)*Ftmp(0,1));
1913
-
1914
- DubinerBasis::Eval (p, xi, eta,
1915
- SBLambda([&] (size_t nr, T val)
1916
- {
1917
- shape[ii++] = 1/(det*mip.GetMeasure())*val*Mat<3,3,T>(mip.GetJacobian()*F*Matrix<>({{1,0},{0,0}})*Trans(mip.GetJacobian()*F));
1918
- shape[ii++] = 1/(det*mip.GetMeasure())*val*Mat<3,3,T>(mip.GetJacobian()*F*Matrix<>({{0,0},{0,1}})*Trans(mip.GetJacobian()*F));
1919
- shape[ii++] = 1/(det*mip.GetMeasure())*val*Mat<3,3,T>(mip.GetJacobian()*F*Matrix<>({{0,1},{1,0}})*Trans(mip.GetJacobian()*F));
1920
- }));
1921
- }
1922
- else
1923
- ii += 3*(order_facet[i][0])*(order_facet[i][0]+1)/2;
1924
- }
1925
- }
1926
- else
1927
- {
1928
- for (int i = 0; i < 4; i++)
1929
- ii += 3*(order_facet[i][0])*(order_facet[i][0]+1)/2;
1930
- }
1931
-
1932
- if (ip.VB() == VOL && order_inner[0] >= 2)
1933
- {
1934
- DubinerBasis3D::Eval (order_inner[0]-2, lam[0], lam[1], lam[2], SBLambda([&](size_t j, T val)
1935
- {
1936
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{1,0,0},{0,0,0},{0,0,0}}))*Trans(mip.GetJacobian());
1937
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,0,0},{0,1,0},{0,0,0}}))*Trans(mip.GetJacobian());
1938
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,0,0},{0,0,0},{0,0,1}}))*Trans(mip.GetJacobian());
1939
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,0,0},{0,0,1},{0,1,0}}))*Trans(mip.GetJacobian());
1940
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,0,1},{0,0,0},{1,0,0}}))*Trans(mip.GetJacobian());
1941
- shape[ii++] = 1/mip.GetMeasure()*val*mip.GetJacobian()*Mat<3,3>(Matrix<>({{0,1,0},{1,0,0},{0,0,0}}))*Trans(mip.GetJacobian());
1942
- }));
1943
-
1944
- }
1945
- }
1946
- };
1947
-
1948
-
1949
-
1950
- template <> class HCurlCurlFE<ET_HEX> : public T_HCurlCurlFE<ET_HEX>
1951
- {
1952
- public:
1953
- using T_HCurlCurlFE<ET_HEX> :: T_HCurlCurlFE;
1954
-
1955
- virtual void ComputeNDof()
1956
- {
1957
- order = 0;
1958
- ndof = 0;
1959
- for (int i=0; i < 12; i++)
1960
- {
1961
- ndof += order_edge[i]+1;
1962
- order = max2(order,order_edge[i]);
1963
- }
1964
- for (int i=0; i<6; i++)
1965
- {
1966
- ndof += order_facet[i][0]*order_facet[i][0] + 2*(order_facet[i][0]+2)*order_facet[i][0]+1;
1967
- order = max2(order, order_facet[i][0]);
1968
- }
1969
- int p = order_inner[0];
1970
- ndof += 3*(p*(p+1)*(p+1) + p*p*(p+1) );
1971
-
1972
- order = 1 + max2(order, p);
1973
- }
1974
-
1975
-
1976
- template <typename Tx, typename TFA>
1977
- void T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
1978
- {
1979
- Tx x = ip.x, y = ip.y, z = ip.z;
1980
- Tx lx[2] ={ 1-x, x};
1981
- Tx ly[2] ={ 1-y, y};
1982
- Tx lz[2] ={ 1-z, z};
1983
- Tx lami[8]={(1-x)*(1-y)*(1-z),x*(1-y)*(1-z),x*y*(1-z),(1-x)*y*(1-z),
1984
- (1-x)*(1-y)*z,x*(1-y)*z,x*y*z,(1-x)*y*z};
1985
- Tx sigma[8]={(1-x)+(1-y)+(1-z),x+(1-y)+(1-z),x+y+(1-z),(1-x)+y+(1-z),
1986
- (1-x)+(1-y)+z,x+(1-y)+z,x+y+z,(1-x)+y+z};
1987
- int ii = 0;
1988
-
1989
- const FACE * faces = ElementTopology::GetFaces(ET_HEX);
1990
-
1991
- ArrayMem<Tx,20> leg_u(order+2), leg_v(order+2), leg_w(order+2);
1992
-
1993
- // edges
1994
- for (int i = 0; i < 12; i++)
1995
- {
1996
- int p = order_edge[i];
1997
- IVec<2> e = ET_trait<ET_HEX>::GetEdgeSort (i, vnums);
1998
- Tx xi = sigma[e[1]]-sigma[e[0]];
1999
- Tx lam_e = lami[e[0]]+lami[e[1]];
2000
- auto symdyadic = MakeReggeAD(xi,xi);
2001
-
2002
- //IntLegNoBubble::
2003
- LegendrePolynomial::
2004
- EvalMult (p, xi, 0.25*lam_e, SBLambda ([&](int i, auto val)
2005
- {
2006
- shape[ii++] = val*symdyadic;
2007
- }));
2008
- }
2009
-
2010
-
2011
- for (int i = 0; i<6; i++)
2012
- {
2013
- int p = order_facet[i][0];
2014
-
2015
- Tx lam_f(0);
2016
- for (int j = 0; j < 4; j++)
2017
- lam_f += lami[faces[i][j]];
2018
-
2019
- IVec<4> f = ET_trait<ET_HEX>::GetFaceSort (i, vnums);
2020
- Tx xi = sigma[f[0]] - sigma[f[1]];
2021
- Tx eta = sigma[f[0]] - sigma[f[3]];
2022
-
2023
- LegendrePolynomial (p, eta, leg_u);
2024
- LegendrePolynomial (p, xi, leg_v);
2025
-
2026
- auto symdyadic = 0.25*lam_f*MakeReggeAD(eta,xi);
2027
- for (int j = 0; j <= p; j++)
2028
- for (int k = 0; k <= p; k++)
2029
- shape[ii++] = leg_u[j]*leg_v[k]*symdyadic;
2030
-
2031
- symdyadic = 0.25*lam_f*(1-eta*eta)*MakeReggeAD(xi,xi);
2032
- for (int j = 0; j < p; j++)
2033
- for (int k = 0; k <= p; k++)
2034
- shape[ii++] = leg_u[j]*leg_v[k]*symdyadic;
2035
-
2036
- symdyadic = 0.25*lam_f*(1-xi*xi)*MakeReggeAD(eta,eta);
2037
- for (int k = 0; k < p; k++)
2038
- for (int j = 0; j <= p; j++)
2039
- shape[ii++] = leg_u[j]*leg_v[k]*symdyadic;
2040
-
2041
- }
2042
-
2043
- int p = order_inner[0];
2044
- if (p > 0)
2045
- {
2046
- Tx xi = sigma[0] - sigma[1];
2047
- Tx eta = sigma[0] - sigma[3];
2048
- Tx nv = sigma[0] - sigma[4];
2049
-
2050
- LegendrePolynomial (p, xi, leg_u);
2051
- LegendrePolynomial (p, eta, leg_v);
2052
- LegendrePolynomial (p, nv, leg_w);
2053
-
2054
- auto symdyadic1 = lz[0]*lz[1]*MakeReggeAD(eta,xi);
2055
- auto symdyadic2 = lx[0]*lx[1]*MakeReggeAD(nv,eta);
2056
- auto symdyadic3 = ly[0]*ly[1]*MakeReggeAD(xi,nv);
2057
- for (int i = 0; i <= p; i++)
2058
- for (int j = 0; j <= p; j++)
2059
- for (int k = 0; k < p; k++)
2060
- {
2061
- shape[ii++] = leg_u[i]*leg_v[j]*leg_w[k]*symdyadic1;
2062
- shape[ii++] = leg_v[i]*leg_w[j]*leg_u[k]*symdyadic2;
2063
- shape[ii++] = leg_w[i]*leg_u[j]*leg_v[k]*symdyadic3;
2064
- }
2065
-
2066
- symdyadic1 = ly[0]*ly[1]*lz[0]*lz[1]*MakeReggeAD(xi,xi);
2067
- symdyadic2 = lz[0]*lz[1]*lx[0]*lx[1]*MakeReggeAD(eta,eta);
2068
- symdyadic3 = lx[0]*lx[1]*ly[0]*ly[1]*MakeReggeAD(nv,nv);
2069
-
2070
- for (int i = 0; i <= p; i++)
2071
- for (int j = 0; j < p; j++)
2072
- for (int k = 0; k < p; k++)
2073
- {
2074
- shape[ii++] = leg_u[i]*leg_v[j]*leg_w[k]*symdyadic1;
2075
- shape[ii++] = leg_v[i]*leg_w[j]*leg_u[k]*symdyadic2;
2076
- shape[ii++] = leg_w[i]*leg_u[j]*leg_v[k]*symdyadic3;
2077
- }
2078
- }
2079
- }
2080
-
2081
- template <typename MIP, typename TFA>
2082
- void CalcDualShape2 (const MIP & mip, TFA & shape) const
2083
- {
2084
- auto & ip = mip.IP();
2085
- typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
2086
-
2087
- T x = ip(0), y = ip(1), z = ip(2);
2088
- // T lx[4] = { 1-x, x, x, 1-x };
2089
- // T ly[4] = { 1-y, 1-y, y, y };
2090
- // T lz[4] = { 1-z, 1-z, z, z };
2091
- // T lam[4] = { 1-x-y+x*y, x*(1-y), x*y, y*(1-x) };
2092
- T sigma[8]={(1-x)+(1-y)+(1-z),x+(1-y)+(1-z),x+y+(1-z),(1-x)+y+(1-z),
2093
- (1-x)+(1-y)+z,x+(1-y)+z,x+y+z,(1-x)+y+z};
2094
-
2095
- /*Vec<2,AutoDiff<2,T>> adip = ip;
2096
- auto tip = TIP<2,AutoDiffDiff<2,T>>(adip);
2097
- AutoDiffDiff<2,T> xxx = tip.x, yyy = tip.y;
2098
- AutoDiff<2,T> xx(xxx.Value(), &xxx.DValue(0));
2099
- AutoDiff<2,T> yy(yyy.Value(), &yyy.DValue(0));
2100
- AutoDiff<2,T> lami[4] = {(1-xx)*(1-yy),xx*(1-yy),xx*yy,(1-xx)*yy};
2101
- AutoDiff<2,T> sigma[4] = {(1-xx)+(1-yy),xx+(1-yy),xx+yy,(1-xx)+yy}; */
2102
-
2103
- Vec<3,T> pnts[8] = { { 0, 0, 0 }, { 1, 0, 0 }, { 1, 1, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, { 1, 0, 1 }, { 1, 1, 1 }, { 0, 1, 1 } };
2104
- int facetnr = ip.FacetNr();
2105
-
2106
- int ii = 0;
2107
-
2108
- ArrayMem<T,20> v(order+2), u(order+2), w(order+2);
2109
-
2110
- if (mip.IP().VB() == BBND)
2111
- { // edge shapes
2112
- for (int i = 0; i < 12; i++)
2113
- {
2114
- int p = order_edge[i];
2115
-
2116
- if (i == facetnr)
2117
- {
2118
- IVec<2> e = ET_trait<ET_HEX>::GetEdgeSort (i, vnums);
2119
-
2120
- T xi = sigma[e[1]]-sigma[e[0]];
2121
- Vec<3,T> tauref = pnts[e[0]] - pnts[e[1]];
2122
-
2123
-
2124
- auto tv = mip.GetJacobian()*tauref;
2125
-
2126
- auto tt = DyadProd(tv,tv);
2127
- LegendrePolynomial::Eval
2128
- (p, xi,
2129
- SBLambda([&] (size_t nr, T val)
2130
- {
2131
- shape[nr+ii] = 1/mip.GetMeasure()*val*tt;
2132
- }));
2133
-
2134
- }
2135
- ii += (p+1);
2136
- }
2137
- }
2138
- else
2139
- {
2140
- for (int i = 0; i < 12; i++)
2141
- ii += order_edge[i]+1;
2142
- }
2143
- if (mip.IP().VB() == BND)
2144
- {
2145
- for (int i = 0; i < 6; i++)
2146
- {
2147
- int p = order_facet[i][0];
2148
-
2149
- if (i == facetnr)
2150
- {
2151
- IVec<4> f = ET_trait<ET_HEX>::GetFaceSort (i, vnums);
2152
- Vec<3,T> tauref1 = pnts[f[0]] - pnts[f[1]];
2153
- Vec<3,T> tauref2 = pnts[f[0]] - pnts[f[3]];
2154
- T xi = sigma[f[0]] - sigma[f[1]];
2155
- T eta = sigma[f[0]] - sigma[f[3]];
2156
- //Vec<6, T> symdyadic = SymDyadProd(GetGradient(etaa),GetGradient(xia));
2157
- auto tv1 = mip.GetJacobian()*tauref1;
2158
- auto tv2 = mip.GetJacobian()*tauref2;
2159
- auto symdyadic = SymDyadProd(tv1,tv2);
2160
-
2161
- LegendrePolynomial (p, eta, u);
2162
- LegendrePolynomial (p, xi, v);
2163
- for (int j = 0; j <= p; j++)
2164
- for (int k = 0; k <= p; k++)
2165
- shape[ii + j*(p+1) + k] = u[j]*v[k]*symdyadic;
2166
-
2167
- /* T eta = ly[2]-ly[1];
2168
- T xi = lx[1]-lx[0];
2169
- LegendrePolynomial (p, eta, v);
2170
- LegendrePolynomial (p, xi, u);
2171
-
2172
- for (int i = 0; i <= p; i++)
2173
- for (int j = 0; j <= p; j++)
2174
- {
2175
- shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{0,1},{1,0}}))*Trans(mip.GetJacobian());
2176
- }
2177
-
2178
-
2179
- //auto symdyad = lx[1]*lx[0]*SymDyadProd(Vec<2,T>(0,1),Vec<2,T>(0,1));//x*(1-x)*(0,0, 0,1) * P(y) * P(x)
2180
- for (int i = 0; i < p; i++)
2181
- for (int j = 0; j <= p; j++)
2182
- {
2183
- shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{0,0},{0,1}}))*Trans(mip.GetJacobian());
2184
- }
2185
-
2186
- //symdyad = ly[2]*ly[1]*SymDyadProd(Vec<2,T>(1,0),Vec<2,T>(1,0)); //y*(1-y)*(1,0, 0,0) * P(x) * P(y)
2187
-
2188
- for (int j = 0; j < p; j++)
2189
- for (int i = 0; i <= p; i++)
2190
- {
2191
- shape[ii++] = 1/mip.GetMeasure()*u[i]*v[j]*mip.GetJacobian()*Mat<2,2>(Matrix<>({{1,0},{0,0}}))*Trans(mip.GetJacobian());
2192
- }*/
2193
- }
2194
- ii += p*p + (p+2)*p*2 + 1;
2195
- }
2196
- }
2197
- else
2198
- {
2199
- for (int i = 0; i < 6; i++)
2200
- ii += order_facet[i][0]*order_facet[i][0] + (order_facet[i][0]+2)*order_facet[i][0]*2 + 1;
2201
- }
2202
-
2203
- if (mip.IP().VB() == VOL)
2204
- {
2205
- if (order_inner[0])
2206
- throw Exception ("Hcurlcurlfe calcdualshape2 not implementend for element type ET_HEX for high-order");
2207
- }
2208
- }
2209
-
2210
- };
2211
-
2212
-
2213
- HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_SEGM>;
2214
- HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_TRIG>;
2215
- HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_QUAD>;
2216
- HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_TET>;
2217
- HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_PRISM>;
2218
- HCURLCURLFE_EXTERN template class T_HCurlCurlFE<ET_HEX>;
2219
- }
2220
-
2221
- #endif