ngsolve 6.2.2405.post37.dev1__cp313-cp313-macosx_10_15_universal2.whl → 6.2.2405.post53.dev1__cp313-cp313-macosx_10_15_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ngsolve might be problematic. Click here for more details.
- netgen/include/expr.hpp +11 -8
- netgen/include/sparsematrix.hpp +5 -2
- netgen/include/statushandler.hpp +7 -0
- netgen/include/umfpackinverse.hpp +57 -29
- netgen/libngbla.dylib +0 -0
- netgen/libngcomp.dylib +0 -0
- netgen/libngfem.dylib +0 -0
- netgen/libngla.dylib +0 -0
- netgen/libngstd.dylib +0 -0
- ngsolve/__init__.pyi +2 -2
- ngsolve/cmake/NGSolveConfig.cmake +1 -1
- ngsolve/comp/__init__.pyi +4 -0
- ngsolve/config/__init__.pyi +6 -6
- ngsolve/config/config.py +5 -5
- ngsolve/config/config.pyi +6 -6
- ngsolve/config.py +5 -5
- ngsolve/demos/TensorProduct/__init__.py +0 -0
- ngsolve/demos/TensorProduct/tp_dg_1d_1d.py +80 -0
- ngsolve/demos/TensorProduct/tp_dg_1d_2d.py +73 -0
- ngsolve/demos/TensorProduct/tp_dg_2d_1d.py +72 -0
- ngsolve/demos/TensorProduct/tp_dg_2d_2d.py +66 -0
- ngsolve/demos/__init__.py +0 -0
- ngsolve/demos/howto/__init__.py +0 -0
- ngsolve/demos/howto/hhj.py +44 -0
- ngsolve/demos/howto/hybrid_dg.py +53 -0
- ngsolve/demos/howto/mixed.py +30 -0
- ngsolve/demos/howto/nonlin.py +29 -0
- ngsolve/demos/howto/pickling.py +26 -0
- ngsolve/demos/howto/pml.py +31 -0
- ngsolve/demos/howto/taskmanager.py +20 -0
- ngsolve/demos/howto/tdnns.py +47 -0
- ngsolve/demos/howto/timeDG-skeleton.py +45 -0
- ngsolve/demos/howto/timeDG.py +38 -0
- ngsolve/demos/howto/timeDGlap.py +42 -0
- ngsolve/demos/howto/timeDGwave.py +61 -0
- ngsolve/demos/intro/__init__.py +0 -0
- ngsolve/demos/intro/adaptive.py +123 -0
- ngsolve/demos/intro/cmagnet.py +62 -0
- ngsolve/demos/intro/elasticity.py +76 -0
- ngsolve/demos/intro/navierstokes.py +74 -0
- ngsolve/demos/intro/poisson.ipynb +170 -0
- ngsolve/demos/intro/poisson.py +41 -0
- ngsolve/demos/mpi/__init__.py +0 -0
- ngsolve/demos/mpi/mpi_cmagnet.py +87 -0
- ngsolve/demos/mpi/mpi_navierstokes.py +115 -0
- ngsolve/demos/mpi/mpi_poisson.py +89 -0
- ngsolve/demos/mpi/mpi_timeDG.py +79 -0
- ngsolve/directsolvers.pyi +1 -1
- ngsolve/krylovspace.pyi +3 -3
- ngsolve/nonlinearsolvers.pyi +1 -1
- ngsolve/timestepping.pyi +3 -3
- ngsolve/utils.pyi +1 -1
- {ngsolve-6.2.2405.post37.dev1.dist-info → ngsolve-6.2.2405.post53.dev1.dist-info}/METADATA +2 -2
- {ngsolve-6.2.2405.post37.dev1.dist-info → ngsolve-6.2.2405.post53.dev1.dist-info}/RECORD +90 -59
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/Netgen.icns +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/bin/ngscxx +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/bin/ngsld +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/bin/ngsolve.tcl +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/bin/ngspy +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/beam.geo +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/beam.vol +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/chip.in2d +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/chip.vol +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/coil.geo +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/coil.vol +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/coilshield.geo +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/coilshield.vol +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/cube.geo +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/cube.vol +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d10_DGdoubleglazing.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d11_chip_nitsche.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d1_square.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d2_chip.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d3_helmholtz.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d4_cube.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d5_beam.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d6_shaft.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d7_coil.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d8_coilshield.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/d9_hybridDG.pde +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/doubleglazing.in2d +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/doubleglazing.vol +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/piezo2d40round4.vol.gz +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/shaft.geo +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/shaft.vol +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/square.in2d +0 -0
- {ngsolve-6.2.2405.post37.dev1.data → ngsolve-6.2.2405.post53.dev1.data}/data/share/ngsolve/square.vol +0 -0
- {ngsolve-6.2.2405.post37.dev1.dist-info → ngsolve-6.2.2405.post53.dev1.dist-info}/LICENSE +0 -0
- {ngsolve-6.2.2405.post37.dev1.dist-info → ngsolve-6.2.2405.post53.dev1.dist-info}/WHEEL +0 -0
- {ngsolve-6.2.2405.post37.dev1.dist-info → ngsolve-6.2.2405.post53.dev1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
#
|
|
2
|
+
# The Hellan-Herrmann-Johnson method for a Kirchhoff plate
|
|
3
|
+
#
|
|
4
|
+
# M. I. Comodi: The Hellan–Herrmann-Johnson Method
|
|
5
|
+
# Some error estimates and postprocessing. Math. Comp. 52, 17–39, 1989
|
|
6
|
+
#
|
|
7
|
+
|
|
8
|
+
from ngsolve import *
|
|
9
|
+
from netgen.geom2d import unit_square
|
|
10
|
+
|
|
11
|
+
mesh = Mesh (unit_square.GenerateMesh(maxh=0.05))
|
|
12
|
+
order = 3
|
|
13
|
+
|
|
14
|
+
V = HDivDiv(mesh, order=order-1)
|
|
15
|
+
Q = H1(mesh, order=order, dirichlet="left|right|top|bottom")
|
|
16
|
+
X = V*Q
|
|
17
|
+
|
|
18
|
+
print ("ndof-V:", V.ndof, ", ndof-Q:", Q.ndof)
|
|
19
|
+
|
|
20
|
+
sigma, u = X.TrialFunction()
|
|
21
|
+
tau, v = X.TestFunction()
|
|
22
|
+
|
|
23
|
+
n = specialcf.normal(2)
|
|
24
|
+
|
|
25
|
+
def tang(u): return u-(u*n)*n
|
|
26
|
+
|
|
27
|
+
a = BilinearForm(X, symmetric=True)
|
|
28
|
+
a += (InnerProduct (sigma, tau) + div(sigma)*grad(v) + div(tau)*grad(u) - 1e-10*u*v)*dx
|
|
29
|
+
a += (-(sigma*n) * tang(grad(v)) - (tau*n)*tang(grad(u)))*dx(element_boundary=True)
|
|
30
|
+
a.Assemble()
|
|
31
|
+
|
|
32
|
+
f = LinearForm(X)
|
|
33
|
+
f += 1 * v * dx
|
|
34
|
+
# f += Trace(tau.Trace()) * ds("bottom")
|
|
35
|
+
f.Assemble()
|
|
36
|
+
|
|
37
|
+
u = GridFunction(X)
|
|
38
|
+
u.vec.data = a.mat.Inverse(X.FreeDofs()) * f.vec
|
|
39
|
+
|
|
40
|
+
Draw (u.components[0], mesh, name="sigma")
|
|
41
|
+
Draw (u.components[1], mesh, name="disp")
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
from netgen.geom2d import unit_square
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
ngsglobals.msg_level = 1
|
|
6
|
+
mesh = Mesh(unit_square.GenerateMesh(maxh=0.4))
|
|
7
|
+
for k in range(5):
|
|
8
|
+
mesh.Refine()
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
order = 3
|
|
12
|
+
fes1 = L2(mesh, order=order)
|
|
13
|
+
fes2 = FacetFESpace(mesh, order=order, dirichlet="bottom|right|top")
|
|
14
|
+
|
|
15
|
+
print ("element dofs: ", fes1.ndof)
|
|
16
|
+
print ("facet dofs: ", fes2.ndof)
|
|
17
|
+
|
|
18
|
+
fes = fes1*fes2
|
|
19
|
+
|
|
20
|
+
u,uhat = fes.TrialFunction()
|
|
21
|
+
v,vhat = fes.TestFunction()
|
|
22
|
+
|
|
23
|
+
n = specialcf.normal(mesh.dim)
|
|
24
|
+
h = specialcf.mesh_size
|
|
25
|
+
|
|
26
|
+
a = BilinearForm(fes, symmetric=True, condense = True)
|
|
27
|
+
a += grad(u) * grad(v) * dx
|
|
28
|
+
a += (grad(u)*n*(vhat-v)+grad(v)*n*(uhat-u)+10*order*order/h*(u-uhat)*(v-vhat))*dx(element_boundary=True)
|
|
29
|
+
|
|
30
|
+
c = Preconditioner(type="direct", bf=a, inverse = "sparsecholesky")
|
|
31
|
+
# c = Preconditioner(type="bddc", bf=a)
|
|
32
|
+
|
|
33
|
+
with TaskManager():
|
|
34
|
+
a.Assemble()
|
|
35
|
+
ainv = CGSolver(a.mat, c.mat)
|
|
36
|
+
|
|
37
|
+
f = LinearForm(fes)
|
|
38
|
+
f += 1*v*dx
|
|
39
|
+
f.Assemble()
|
|
40
|
+
|
|
41
|
+
u = GridFunction(fes)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
f.vec.data += a.harmonic_extension_trans * f.vec
|
|
45
|
+
|
|
46
|
+
u.vec.data = ainv * f.vec
|
|
47
|
+
|
|
48
|
+
u.vec.data += a.harmonic_extension * u.vec
|
|
49
|
+
u.vec.data += a.inner_solve * f.vec
|
|
50
|
+
|
|
51
|
+
Draw (u.components[0], mesh, "sol")
|
|
52
|
+
|
|
53
|
+
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
from netgen.geom2d import unit_square
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
ngsglobals.msg_level = 1
|
|
5
|
+
|
|
6
|
+
mesh = Mesh(unit_square.GenerateMesh(maxh=0.1))
|
|
7
|
+
|
|
8
|
+
order = 2
|
|
9
|
+
fes1 = HDiv(mesh, order=order)
|
|
10
|
+
fes2 = L2(mesh, order=order-1)
|
|
11
|
+
|
|
12
|
+
fes = fes1*fes2
|
|
13
|
+
|
|
14
|
+
sigma,u = fes.TrialFunction()
|
|
15
|
+
tau,v = fes.TestFunction()
|
|
16
|
+
|
|
17
|
+
a = BilinearForm(fes)
|
|
18
|
+
a += (sigma*tau + div(sigma)*v + div(tau)*u - 1e-10*u*v)*dx
|
|
19
|
+
# (regularization needed for direct solver)
|
|
20
|
+
a.Assemble()
|
|
21
|
+
|
|
22
|
+
f = LinearForm(fes)
|
|
23
|
+
f += -v*dx
|
|
24
|
+
f.Assemble()
|
|
25
|
+
|
|
26
|
+
u = GridFunction(fes)
|
|
27
|
+
u.vec.data = a.mat.Inverse(fes.FreeDofs()) * f.vec
|
|
28
|
+
|
|
29
|
+
Draw (u.components[0], mesh, "flux")
|
|
30
|
+
Draw (u.components[1], mesh, "sol")
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
from netgen.geom2d import unit_square
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
m = Mesh (unit_square.GenerateMesh(maxh=0.3))
|
|
5
|
+
|
|
6
|
+
V = H1(m, order=3, dirichlet="left|right|top|bottom")
|
|
7
|
+
u = V.TrialFunction()
|
|
8
|
+
v = V.TestFunction()
|
|
9
|
+
|
|
10
|
+
a = BilinearForm(V)
|
|
11
|
+
a += ( grad(u) * grad(v) + 5*u*u*v- 1 * v)*dx
|
|
12
|
+
|
|
13
|
+
u = GridFunction(V)
|
|
14
|
+
r = u.vec.CreateVector()
|
|
15
|
+
w = u.vec.CreateVector()
|
|
16
|
+
|
|
17
|
+
for it in range(5):
|
|
18
|
+
print ("Iteration",it)
|
|
19
|
+
a.Apply(u.vec, r)
|
|
20
|
+
a.AssembleLinearization(u.vec)
|
|
21
|
+
|
|
22
|
+
w.data = a.mat.Inverse(V.FreeDofs()) * r.data
|
|
23
|
+
print ("|w| =", w.Norm())
|
|
24
|
+
u.vec.data -= w
|
|
25
|
+
|
|
26
|
+
Draw(u)
|
|
27
|
+
input("<press a key>")
|
|
28
|
+
|
|
29
|
+
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
from ngsolve import *
|
|
2
|
+
import netgen.geom2d
|
|
3
|
+
|
|
4
|
+
mesh = Mesh (netgen.geom2d.unit_square.GenerateMesh(maxh=0.1))
|
|
5
|
+
|
|
6
|
+
v = FESpace ("h1ho", mesh, order=4, dirichlet=[1])
|
|
7
|
+
v2 = L2(mesh,order=2)
|
|
8
|
+
u = GridFunction (v)
|
|
9
|
+
u2 = GridFunction(v)
|
|
10
|
+
vec = u.vec
|
|
11
|
+
data = [v,v2,u,u2,u.vec]
|
|
12
|
+
|
|
13
|
+
import pickle
|
|
14
|
+
pickler = pickle.Pickler(open ("1.dat", "wb"))
|
|
15
|
+
pickler.dump (data)
|
|
16
|
+
del pickler
|
|
17
|
+
|
|
18
|
+
unpickler = pickle.Unpickler(open("1.dat","rb"))
|
|
19
|
+
fes,fes2,w,w2,z = unpickler.load()
|
|
20
|
+
|
|
21
|
+
assert fes.mesh is fes2.mesh
|
|
22
|
+
assert w.space is w2.space
|
|
23
|
+
|
|
24
|
+
assert len(z) == len(u.vec)
|
|
25
|
+
for i in range(len(u.vec)):
|
|
26
|
+
assert u.vec[i] == z[i]
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
from netgen.geom2d import SplineGeometry
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
geo = SplineGeometry()
|
|
5
|
+
geo.AddCircle( (0,0), 1.4, leftdomain=2)
|
|
6
|
+
geo.AddCircle( (0,0), 1, leftdomain=1, rightdomain=2)
|
|
7
|
+
geo.SetMaterial(1, "inner")
|
|
8
|
+
geo.SetMaterial(2, "pml")
|
|
9
|
+
mesh = Mesh(geo.GenerateMesh (maxh=0.1))
|
|
10
|
+
|
|
11
|
+
mesh.SetPML(pml.Radial(rad=1,alpha=1j,origin=(0,0)), "pml")
|
|
12
|
+
|
|
13
|
+
fes = H1(mesh, order=4, complex=True)
|
|
14
|
+
u = fes.TrialFunction()
|
|
15
|
+
v = fes.TestFunction()
|
|
16
|
+
|
|
17
|
+
omega = 10
|
|
18
|
+
|
|
19
|
+
a = BilinearForm(fes)
|
|
20
|
+
a += (grad(u)*grad(v)-omega*omega*u*v)*dx
|
|
21
|
+
|
|
22
|
+
f = LinearForm(fes)
|
|
23
|
+
f += exp(-20**2*((x-0.3)*(x-0.3)+y*y))*v*dx
|
|
24
|
+
|
|
25
|
+
a.Assemble()
|
|
26
|
+
f.Assemble()
|
|
27
|
+
|
|
28
|
+
gfu = GridFunction(fes)
|
|
29
|
+
gfu.vec.data = a.mat.Inverse() * f.vec
|
|
30
|
+
|
|
31
|
+
Draw(gfu)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
from netgen.csg import unit_cube
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
mesh = Mesh (unit_cube.GenerateMesh(maxh=0.4))
|
|
5
|
+
for l in range(3):
|
|
6
|
+
mesh.Refine()
|
|
7
|
+
|
|
8
|
+
fes = H1(mesh, order=3)
|
|
9
|
+
u,v = fes.TnT()
|
|
10
|
+
a = BilinearForm(fes)
|
|
11
|
+
a += grad(u) * grad(v) * dx
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
print('sequential assembly...')
|
|
15
|
+
a.Assemble()
|
|
16
|
+
|
|
17
|
+
print('parallel assembly...')
|
|
18
|
+
with TaskManager():
|
|
19
|
+
a.Assemble()
|
|
20
|
+
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
#
|
|
2
|
+
# The tangential-displacement normal-normal-stress continuous method for elasticity
|
|
3
|
+
#
|
|
4
|
+
# A.S. Pechstein and J. Schoeberl:
|
|
5
|
+
# Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity.
|
|
6
|
+
# Mathematical Models and Methods in Applied Sciences 21(8), 1761–1782, 2011.
|
|
7
|
+
#
|
|
8
|
+
|
|
9
|
+
from ngsolve import *
|
|
10
|
+
from netgen.geom2d import SplineGeometry
|
|
11
|
+
|
|
12
|
+
geo = SplineGeometry()
|
|
13
|
+
geo.AddRectangle( (0, 0), (10, 1), bcs = ("bottom", "right", "top", "left"))
|
|
14
|
+
mesh = Mesh( geo.GenerateMesh(maxh=0.5))
|
|
15
|
+
|
|
16
|
+
order = 3
|
|
17
|
+
V = HDivDiv(mesh, order=order-1, dirichlet="bottom|right|top", plus = True)
|
|
18
|
+
Q = HCurl(mesh, order=order, dirichlet="left", type1 = True)
|
|
19
|
+
X = V*Q
|
|
20
|
+
|
|
21
|
+
print ("ndof-V:", V.ndof, ", ndof-Q:", Q.ndof)
|
|
22
|
+
|
|
23
|
+
sigma, u = X.TrialFunction()
|
|
24
|
+
tau, v = X.TestFunction()
|
|
25
|
+
|
|
26
|
+
n = specialcf.normal(2)
|
|
27
|
+
|
|
28
|
+
def tang(u): return u-(u*n)*n
|
|
29
|
+
|
|
30
|
+
a = BilinearForm(X, symmetric=True)
|
|
31
|
+
a += (InnerProduct (sigma, tau) + div(sigma)*v + div(tau)*u - 1e-10 * u*v)*dx
|
|
32
|
+
a += (-(sigma*n) * tang(v) - (tau*n)*tang(u))*dx(element_boundary=True)
|
|
33
|
+
a.Assemble()
|
|
34
|
+
|
|
35
|
+
f = LinearForm(X)
|
|
36
|
+
f += 1 * v[1] * dx
|
|
37
|
+
f.Assemble()
|
|
38
|
+
|
|
39
|
+
u = GridFunction(X)
|
|
40
|
+
u.vec.data = a.mat.Inverse(X.FreeDofs(), inverse="sparsecholesky") * f.vec
|
|
41
|
+
|
|
42
|
+
Draw (u.components[0], mesh, name="sigma")
|
|
43
|
+
Draw (u.components[1], mesh, name="disp")
|
|
44
|
+
|
|
45
|
+
Draw (u.components[0][0], mesh, name="s11")
|
|
46
|
+
|
|
47
|
+
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
from netgen.geom2d import unit_square
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
mesh = Mesh (unit_square.GenerateMesh(maxh=0.1))
|
|
5
|
+
|
|
6
|
+
fes = L2(mesh, order=4)
|
|
7
|
+
|
|
8
|
+
u = fes.TrialFunction()
|
|
9
|
+
v = fes.TestFunction()
|
|
10
|
+
|
|
11
|
+
b = CoefficientFunction( (y-0.5,0.5-x) )
|
|
12
|
+
bn = b*specialcf.normal(2)
|
|
13
|
+
|
|
14
|
+
ubnd = CoefficientFunction(0)
|
|
15
|
+
|
|
16
|
+
a = BilinearForm(fes)
|
|
17
|
+
a += (-u * b*grad(v)) .Compile()*dx
|
|
18
|
+
|
|
19
|
+
# the skeleton-formulation, sum over edges:
|
|
20
|
+
a += bn*IfPos(bn, u, u.Other()) * (v-v.Other()) * dx(skeleton=True)
|
|
21
|
+
a += bn*IfPos(bn, u, ubnd) * v * ds(skeleton=True)
|
|
22
|
+
|
|
23
|
+
# or the element-boundary formulation
|
|
24
|
+
# note the bnd-value in the .Other operator
|
|
25
|
+
# a += bn*IfPos(bn, u, u.Other(bnd=ubnd)) * v * dx(element_boundary=True)
|
|
26
|
+
|
|
27
|
+
u = GridFunction(fes)
|
|
28
|
+
u.Set(exp (-40 * ( (x-0.7)*(x-0.7) + (y-0.7)*(y-0.7) )))
|
|
29
|
+
|
|
30
|
+
w = u.vec.CreateVector()
|
|
31
|
+
|
|
32
|
+
Draw (u, autoscale=False, sd=2)
|
|
33
|
+
|
|
34
|
+
t = 0
|
|
35
|
+
tau = 1e-3
|
|
36
|
+
tend = 10
|
|
37
|
+
|
|
38
|
+
with TaskManager():
|
|
39
|
+
while t < tend:
|
|
40
|
+
a.Apply (u.vec, w)
|
|
41
|
+
fes.SolveM (rho=CoefficientFunction(1), vec=w)
|
|
42
|
+
u.vec.data -= tau * w
|
|
43
|
+
t += tau
|
|
44
|
+
Redraw()
|
|
45
|
+
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
from netgen.geom2d import unit_square
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
mesh = Mesh (unit_square.GenerateMesh(maxh=0.1))
|
|
5
|
+
|
|
6
|
+
fes = L2(mesh, order=4)
|
|
7
|
+
|
|
8
|
+
u = fes.TrialFunction()
|
|
9
|
+
v = fes.TestFunction()
|
|
10
|
+
|
|
11
|
+
b = CoefficientFunction( (y-0.5,0.5-x) )
|
|
12
|
+
bn = b*specialcf.normal(2)
|
|
13
|
+
|
|
14
|
+
ubnd = CoefficientFunction(0)
|
|
15
|
+
|
|
16
|
+
a = BilinearForm(fes)
|
|
17
|
+
a += -u * b*grad(v) * dx
|
|
18
|
+
a += bn*IfPos(bn, u, u.Other(bnd=ubnd)) * v * dx(element_boundary=True)
|
|
19
|
+
|
|
20
|
+
u = GridFunction(fes)
|
|
21
|
+
u.Set(exp (-40 * ( (x-0.7)*(x-0.7) + (y-0.7)*(y-0.7) )))
|
|
22
|
+
|
|
23
|
+
w = u.vec.CreateVector()
|
|
24
|
+
|
|
25
|
+
Draw (u, autoscale=False, sd=2)
|
|
26
|
+
|
|
27
|
+
t = 0
|
|
28
|
+
tau = 1e-3
|
|
29
|
+
tend = 10
|
|
30
|
+
|
|
31
|
+
with TaskManager():
|
|
32
|
+
while t < tend:
|
|
33
|
+
a.Apply (u.vec, w)
|
|
34
|
+
fes.SolveM (rho=CoefficientFunction(1), vec=w)
|
|
35
|
+
u.vec.data -= tau * w
|
|
36
|
+
t += tau
|
|
37
|
+
Redraw()
|
|
38
|
+
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
from netgen.geom2d import unit_square
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
mesh = Mesh (unit_square.GenerateMesh(maxh=0.05))
|
|
5
|
+
|
|
6
|
+
order=2
|
|
7
|
+
fes = L2(mesh, order=order)
|
|
8
|
+
|
|
9
|
+
u = fes.TrialFunction()
|
|
10
|
+
v = fes.TestFunction()
|
|
11
|
+
|
|
12
|
+
u0 = exp (-40 * ( (x-0.5)*(x-0.5) + (y-0.5)*(y-0.5) ))
|
|
13
|
+
|
|
14
|
+
n = specialcf.normal(2)
|
|
15
|
+
h = specialcf.mesh_size
|
|
16
|
+
|
|
17
|
+
a = BilinearForm(fes)
|
|
18
|
+
a += grad(u) * grad(v) * dx
|
|
19
|
+
cf1 = -0.5 * InnerProduct(grad(u), n)*(v-v.Other(bnd=0))
|
|
20
|
+
cf2 = -0.5 * InnerProduct(grad(v), n)*(u-u.Other(bnd=u0))
|
|
21
|
+
cf3 = 2*( (order+1)**2)/h * (u-u.Other(bnd=u0)) * v
|
|
22
|
+
a += (cf1+cf2+cf3)*dx(element_boundary=True)
|
|
23
|
+
|
|
24
|
+
u = GridFunction(fes)
|
|
25
|
+
u.Set(u0)
|
|
26
|
+
|
|
27
|
+
w = u.vec.CreateVector()
|
|
28
|
+
|
|
29
|
+
Draw (u, mesh, "u")
|
|
30
|
+
|
|
31
|
+
tau = 2e-6
|
|
32
|
+
tend = 0.5
|
|
33
|
+
|
|
34
|
+
t = 0
|
|
35
|
+
with TaskManager():
|
|
36
|
+
while t < tend:
|
|
37
|
+
a.Apply (u.vec, w)
|
|
38
|
+
fes.SolveM (rho=CoefficientFunction(1), vec=w)
|
|
39
|
+
u.vec.data -= tau * w
|
|
40
|
+
t += tau
|
|
41
|
+
Redraw()
|
|
42
|
+
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
from netgen.geom2d import unit_square
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
mesh = Mesh (unit_square.GenerateMesh(maxh=0.05))
|
|
5
|
+
|
|
6
|
+
order=4
|
|
7
|
+
fes1 = L2(mesh, order=order)
|
|
8
|
+
fes = fes1*fes1*fes1
|
|
9
|
+
|
|
10
|
+
p,ux,uy = fes.TrialFunction()
|
|
11
|
+
q,vx,vy = fes.TestFunction()
|
|
12
|
+
|
|
13
|
+
u0 = exp (-400 * ( (x-0.5)*(x-0.5) + (y-0.5)*(y-0.5) ))
|
|
14
|
+
|
|
15
|
+
n = specialcf.normal(2)
|
|
16
|
+
|
|
17
|
+
v = CoefficientFunction( (vx, vy) )
|
|
18
|
+
u = CoefficientFunction( (ux, uy) )
|
|
19
|
+
|
|
20
|
+
a1 = BilinearForm(fes)
|
|
21
|
+
a1 += grad(p) * v * dx
|
|
22
|
+
a1 += -0.5 * (p - p.Other()) * (v*n) * dx(element_boundary = True)
|
|
23
|
+
|
|
24
|
+
a2 = BilinearForm(fes)
|
|
25
|
+
a2 += -grad(q) * u * dx
|
|
26
|
+
a2 += 0.5 * (q - q.Other()) * (u*n) * dx(element_boundary = True)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
u = GridFunction(fes)
|
|
30
|
+
u.components[0].Set(u0)
|
|
31
|
+
|
|
32
|
+
res = u.vec.CreateVector()
|
|
33
|
+
w = u.vec.CreateVector()
|
|
34
|
+
|
|
35
|
+
Draw (u.components[1], mesh, "ux")
|
|
36
|
+
Draw (u.components[2], mesh, "uy")
|
|
37
|
+
Draw (u.components[0], mesh, "p")
|
|
38
|
+
SetVisualization(min=-0.1, max=0.1, deformation=True)
|
|
39
|
+
|
|
40
|
+
tau = 1e-3
|
|
41
|
+
tend = 3
|
|
42
|
+
|
|
43
|
+
t = 0
|
|
44
|
+
nd = fes1.ndof
|
|
45
|
+
|
|
46
|
+
input ("<press enter>")
|
|
47
|
+
|
|
48
|
+
with TaskManager():
|
|
49
|
+
while t < tend:
|
|
50
|
+
a1.Apply (u.vec, w)
|
|
51
|
+
fes1.SolveM (rho=CoefficientFunction(1), vec=w.Range(nd,2*nd))
|
|
52
|
+
fes1.SolveM (rho=CoefficientFunction(1), vec=w.Range(2*nd,3*nd))
|
|
53
|
+
u.vec.data -= tau * w
|
|
54
|
+
|
|
55
|
+
a2.Apply (u.vec, w)
|
|
56
|
+
fes1.SolveM (rho=CoefficientFunction(1), vec=w.Range(0,nd))
|
|
57
|
+
u.vec.data -= tau * w
|
|
58
|
+
|
|
59
|
+
t += tau
|
|
60
|
+
Redraw()
|
|
61
|
+
|
|
File without changes
|
|
@@ -0,0 +1,123 @@
|
|
|
1
|
+
from ngsolve import *
|
|
2
|
+
from netgen.geom2d import SplineGeometry
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
# point numbers 0, 1, ... 11
|
|
6
|
+
# sub-domain numbers (1), (2), (3)
|
|
7
|
+
#
|
|
8
|
+
#
|
|
9
|
+
# 7-------------6
|
|
10
|
+
# | |
|
|
11
|
+
# | (2) |
|
|
12
|
+
# | |
|
|
13
|
+
# 3------4-------------5------2
|
|
14
|
+
# | |
|
|
15
|
+
# | 11 |
|
|
16
|
+
# | / \ |
|
|
17
|
+
# | 10 (3) 9 |
|
|
18
|
+
# | \ / (1) |
|
|
19
|
+
# | 8 |
|
|
20
|
+
# | |
|
|
21
|
+
# 0---------------------------1
|
|
22
|
+
#
|
|
23
|
+
|
|
24
|
+
def MakeGeometry():
|
|
25
|
+
geometry = SplineGeometry()
|
|
26
|
+
|
|
27
|
+
# point coordinates ...
|
|
28
|
+
pnts = [ (0,0), (1,0), (1,0.6), (0,0.6), \
|
|
29
|
+
(0.2,0.6), (0.8,0.6), (0.8,0.8), (0.2,0.8), \
|
|
30
|
+
(0.5,0.15), (0.65,0.3), (0.5,0.45), (0.35,0.3) ]
|
|
31
|
+
pnums = [geometry.AppendPoint(*p) for p in pnts]
|
|
32
|
+
|
|
33
|
+
# start-point, end-point, boundary-condition, domain on left side, domain on right side:
|
|
34
|
+
lines = [ (0,1,1,1,0), (1,2,2,1,0), (2,5,2,1,0), (5,4,2,1,2), (4,3,2,1,0), (3,0,2,1,0), \
|
|
35
|
+
(5,6,2,2,0), (6,7,2,2,0), (7,4,2,2,0), \
|
|
36
|
+
(8,9,2,3,1), (9,10,2,3,1), (10,11,2,3,1), (11,8,2,3,1) ]
|
|
37
|
+
|
|
38
|
+
for p1,p2,bc,left,right in lines:
|
|
39
|
+
geometry.Append( ["line", pnums[p1], pnums[p2]], bc=bc, leftdomain=left, rightdomain=right)
|
|
40
|
+
return geometry
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
mesh = Mesh(MakeGeometry().GenerateMesh (maxh=0.2))
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
fes = H1(mesh, order=3, dirichlet=[1], autoupdate=True)
|
|
48
|
+
u = fes.TrialFunction()
|
|
49
|
+
v = fes.TestFunction()
|
|
50
|
+
|
|
51
|
+
# one heat conductivity coefficient per sub-domain
|
|
52
|
+
lam = CoefficientFunction([1, 1000, 10])
|
|
53
|
+
a = BilinearForm(fes, symmetric=False)
|
|
54
|
+
a += lam*grad(u)*grad(v)*dx
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
# heat-source in sub-domain 3
|
|
58
|
+
f = LinearForm(fes)
|
|
59
|
+
f += CoefficientFunction([0, 0, 1])*v*dx
|
|
60
|
+
|
|
61
|
+
c = MultiGridPreconditioner(a, inverse = "sparsecholesky")
|
|
62
|
+
|
|
63
|
+
gfu = GridFunction(fes, autoupdate=True)
|
|
64
|
+
Draw (gfu)
|
|
65
|
+
|
|
66
|
+
# finite element space and gridfunction to represent
|
|
67
|
+
# the heatflux:
|
|
68
|
+
space_flux = HDiv(mesh, order=2, autoupdate=True)
|
|
69
|
+
gf_flux = GridFunction(space_flux, "flux", autoupdate=True)
|
|
70
|
+
|
|
71
|
+
def SolveBVP():
|
|
72
|
+
a.Assemble()
|
|
73
|
+
f.Assemble()
|
|
74
|
+
inv = CGSolver(a.mat, c.mat)
|
|
75
|
+
gfu.vec.data = inv * f.vec
|
|
76
|
+
Redraw (blocking=True)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
l = []
|
|
81
|
+
|
|
82
|
+
def CalcError():
|
|
83
|
+
flux = lam * grad(gfu)
|
|
84
|
+
# interpolate finite element flux into H(div) space:
|
|
85
|
+
gf_flux.Set (flux)
|
|
86
|
+
|
|
87
|
+
# Gradient-recovery error estimator
|
|
88
|
+
err = 1/lam*(flux-gf_flux)*(flux-gf_flux)
|
|
89
|
+
elerr = Integrate (err, mesh, VOL, element_wise=True)
|
|
90
|
+
|
|
91
|
+
maxerr = max(elerr)
|
|
92
|
+
l.append ( (fes.ndof, sqrt(sum(elerr)) ))
|
|
93
|
+
print ("maxerr = ", maxerr)
|
|
94
|
+
|
|
95
|
+
for el in mesh.Elements():
|
|
96
|
+
mesh.SetRefinementFlag(el, elerr[el.nr] > 0.25*maxerr)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
with TaskManager():
|
|
100
|
+
while fes.ndof < 100000:
|
|
101
|
+
SolveBVP()
|
|
102
|
+
CalcError()
|
|
103
|
+
mesh.Refine()
|
|
104
|
+
|
|
105
|
+
SolveBVP()
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
## import matplotlib.pyplot as plt
|
|
111
|
+
|
|
112
|
+
## plt.yscale('log')
|
|
113
|
+
## plt.xscale('log')
|
|
114
|
+
## plt.xlabel("ndof")
|
|
115
|
+
## plt.ylabel("H1 error-estimate")
|
|
116
|
+
## ndof,err = zip(*l)
|
|
117
|
+
## plt.plot(ndof,err, "-*")
|
|
118
|
+
|
|
119
|
+
## plt.ion()
|
|
120
|
+
## plt.show()
|
|
121
|
+
|
|
122
|
+
## input("<press enter to quit>")
|
|
123
|
+
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
from netgen.csg import *
|
|
2
|
+
from ngsolve import *
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def MakeGeometry():
|
|
6
|
+
geometry = CSGeometry()
|
|
7
|
+
box = OrthoBrick(Pnt(-1,-1,-1),Pnt(2,1,2)).bc("outer")
|
|
8
|
+
|
|
9
|
+
core = OrthoBrick(Pnt(0,-0.05,0),Pnt(0.8,0.05,1))- \
|
|
10
|
+
OrthoBrick(Pnt(0.1,-1,0.1),Pnt(0.7,1,0.9))- \
|
|
11
|
+
OrthoBrick(Pnt(0.5,-1,0.4),Pnt(1,1,0.6)).maxh(0.2).mat("core")
|
|
12
|
+
|
|
13
|
+
coil = (Cylinder(Pnt(0.05,0,0), Pnt(0.05,0,1), 0.3) - \
|
|
14
|
+
Cylinder(Pnt(0.05,0,0), Pnt(0.05,0,1), 0.15)) * \
|
|
15
|
+
OrthoBrick (Pnt(-1,-1,0.3),Pnt(1,1,0.7)).maxh(0.2).mat("coil")
|
|
16
|
+
|
|
17
|
+
geometry.Add ((box-core-coil).mat("air"))
|
|
18
|
+
geometry.Add (core)
|
|
19
|
+
geometry.Add (coil)
|
|
20
|
+
return geometry
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
ngmesh = MakeGeometry().GenerateMesh(maxh=0.5)
|
|
25
|
+
ngmesh.Save("coil.vol")
|
|
26
|
+
mesh = Mesh(ngmesh)
|
|
27
|
+
|
|
28
|
+
# curve elements for geometry approximation
|
|
29
|
+
mesh.Curve(5)
|
|
30
|
+
|
|
31
|
+
ngsglobals.msg_level = 5
|
|
32
|
+
|
|
33
|
+
fes = HCurl(mesh, order=4, dirichlet="outer", nograds = True)
|
|
34
|
+
|
|
35
|
+
# u and v refer to trial and test-functions in the definition of forms below
|
|
36
|
+
u = fes.TrialFunction()
|
|
37
|
+
v = fes.TestFunction()
|
|
38
|
+
|
|
39
|
+
mur = mesh.MaterialCF({ "core" : 1000 }, default=1)
|
|
40
|
+
mu0 = 1.257e-6
|
|
41
|
+
nu = 1/(mu0*mur)
|
|
42
|
+
|
|
43
|
+
a = BilinearForm(fes, symmetric=True)
|
|
44
|
+
a += nu*curl(u)*curl(v)*dx + 1e-6*nu*u*v*dx
|
|
45
|
+
|
|
46
|
+
c = Preconditioner(a, type="bddc")
|
|
47
|
+
# c = Preconditioner(a, type="multigrid", flags = { "smoother" : "block" } )
|
|
48
|
+
|
|
49
|
+
f = LinearForm(fes)
|
|
50
|
+
f += CoefficientFunction((y,0.05-x,0)) * v * dx("coil")
|
|
51
|
+
|
|
52
|
+
u = GridFunction(fes)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
with TaskManager():
|
|
56
|
+
a.Assemble()
|
|
57
|
+
f.Assemble()
|
|
58
|
+
solver = CGSolver(mat=a.mat, pre=c.mat)
|
|
59
|
+
u.vec.data = solver * f.vec
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
Draw (u.Deriv(), mesh, "B-field", draw_surf=False)
|