ngio 0.4.0a4__py3-none-any.whl → 0.4.0b1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,5 @@
1
1
  import math
2
+ from collections.abc import Mapping, Sequence
2
3
  from typing import TypeAlias, assert_never
3
4
  from warnings import warn
4
5
 
@@ -7,10 +8,20 @@ import numpy as np
7
8
  import zarr
8
9
  from pydantic import BaseModel, ConfigDict
9
10
 
11
+ from ngio.common._dimensions import Dimensions
12
+ from ngio.io_pipes._ops_slices_utils import compute_slice_chunks
13
+ from ngio.ome_zarr_meta.ngio_specs import Axis
10
14
  from ngio.utils import NgioValueError
11
15
 
16
+ SlicingInputType: TypeAlias = slice | Sequence[int] | int | None
12
17
  SlicingType: TypeAlias = slice | tuple[int, ...] | int
13
18
 
19
+ ##############################################################
20
+ #
21
+ # "SlicingOps" model
22
+ #
23
+ ##############################################################
24
+
14
25
 
15
26
  def _int_boundary_check(value: int, shape: int) -> int:
16
27
  """Ensure that the integer value is within the boundaries of the array shape."""
@@ -63,26 +74,41 @@ class SlicingOps(BaseModel):
63
74
 
64
75
  on_disk_axes: tuple[str, ...]
65
76
  on_disk_shape: tuple[int, ...]
66
- slicing_tuple: tuple[SlicingType, ...] | None = None
77
+ on_disk_chunks: tuple[int, ...]
78
+ slicing_tuple: tuple[SlicingType, ...]
67
79
  model_config = ConfigDict(extra="forbid", arbitrary_types_allowed=True)
68
80
 
69
81
  @property
70
- def normalized_slicing_tuple(self) -> None | tuple[SlicingType, ...]:
82
+ def normalized_slicing_tuple(self) -> tuple[SlicingType, ...]:
71
83
  """Normalize the slicing tuple to be within the array shape boundaries."""
72
- if self.slicing_tuple is not None:
73
- return _slicing_tuple_boundary_check(
74
- slicing_tuple=self.slicing_tuple,
75
- array_shape=self.on_disk_shape,
76
- )
77
- return None
84
+ return _slicing_tuple_boundary_check(
85
+ slicing_tuple=self.slicing_tuple,
86
+ array_shape=self.on_disk_shape,
87
+ )
88
+
89
+ @property
90
+ def slice_axes(self) -> tuple[str, ...]:
91
+ """The axes after slicing."""
92
+ in_memory_axes = []
93
+ for ax, sl in zip(self.on_disk_axes, self.slicing_tuple, strict=True):
94
+ if isinstance(sl, int):
95
+ continue
96
+ in_memory_axes.append(ax)
97
+ return tuple(in_memory_axes)
98
+
99
+ def slice_chunks(self) -> set[tuple[int, ...]]:
100
+ """The required to read or write the slice."""
101
+ return compute_slice_chunks(
102
+ shape=self.on_disk_shape,
103
+ chunks=self.on_disk_chunks,
104
+ slicing_tuple=self.normalized_slicing_tuple,
105
+ )
78
106
 
79
107
  def get(self, ax_name: str, normalize: bool = False) -> SlicingType:
80
108
  """Get the slicing tuple."""
81
109
  slicing_tuple = (
82
110
  self.slicing_tuple if not normalize else self.normalized_slicing_tuple
83
111
  )
84
- if slicing_tuple is None:
85
- return slice(None)
86
112
  if ax_name not in self.on_disk_axes:
87
113
  return slice(None)
88
114
  ax_index = self.on_disk_axes.index(ax_name)
@@ -126,12 +152,16 @@ def _check_tuple_in_slicing_tuple(
126
152
  return ax, first_tuple
127
153
 
128
154
 
155
+ ##############################################################
156
+ #
157
+ # Slicing implementations
158
+ #
159
+ ##############################################################
160
+
161
+
129
162
  def get_slice_as_numpy(zarr_array: zarr.Array, slicing_ops: SlicingOps) -> np.ndarray:
163
+ """Get a slice of a zarr array as a numpy array."""
130
164
  slicing_tuple = slicing_ops.normalized_slicing_tuple
131
- if slicing_tuple is None:
132
- # Base case, no slicing, return the full array
133
- return zarr_array[...]
134
-
135
165
  # Find if the is any tuple in the slicing tuple
136
166
  # If there is one we need to handle it differently
137
167
  ax, first_tuple = _check_tuple_in_slicing_tuple(slicing_tuple)
@@ -149,12 +179,9 @@ def get_slice_as_numpy(zarr_array: zarr.Array, slicing_ops: SlicingOps) -> np.nd
149
179
 
150
180
 
151
181
  def get_slice_as_dask(zarr_array: zarr.Array, slicing_ops: SlicingOps) -> da.Array:
182
+ """Get a slice of a zarr array as a dask array."""
152
183
  da_array = da.from_zarr(zarr_array)
153
184
  slicing_tuple = slicing_ops.normalized_slicing_tuple
154
- if slicing_tuple is None:
155
- # Base case, no slicing, return the full array
156
- return da_array[...]
157
-
158
185
  # Find if the is any tuple in the slicing tuple
159
186
  # If there is one we need to handle it differently
160
187
  ax, first_tuple = _check_tuple_in_slicing_tuple(slicing_tuple)
@@ -177,11 +204,6 @@ def set_slice_as_numpy(
177
204
  slicing_ops: SlicingOps,
178
205
  ) -> None:
179
206
  slice_tuple = slicing_ops.normalized_slicing_tuple
180
- if slice_tuple is None:
181
- # Base case, no slicing, write the full array
182
- zarr_array[...] = patch
183
- return
184
-
185
207
  ax, first_tuple = _check_tuple_in_slicing_tuple(slice_tuple)
186
208
  if ax is None:
187
209
  # Base case, no tuple in the slicing tuple
@@ -195,17 +217,31 @@ def set_slice_as_numpy(
195
217
  zarr_array[_sub_slice] = np.take(patch, indices=i, axis=ax)
196
218
 
197
219
 
220
+ def handle_int_set_as_dask(
221
+ patch: da.Array,
222
+ slicing_tuple: tuple[SlicingType, ...],
223
+ ) -> tuple[da.Array, tuple[SlicingType, ...]]:
224
+ """Handle the case where the slicing tuple contains integers.
225
+
226
+ In this case we need to expand the patch array to match the slicing tuple.
227
+ """
228
+ new_slicing_tuple = list(slicing_tuple)
229
+ for i, sl in enumerate(slicing_tuple):
230
+ if isinstance(sl, int):
231
+ patch = da.expand_dims(patch, axis=i)
232
+ new_slicing_tuple[i] = slice(sl, sl + 1)
233
+ return patch, tuple(new_slicing_tuple)
234
+
235
+
198
236
  def set_slice_as_dask(
199
237
  zarr_array: zarr.Array, patch: da.Array, slicing_ops: SlicingOps
200
238
  ) -> None:
201
239
  slice_tuple = slicing_ops.normalized_slicing_tuple
202
- if slice_tuple is None:
203
- # Base case, no slicing, write the full array
204
- da.to_zarr(arr=patch, url=zarr_array)
205
- return
206
240
  ax, first_tuple = _check_tuple_in_slicing_tuple(slice_tuple)
241
+ patch, slice_tuple = handle_int_set_as_dask(patch, slice_tuple)
207
242
  if ax is None:
208
243
  # Base case, no tuple in the slicing tuple
244
+ # assert False
209
245
  da.to_zarr(arr=patch, url=zarr_array, region=slice_tuple)
210
246
  return
211
247
 
@@ -216,3 +252,195 @@ def set_slice_as_dask(
216
252
  sub_patch = da.take(patch, indices=i, axis=ax)
217
253
  sub_patch = da.expand_dims(sub_patch, axis=ax)
218
254
  da.to_zarr(arr=sub_patch, url=zarr_array, region=_sub_slice)
255
+
256
+
257
+ ##############################################################
258
+ #
259
+ # Builder functions
260
+ #
261
+ ##############################################################
262
+
263
+
264
+ def _try_to_slice(value: Sequence[int]) -> slice | tuple[int, ...]:
265
+ """Try to convert a list of integers into a slice if they are contiguous.
266
+
267
+ - If the input is empty, return an empty tuple.
268
+ - If the input is sorted, and contains contiguous integers,
269
+ return a slice from the minimum to the maximum integer.
270
+ - Otherwise, return the input as a tuple.
271
+
272
+ This is useful for optimizing array slicing operations
273
+ by allowing the use of slices when possible, which can be more efficient.
274
+ """
275
+ if not value:
276
+ raise NgioValueError("Ngio does not support empty sequences as slice input.")
277
+
278
+ if not all(isinstance(i, int) for i in value):
279
+ _value = []
280
+ for i in value:
281
+ try:
282
+ _value.append(int(i))
283
+ except Exception as e:
284
+ raise NgioValueError(
285
+ f"Invalid value {i} of type {type(i)} in sequence {value}"
286
+ ) from e
287
+ value = _value
288
+ # If the input is not sorted, return it as a tuple
289
+ max_input = max(value)
290
+ min_input = min(value)
291
+ assert min_input >= 0, "Input must contain non-negative integers"
292
+
293
+ if sorted(value) == list(range(min_input, max_input + 1)):
294
+ return slice(min_input, max_input + 1)
295
+
296
+ return tuple(value)
297
+
298
+
299
+ def _remove_channel_slicing(
300
+ slicing_dict: dict[str, SlicingInputType],
301
+ dimensions: Dimensions,
302
+ ) -> dict[str, SlicingInputType]:
303
+ """This utility function removes the channel selection from the slice kwargs.
304
+
305
+ if ignore_channel_selection is True, it will remove the channel selection
306
+ regardless of the dimensions. If the ignore_channel_selection is False
307
+ it will fail.
308
+ """
309
+ if dimensions.is_multi_channels:
310
+ return slicing_dict
311
+
312
+ if "c" in slicing_dict:
313
+ slicing_dict.pop("c", None)
314
+ return slicing_dict
315
+
316
+
317
+ def _check_slicing_virtual_axes(slice_: SlicingInputType) -> bool:
318
+ """Check if the slice_ is compatible with virtual axes.
319
+
320
+ Virtual axes are axes that are not present in the actual data,
321
+ such as time or channel axes in some datasets.
322
+ So the only valid slices for virtual axes are:
323
+ - None: means all data along the axis
324
+ - 0: means the first element along the axis
325
+ - slice([0, None], [1, None])
326
+ """
327
+ if slice_ is None or slice_ == 0:
328
+ return True
329
+ if isinstance(slice_, slice):
330
+ if slice_.start is None and slice_.stop is None:
331
+ return True
332
+ if slice_.start == 0 and slice_.stop is None:
333
+ return True
334
+ if slice_.start is None and slice_.stop == 0:
335
+ return True
336
+ if slice_.start == 0 and slice_.stop == 1:
337
+ return True
338
+ if isinstance(slice_, Sequence):
339
+ if len(slice_) == 1 and slice_[0] == 0:
340
+ return True
341
+ return False
342
+
343
+
344
+ def _clean_slicing_dict(
345
+ dimensions: Dimensions,
346
+ slicing_dict: Mapping[str, SlicingInputType],
347
+ remove_channel_selection: bool = False,
348
+ ) -> dict[str, SlicingInputType]:
349
+ """Clean the slicing dict.
350
+
351
+ This function will:
352
+ - Validate that the axes in the slicing_dict are present in the dimensions.
353
+ - Make sure that the slicing_dict uses the on-disk axis names.
354
+ - Check for duplicate axis names in the slicing_dict.
355
+ - Clean up channel selection if the dimensions
356
+ """
357
+ clean_slicing_dict: dict[str, SlicingInputType] = {}
358
+ for axis_name, slice_ in slicing_dict.items():
359
+ axis = dimensions.axes_handler.get_axis(axis_name)
360
+ if axis is None:
361
+ # Virtual axes should be allowed to be selected
362
+ # Common use case is still allowing channel_selection
363
+ # When the zarr has not channel axis.
364
+ if not _check_slicing_virtual_axes(slice_):
365
+ raise NgioValueError(
366
+ f"Invalid axis selection:{axis_name}={slice_}. "
367
+ f"Not found on the on-disk axes {dimensions.axes}."
368
+ )
369
+ # Virtual axes can be safely ignored
370
+ continue
371
+ if axis.name in clean_slicing_dict:
372
+ raise NgioValueError(
373
+ f"Duplicate axis {axis.name} in slice kwargs. "
374
+ "Please provide unique axis names."
375
+ )
376
+ clean_slicing_dict[axis.name] = slice_
377
+
378
+ if remove_channel_selection:
379
+ clean_slicing_dict = _remove_channel_slicing(
380
+ slicing_dict=clean_slicing_dict, dimensions=dimensions
381
+ )
382
+ return clean_slicing_dict
383
+
384
+
385
+ def _normalize_slicing_tuple(
386
+ axis: Axis,
387
+ slicing_dict: dict[str, SlicingInputType],
388
+ ) -> SlicingType:
389
+ """Normalize the slicing dict to tuple.
390
+
391
+ Since the slicing dict can contain different types of values
392
+ We need to normalize them to more predictable types.
393
+ The output types are:
394
+ - slice
395
+ - int
396
+ - tuple of int (for non-contiguous selection)
397
+ """
398
+ axis_name = axis.name
399
+ if axis_name not in slicing_dict:
400
+ # If no slice is provided for the axis, use a full slice
401
+ return slice(None)
402
+
403
+ value = slicing_dict[axis_name]
404
+ if value is None:
405
+ return slice(None)
406
+ if isinstance(value, slice) or isinstance(value, int):
407
+ return value
408
+ elif isinstance(value, Sequence):
409
+ # If a contiguous sequence of integers is provided,
410
+ # convert it to a slice for simplicity.
411
+ # Alternatively, it will be converted to a tuple of ints
412
+ return _try_to_slice(value)
413
+
414
+ raise NgioValueError(
415
+ f"Invalid slice definition {value} of type {type(value)}. "
416
+ "Allowed types are: int, slice, sequence of int or None."
417
+ )
418
+
419
+
420
+ def build_slicing_ops(
421
+ *,
422
+ dimensions: Dimensions,
423
+ slicing_dict: dict[str, SlicingInputType] | None,
424
+ remove_channel_selection: bool = False,
425
+ ) -> SlicingOps:
426
+ """Assemble slices to be used to query the array."""
427
+ slicing_dict = slicing_dict or {}
428
+ _slicing_dict = _clean_slicing_dict(
429
+ dimensions=dimensions,
430
+ slicing_dict=slicing_dict,
431
+ remove_channel_selection=remove_channel_selection,
432
+ )
433
+
434
+ slicing_tuple = tuple(
435
+ _normalize_slicing_tuple(
436
+ axis=axis,
437
+ slicing_dict=_slicing_dict,
438
+ )
439
+ for axis in dimensions.axes_handler.axes
440
+ )
441
+ return SlicingOps(
442
+ on_disk_axes=dimensions.axes_handler.axes_names,
443
+ on_disk_shape=dimensions.shape,
444
+ on_disk_chunks=dimensions.chunks,
445
+ slicing_tuple=slicing_tuple,
446
+ )
@@ -0,0 +1,196 @@
1
+ from collections.abc import Iterable, Iterator
2
+ from itertools import product
3
+ from typing import TypeAlias, TypeVar
4
+
5
+ from ngio.utils import NgioValueError, ngio_logger
6
+
7
+ T = TypeVar("T")
8
+
9
+ ##############################################################
10
+ #
11
+ # Check slice overlaps
12
+ #
13
+ ##############################################################
14
+
15
+
16
+ def _pairs_stream(iterable: Iterable[T]) -> Iterator[tuple[T, T]]:
17
+ # Same as combinations but yields pairs as soon as they are generated
18
+ seen: list[T] = []
19
+ for a in iterable:
20
+ for b in seen:
21
+ yield b, a
22
+ seen.append(a)
23
+
24
+
25
+ SlicingType: TypeAlias = slice | tuple[int, ...] | int
26
+
27
+
28
+ def check_elem_intersection(s1: SlicingType, s2: SlicingType) -> bool:
29
+ """Compare if two SlicingType elements intersect.
30
+
31
+ If they are a slice, check if they overlap.
32
+ If they are integers, check if they are equal.
33
+ If they are tuples, check if they have any common elements.
34
+ """
35
+ if not isinstance(s1, type(s2)):
36
+ raise NgioValueError(
37
+ f"Slices must be of the same type. Got {type(s1)} and {type(s2)}"
38
+ )
39
+
40
+ if isinstance(s1, slice) and isinstance(s2, slice):
41
+ # Handle slice objects
42
+ start1, stop1, step1 = s1.start or 0, s1.stop or float("inf"), s1.step or 1
43
+ start2, stop2, step2 = s2.start or 0, s2.stop or float("inf"), s2.step or 1
44
+
45
+ if step1 is not None and step2 != 1:
46
+ raise NotImplementedError(
47
+ "Intersection for slices with step != 1 is not implemented"
48
+ )
49
+
50
+ if step2 is not None and step1 != 1:
51
+ raise NotImplementedError(
52
+ "Intersection for slices with step != 1 is not implemented"
53
+ )
54
+
55
+ return not (stop1 <= start2 or stop2 <= start1)
56
+ elif isinstance(s1, int) and isinstance(s2, int):
57
+ # Handle integer indices
58
+ return s1 == s2
59
+ elif isinstance(s1, tuple) and isinstance(s2, tuple):
60
+ if set(s1) & set(s2):
61
+ return True
62
+ return False
63
+ else:
64
+ raise TypeError("Unsupported slice type")
65
+
66
+
67
+ def check_slicing_tuple_intersection(
68
+ s1: tuple[SlicingType, ...], s2: tuple[SlicingType, ...]
69
+ ) -> bool:
70
+ """For a tuple of SlicingType, check if all elements intersect."""
71
+ if len(s1) != len(s2):
72
+ raise NgioValueError("Slices must have the same length")
73
+ return all(check_elem_intersection(a, b) for a, b in zip(s1, s2, strict=True))
74
+
75
+
76
+ def check_if_regions_overlap(slices: Iterable[tuple[SlicingType, ...]]) -> bool:
77
+ """Check for overlaps in a list of slicing tuples using brute-force method.
78
+
79
+ This is O(n^2) and not efficient for large lists.
80
+ Returns True if any overlaps are found.
81
+ """
82
+ for it, (si, sj) in enumerate(_pairs_stream(slices)):
83
+ overalap = check_slicing_tuple_intersection(si, sj)
84
+ if overalap:
85
+ return True
86
+
87
+ if it == 10_000:
88
+ ngio_logger.warning(
89
+ "Performance Warning check_for_overlaps is O(n^2) and may be slow for "
90
+ "large numbers of regions."
91
+ )
92
+ return False
93
+
94
+
95
+ ##############################################################
96
+ #
97
+ # Check chunk overlaps
98
+ #
99
+ ##############################################################
100
+
101
+
102
+ def _normalize_slice(slc: slice, size: int) -> tuple[int, int]:
103
+ if slc.step not in (None, 1):
104
+ raise NgioValueError(f"Only step=1 slices supported, got step={slc.step}")
105
+ start = 0 if slc.start is None else slc.start
106
+ stop = size if slc.stop is None else slc.stop
107
+ if start < 0 or stop < 0:
108
+ raise NgioValueError("Negative slice bounds are not supported")
109
+ # clamp to [0, size]
110
+ start = min(start, size)
111
+ stop = min(stop, size)
112
+ if start > stop:
113
+ # empty selection
114
+ return (0, 0)
115
+ return start, stop
116
+
117
+
118
+ def _chunk_indices_for_axis(sel: SlicingType, size: int, csize: int) -> list[int]:
119
+ """From a selection for a single axis, return the list chunk indices touched."""
120
+ if isinstance(sel, slice):
121
+ start, stop = _normalize_slice(sel, size)
122
+ if start >= stop: # empty
123
+ return []
124
+ first = start // csize
125
+ last = (stop - 1) // csize
126
+ return list(range(first, last + 1))
127
+
128
+ if isinstance(sel, int):
129
+ if sel < 0 or sel >= size:
130
+ raise IndexError(f"index {sel} out of bounds for axis of size {size}")
131
+ return [sel // csize]
132
+
133
+ if isinstance(sel, tuple):
134
+ if not sel:
135
+ return []
136
+ chunks_hit = {}
137
+ for v in sel:
138
+ if not isinstance(v, int):
139
+ raise TypeError("Only integers allowed inside tuple selections")
140
+ if v < 0 or v >= size:
141
+ raise IndexError(f"index {v} out of bounds for axis of size {size}")
142
+ chunks_hit[v // csize] = None
143
+ return sorted(chunks_hit.keys())
144
+
145
+ raise TypeError(f"Unsupported index type: {type(sel)!r}")
146
+
147
+
148
+ def compute_slice_chunks(
149
+ shape: tuple[int, ...],
150
+ chunks: tuple[int, ...],
151
+ slicing_tuple: tuple[SlicingType, ...],
152
+ ) -> set[tuple[int, ...]]:
153
+ """Compute the set of chunk coordinates touched by `slicing_tuple`.
154
+
155
+ Args:
156
+ shape: overall array shape (s1, s2, ...)
157
+ chunks: chunk shape (c1, c2, ...)
158
+ slicing_tuple: tuple of slices, ints, or tuples of ints
159
+ """
160
+ if len(slicing_tuple) != len(shape):
161
+ raise NgioValueError(
162
+ f"key must have {len(shape)} items, got {len(slicing_tuple)}"
163
+ )
164
+
165
+ per_axis_chunks: list[list[int]] = [
166
+ _chunk_indices_for_axis(sel, size, csize)
167
+ for sel, size, csize in zip(slicing_tuple, shape, chunks, strict=True)
168
+ ]
169
+
170
+ # If any axis yields no chunks, the overall selection is empty.
171
+ if any(len(ax) == 0 for ax in per_axis_chunks):
172
+ return set()
173
+
174
+ return {tuple(idx) for idx in product(*per_axis_chunks)}
175
+
176
+
177
+ def check_if_chunks_overlap(
178
+ slices: Iterable[tuple[SlicingType, ...]],
179
+ shape: tuple[int, ...],
180
+ chunks: tuple[int, ...],
181
+ ) -> bool:
182
+ """Check for overlaps in a list of slicing tuples using brute-force method.
183
+
184
+ This is O(n^2) and not efficient for large lists.
185
+ Returns True if any overlaps are found.
186
+ """
187
+ slices_chunks = (compute_slice_chunks(shape, chunks, si) for si in slices)
188
+ for it, (si, sj) in enumerate(_pairs_stream(slices_chunks)):
189
+ if si & sj:
190
+ return True
191
+ if it == 10_000:
192
+ ngio_logger.warning(
193
+ "Performance Warning check_for_chunks_overlaps is O(n^2) and may be "
194
+ "slow for large numbers of regions."
195
+ )
196
+ return False
@@ -4,8 +4,8 @@ from typing import Protocol
4
4
  import dask.array as da
5
5
  import numpy as np
6
6
 
7
+ from ngio.io_pipes._ops_axes import AxesOps
7
8
  from ngio.io_pipes._ops_slices import SlicingOps
8
- from ngio.ome_zarr_meta.ngio_specs._axes import AxesOps
9
9
 
10
10
 
11
11
  class TransformProtocol(Protocol):
@@ -10,8 +10,8 @@ from ngio.common._zoom import (
10
10
  dask_zoom,
11
11
  numpy_zoom,
12
12
  )
13
+ from ngio.io_pipes._ops_axes import AxesOps
13
14
  from ngio.io_pipes._ops_slices import SlicingOps
14
- from ngio.ome_zarr_meta import AxesOps
15
15
 
16
16
 
17
17
  class BaseZoomTransform:
@@ -55,10 +55,10 @@ class BaseZoomTransform:
55
55
  axes_ops: AxesOps,
56
56
  slicing_ops: SlicingOps,
57
57
  ) -> tuple[int, ...]:
58
- assert len(array_shape) == len(axes_ops.in_memory_axes)
58
+ assert len(array_shape) == len(axes_ops.output_axes)
59
59
 
60
60
  target_shape = []
61
- for shape, ax_name in zip(array_shape, axes_ops.in_memory_axes, strict=True):
61
+ for shape, ax_name in zip(array_shape, axes_ops.output_axes, strict=True):
62
62
  ax_type = self._input_dimensions.axes_handler.get_axis(ax_name)
63
63
  if ax_type is not None and ax_type.axis_type == "channel":
64
64
  # Do not scale channel axis
@@ -81,10 +81,10 @@ class BaseZoomTransform:
81
81
  axes_ops: AxesOps,
82
82
  slicing_ops: SlicingOps,
83
83
  ) -> tuple[int, ...]:
84
- assert len(array_shape) == len(axes_ops.in_memory_axes)
84
+ assert len(array_shape) == len(axes_ops.output_axes)
85
85
 
86
86
  target_shape = []
87
- for shape, ax_name in zip(array_shape, axes_ops.in_memory_axes, strict=True):
87
+ for shape, ax_name in zip(array_shape, axes_ops.output_axes, strict=True):
88
88
  ax_type = self._input_dimensions.axes_handler.get_axis(ax_name)
89
89
  if ax_type is not None and ax_type.axis_type == "channel":
90
90
  # Do not scale channel axis
@@ -14,7 +14,6 @@ from ngio.ome_zarr_meta._meta_handlers import (
14
14
  )
15
15
  from ngio.ome_zarr_meta.ngio_specs import (
16
16
  AxesHandler,
17
- AxesOps,
18
17
  Dataset,
19
18
  ImageInWellPath,
20
19
  NgffVersions,
@@ -29,7 +28,6 @@ from ngio.ome_zarr_meta.ngio_specs import (
29
28
 
30
29
  __all__ = [
31
30
  "AxesHandler",
32
- "AxesOps",
33
31
  "Dataset",
34
32
  "ImageInWellPath",
35
33
  "ImageMetaHandler",
@@ -8,7 +8,6 @@ This models can be tr
8
8
 
9
9
  from ngio.ome_zarr_meta.ngio_specs._axes import (
10
10
  AxesHandler,
11
- AxesOps,
12
11
  AxesSetup,
13
12
  Axis,
14
13
  AxisType,
@@ -46,7 +45,6 @@ from ngio.ome_zarr_meta.ngio_specs._pixel_size import PixelSize
46
45
 
47
46
  __all__ = [
48
47
  "AxesHandler",
49
- "AxesOps",
50
48
  "AxesSetup",
51
49
  "Axis",
52
50
  "AxisType",