ngio 0.1.6__py3-none-any.whl → 0.2.0a2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (84) hide show
  1. ngio/__init__.py +31 -5
  2. ngio/common/__init__.py +44 -0
  3. ngio/common/_array_pipe.py +160 -0
  4. ngio/common/_axes_transforms.py +63 -0
  5. ngio/common/_common_types.py +5 -0
  6. ngio/common/_dimensions.py +113 -0
  7. ngio/common/_pyramid.py +223 -0
  8. ngio/{core/roi.py → common/_roi.py} +22 -23
  9. ngio/common/_slicer.py +97 -0
  10. ngio/{pipes/_zoom_utils.py → common/_zoom.py} +2 -78
  11. ngio/hcs/__init__.py +60 -0
  12. ngio/images/__init__.py +23 -0
  13. ngio/images/abstract_image.py +240 -0
  14. ngio/images/create.py +251 -0
  15. ngio/images/image.py +389 -0
  16. ngio/images/label.py +236 -0
  17. ngio/images/omezarr_container.py +535 -0
  18. ngio/ome_zarr_meta/__init__.py +35 -0
  19. ngio/ome_zarr_meta/_generic_handlers.py +320 -0
  20. ngio/ome_zarr_meta/_meta_handlers.py +142 -0
  21. ngio/ome_zarr_meta/ngio_specs/__init__.py +63 -0
  22. ngio/ome_zarr_meta/ngio_specs/_axes.py +481 -0
  23. ngio/ome_zarr_meta/ngio_specs/_channels.py +378 -0
  24. ngio/ome_zarr_meta/ngio_specs/_dataset.py +134 -0
  25. ngio/ome_zarr_meta/ngio_specs/_ngio_hcs.py +5 -0
  26. ngio/ome_zarr_meta/ngio_specs/_ngio_image.py +434 -0
  27. ngio/ome_zarr_meta/ngio_specs/_pixel_size.py +84 -0
  28. ngio/ome_zarr_meta/v04/__init__.py +11 -0
  29. ngio/ome_zarr_meta/v04/_meta_handlers.py +54 -0
  30. ngio/ome_zarr_meta/v04/_v04_spec_utils.py +412 -0
  31. ngio/tables/__init__.py +21 -5
  32. ngio/tables/_validators.py +192 -0
  33. ngio/tables/backends/__init__.py +8 -0
  34. ngio/tables/backends/_abstract_backend.py +71 -0
  35. ngio/tables/backends/_anndata_utils.py +194 -0
  36. ngio/tables/backends/_anndata_v1.py +75 -0
  37. ngio/tables/backends/_json_v1.py +56 -0
  38. ngio/tables/backends/_table_backends.py +102 -0
  39. ngio/tables/tables_container.py +300 -0
  40. ngio/tables/v1/__init__.py +6 -5
  41. ngio/tables/v1/_feature_table.py +161 -0
  42. ngio/tables/v1/_generic_table.py +99 -182
  43. ngio/tables/v1/_masking_roi_table.py +175 -0
  44. ngio/tables/v1/_roi_table.py +226 -0
  45. ngio/utils/__init__.py +23 -10
  46. ngio/utils/_datasets.py +51 -0
  47. ngio/utils/_errors.py +10 -4
  48. ngio/utils/_zarr_utils.py +378 -0
  49. {ngio-0.1.6.dist-info → ngio-0.2.0a2.dist-info}/METADATA +18 -39
  50. ngio-0.2.0a2.dist-info/RECORD +53 -0
  51. ngio/core/__init__.py +0 -7
  52. ngio/core/dimensions.py +0 -122
  53. ngio/core/image_handler.py +0 -228
  54. ngio/core/image_like_handler.py +0 -549
  55. ngio/core/label_handler.py +0 -410
  56. ngio/core/ngff_image.py +0 -387
  57. ngio/core/utils.py +0 -287
  58. ngio/io/__init__.py +0 -19
  59. ngio/io/_zarr.py +0 -88
  60. ngio/io/_zarr_array_utils.py +0 -0
  61. ngio/io/_zarr_group_utils.py +0 -60
  62. ngio/iterators/__init__.py +0 -1
  63. ngio/ngff_meta/__init__.py +0 -27
  64. ngio/ngff_meta/fractal_image_meta.py +0 -1267
  65. ngio/ngff_meta/meta_handler.py +0 -92
  66. ngio/ngff_meta/utils.py +0 -235
  67. ngio/ngff_meta/v04/__init__.py +0 -6
  68. ngio/ngff_meta/v04/specs.py +0 -158
  69. ngio/ngff_meta/v04/zarr_utils.py +0 -376
  70. ngio/pipes/__init__.py +0 -7
  71. ngio/pipes/_slicer_transforms.py +0 -176
  72. ngio/pipes/_transforms.py +0 -33
  73. ngio/pipes/data_pipe.py +0 -52
  74. ngio/tables/_ad_reader.py +0 -80
  75. ngio/tables/_utils.py +0 -301
  76. ngio/tables/tables_group.py +0 -252
  77. ngio/tables/v1/feature_tables.py +0 -182
  78. ngio/tables/v1/masking_roi_tables.py +0 -243
  79. ngio/tables/v1/roi_tables.py +0 -285
  80. ngio/utils/_common_types.py +0 -5
  81. ngio/utils/_pydantic_utils.py +0 -52
  82. ngio-0.1.6.dist-info/RECORD +0 -44
  83. {ngio-0.1.6.dist-info → ngio-0.2.0a2.dist-info}/WHEEL +0 -0
  84. {ngio-0.1.6.dist-info → ngio-0.2.0a2.dist-info}/licenses/LICENSE +0 -0
ngio/images/create.py ADDED
@@ -0,0 +1,251 @@
1
+ """Utility functions for working with OME-Zarr images."""
2
+
3
+ from collections.abc import Collection
4
+ from typing import TypeVar
5
+
6
+ from ngio.common._pyramid import init_empty_pyramid
7
+ from ngio.ome_zarr_meta import (
8
+ ImplementedImageMetaHandlers,
9
+ ImplementedLabelMetaHandlers,
10
+ NgioImageMeta,
11
+ NgioLabelMeta,
12
+ PixelSize,
13
+ )
14
+ from ngio.ome_zarr_meta.ngio_specs import (
15
+ SpaceUnits,
16
+ TimeUnits,
17
+ canonical_axes_order,
18
+ canonical_label_axes_order,
19
+ )
20
+ from ngio.utils import StoreOrGroup, ZarrGroupHandler
21
+
22
+ _image_or_label_meta = TypeVar("_image_or_label_meta", NgioImageMeta, NgioLabelMeta)
23
+
24
+
25
+ def _init_generic_meta(
26
+ meta_type: type[_image_or_label_meta],
27
+ xy_pixelsize: float,
28
+ axes_names: Collection[str],
29
+ z_spacing: float = 1.0,
30
+ time_spacing: float = 1.0,
31
+ levels: int | list[str] = 5,
32
+ xy_scaling_factor: float = 2.0,
33
+ z_scaling_factor: float = 1.0,
34
+ space_unit: SpaceUnits | str | None = None,
35
+ time_unit: TimeUnits | str | None = None,
36
+ name: str | None = None,
37
+ version: str = "0.4",
38
+ ) -> tuple[_image_or_label_meta, list[float]]:
39
+ """Initialize the metadata for an image or label."""
40
+ scaling_factors = []
41
+ for ax in axes_names:
42
+ if ax == "z":
43
+ scaling_factors.append(z_scaling_factor)
44
+ elif ax in ["x", "y"]:
45
+ scaling_factors.append(xy_scaling_factor)
46
+ else:
47
+ scaling_factors.append(1.0)
48
+
49
+ if space_unit is None:
50
+ space_unit = SpaceUnits.micrometer
51
+ elif isinstance(space_unit, str):
52
+ space_unit = SpaceUnits(space_unit)
53
+ elif not isinstance(space_unit, SpaceUnits):
54
+ raise ValueError(f"space_unit can not be {type(space_unit)}.")
55
+
56
+ if time_unit is None:
57
+ time_unit = TimeUnits.seconds
58
+ elif isinstance(time_unit, str):
59
+ time_unit = TimeUnits(time_unit)
60
+ elif not isinstance(time_unit, TimeUnits):
61
+ raise ValueError(f"time_units can not be {type(time_unit)}.")
62
+
63
+ pixel_sizes = PixelSize(
64
+ x=xy_pixelsize,
65
+ y=xy_pixelsize,
66
+ z=z_spacing,
67
+ t=time_spacing,
68
+ space_unit=space_unit,
69
+ time_unit=time_unit,
70
+ )
71
+
72
+ meta = meta_type.default_init(
73
+ name=name,
74
+ levels=levels,
75
+ axes_names=axes_names,
76
+ pixel_size=pixel_sizes,
77
+ scaling_factors=scaling_factors,
78
+ version=version,
79
+ )
80
+ return meta, scaling_factors
81
+
82
+
83
+ def _create_empty_label(
84
+ store: StoreOrGroup,
85
+ shape: Collection[int],
86
+ xy_pixelsize: float,
87
+ z_spacing: float = 1.0,
88
+ time_spacing: float = 1.0,
89
+ levels: int | list[str] = 5,
90
+ xy_scaling_factor: float = 2.0,
91
+ z_scaling_factor: float = 1.0,
92
+ space_unit: SpaceUnits | str | None = None,
93
+ time_unit: TimeUnits | str | None = None,
94
+ axes_names: Collection[str] | None = None,
95
+ name: str | None = None,
96
+ chunks: Collection[int] | None = None,
97
+ dtype: str = "uint16",
98
+ overwrite: bool = False,
99
+ version: str = "0.4",
100
+ ) -> ZarrGroupHandler:
101
+ """Create an empty label with the given shape and metadata.
102
+
103
+ Args:
104
+ store (StoreOrGroup): The Zarr store or group to create the image in.
105
+ shape (Collection[int]): The shape of the image.
106
+ xy_pixelsize (float): The pixel size in x and y dimensions.
107
+ z_spacing (float, optional): The spacing between z slices. Defaults to 1.0.
108
+ time_spacing (float, optional): The spacing between time points.
109
+ Defaults to 1.0.
110
+ levels (int | list[str], optional): The number of levels in the pyramid or a
111
+ list of level names. Defaults to 5.
112
+ xy_scaling_factor (float, optional): The down-scaling factor in x and y
113
+ dimensions. Defaults to 2.0.
114
+ z_scaling_factor (float, optional): The down-scaling factor in z dimension.
115
+ Defaults to 1.0.
116
+ space_unit (SpaceUnits | str | None, optional): The unit of space. Defaults to
117
+ None.
118
+ time_unit (TimeUnits | str | None, optional): The unit of time. Defaults to
119
+ None.
120
+ axes_names (Collection[str] | None, optional): The names of the axes.
121
+ If None the canonical names are used. Defaults to None.
122
+ name (str | None, optional): The name of the image. Defaults to None.
123
+ chunks (Collection[int] | None, optional): The chunk shape. If None the shape
124
+ is used. Defaults to None.
125
+ dtype (str, optional): The data type of the image. Defaults to "uint16".
126
+ overwrite (bool, optional): Whether to overwrite an existing image.
127
+ Defaults to True.
128
+ version (str, optional): The version of the OME-Zarr specification.
129
+ Defaults to "0.4".
130
+
131
+ """
132
+ if axes_names is None:
133
+ axes_names = canonical_label_axes_order()[-len(shape) :]
134
+
135
+ meta, scaling_factors = _init_generic_meta(
136
+ meta_type=NgioLabelMeta,
137
+ xy_pixelsize=xy_pixelsize,
138
+ z_spacing=z_spacing,
139
+ time_spacing=time_spacing,
140
+ levels=levels,
141
+ xy_scaling_factor=xy_scaling_factor,
142
+ z_scaling_factor=z_scaling_factor,
143
+ space_unit=space_unit,
144
+ time_unit=time_unit,
145
+ axes_names=axes_names,
146
+ name=name,
147
+ version=version,
148
+ )
149
+
150
+ mode = "w" if overwrite else "w-"
151
+ group_handler = ZarrGroupHandler(store=store, mode=mode, cache=False)
152
+ image_handler = ImplementedLabelMetaHandlers().get_handler(
153
+ version=version, group_handler=group_handler
154
+ )
155
+ image_handler.write_meta(meta)
156
+
157
+ init_empty_pyramid(
158
+ store=store,
159
+ paths=meta.paths,
160
+ scaling_factors=scaling_factors,
161
+ ref_shape=shape,
162
+ chunks=chunks,
163
+ dtype=dtype,
164
+ mode="a",
165
+ )
166
+ return group_handler
167
+
168
+
169
+ def _create_empty_image(
170
+ store: StoreOrGroup,
171
+ shape: Collection[int],
172
+ xy_pixelsize: float,
173
+ z_spacing: float = 1.0,
174
+ time_spacing: float = 1.0,
175
+ levels: int | list[str] = 5,
176
+ xy_scaling_factor: float = 2,
177
+ z_scaling_factor: float = 1.0,
178
+ space_unit: SpaceUnits | str | None = None,
179
+ time_unit: TimeUnits | str | None = None,
180
+ axes_names: Collection[str] | None = None,
181
+ name: str | None = None,
182
+ chunks: Collection[int] | None = None,
183
+ dtype: str = "uint16",
184
+ overwrite: bool = False,
185
+ version: str = "0.4",
186
+ ) -> ZarrGroupHandler:
187
+ """Create an empty OME-Zarr image with the given shape and metadata.
188
+
189
+ Args:
190
+ store (StoreOrGroup): The Zarr store or group to create the image in.
191
+ shape (Collection[int]): The shape of the image.
192
+ xy_pixelsize (float): The pixel size in x and y dimensions.
193
+ z_spacing (float, optional): The spacing between z slices. Defaults to 1.0.
194
+ time_spacing (float, optional): The spacing between time points.
195
+ Defaults to 1.0.
196
+ levels (int | list[str], optional): The number of levels in the pyramid or a
197
+ list of level names. Defaults to 5.
198
+ xy_scaling_factor (float, optional): The down-scaling factor in x and y
199
+ dimensions. Defaults to 2.0.
200
+ z_scaling_factor (float, optional): The down-scaling factor in z dimension.
201
+ Defaults to 1.0.
202
+ space_unit (SpaceUnits | str | None, optional): The unit of space. Defaults to
203
+ None.
204
+ time_unit (TimeUnits | str | None, optional): The unit of time. Defaults to
205
+ None.
206
+ axes_names (Collection[str] | None, optional): The names of the axes.
207
+ If None the canonical names are used. Defaults to None.
208
+ name (str | None, optional): The name of the image. Defaults to None.
209
+ chunks (Collection[int] | None, optional): The chunk shape. If None the shape
210
+ is used. Defaults to None.
211
+ dtype (str, optional): The data type of the image. Defaults to "uint16".
212
+ overwrite (bool, optional): Whether to overwrite an existing image.
213
+ Defaults to True.
214
+ version (str, optional): The version of the OME-Zarr specification.
215
+ Defaults to "0.4".
216
+
217
+ """
218
+ if axes_names is None:
219
+ axes_names = canonical_axes_order()[-len(shape) :]
220
+
221
+ meta, scaling_factors = _init_generic_meta(
222
+ meta_type=NgioImageMeta,
223
+ xy_pixelsize=xy_pixelsize,
224
+ z_spacing=z_spacing,
225
+ time_spacing=time_spacing,
226
+ levels=levels,
227
+ xy_scaling_factor=xy_scaling_factor,
228
+ z_scaling_factor=z_scaling_factor,
229
+ space_unit=space_unit,
230
+ time_unit=time_unit,
231
+ axes_names=axes_names,
232
+ name=name,
233
+ version=version,
234
+ )
235
+ mode = "w" if overwrite else "w-"
236
+ group_handler = ZarrGroupHandler(store=store, mode=mode, cache=False)
237
+ image_handler = ImplementedImageMetaHandlers().get_handler(
238
+ version=version, group_handler=group_handler
239
+ )
240
+ image_handler.write_meta(meta)
241
+
242
+ init_empty_pyramid(
243
+ store=store,
244
+ paths=meta.paths,
245
+ scaling_factors=scaling_factors,
246
+ ref_shape=shape,
247
+ chunks=chunks,
248
+ dtype=dtype,
249
+ mode="a",
250
+ )
251
+ return group_handler
ngio/images/image.py ADDED
@@ -0,0 +1,389 @@
1
+ """Generic class to handle Image-like data in a OME-NGFF file."""
2
+
3
+ from collections.abc import Collection
4
+ from typing import Literal
5
+
6
+ from dask import array as da
7
+
8
+ from ngio.common import Dimensions
9
+ from ngio.images.abstract_image import AbstractImage, consolidate_image
10
+ from ngio.images.create import _create_empty_image
11
+ from ngio.ome_zarr_meta import (
12
+ ImageMetaHandler,
13
+ ImplementedImageMetaHandlers,
14
+ NgioImageMeta,
15
+ PixelSize,
16
+ )
17
+ from ngio.ome_zarr_meta.ngio_specs import Channel, ChannelsMeta, ChannelVisualisation
18
+ from ngio.utils import (
19
+ NgioValidationError,
20
+ StoreOrGroup,
21
+ ZarrGroupHandler,
22
+ )
23
+
24
+
25
+ def _check_channel_meta(meta: NgioImageMeta, dimension: Dimensions) -> ChannelsMeta:
26
+ """Check the channel metadata."""
27
+ c_dim = dimension.get("c", strict=False)
28
+ c_dim = 1 if c_dim is None else c_dim
29
+
30
+ if meta.channels_meta is None:
31
+ return ChannelsMeta.default_init(labels=c_dim)
32
+
33
+ if len(meta.channels) != c_dim:
34
+ raise NgioValidationError(
35
+ "The number of channels does not match the image. "
36
+ f"Expected {len(meta.channels)} channels, got {c_dim}."
37
+ )
38
+
39
+ return meta.channels_meta
40
+
41
+
42
+ class Image(AbstractImage[ImageMetaHandler]):
43
+ """A class to handle a single image (or level) in an OME-Zarr image.
44
+
45
+ This class is meant to be subclassed by specific image types.
46
+ """
47
+
48
+ def __init__(
49
+ self,
50
+ group_handler: ZarrGroupHandler,
51
+ path: str,
52
+ meta_handler: ImageMetaHandler | None,
53
+ ) -> None:
54
+ """Initialize the Image at a single level.
55
+
56
+ Args:
57
+ group_handler: The Zarr group handler.
58
+ path: The path to the image in the omezarr file.
59
+ meta_handler: The image metadata handler.
60
+
61
+ """
62
+ if meta_handler is None:
63
+ meta_handler = ImplementedImageMetaHandlers().find_meta_handler(
64
+ group_handler
65
+ )
66
+ super().__init__(
67
+ group_handler=group_handler, path=path, meta_handler=meta_handler
68
+ )
69
+ self._channels_meta = _check_channel_meta(self.meta, self.dimensions)
70
+
71
+ @property
72
+ def meta(self) -> NgioImageMeta:
73
+ """Return the metadata."""
74
+ return self._meta_handler.meta
75
+
76
+ @property
77
+ def channel_labels(self) -> list[str]:
78
+ """Return the channels of the image."""
79
+ channel_labels = []
80
+ for c in self._channels_meta.channels:
81
+ channel_labels.append(c.label)
82
+ return channel_labels
83
+
84
+ @property
85
+ def wavelength_ids(self) -> list[str | None]:
86
+ """Return the list of wavelength of the image."""
87
+ wavelength_ids = []
88
+ for c in self._channels_meta.channels:
89
+ wavelength_ids.append(c.wavelength_id)
90
+ return wavelength_ids
91
+
92
+ @property
93
+ def num_channels(self) -> int:
94
+ """Return the number of channels."""
95
+ return len(self._channels_meta.channels)
96
+
97
+ def consolidate(
98
+ self,
99
+ order: Literal[0, 1, 2] = 1,
100
+ mode: Literal["dask", "numpy", "coarsen"] = "dask",
101
+ ) -> None:
102
+ """Consolidate the label on disk."""
103
+ consolidate_image(self, order=order, mode=mode)
104
+
105
+
106
+ class ImagesContainer:
107
+ """A class to handle the /labels group in an OME-NGFF file."""
108
+
109
+ def __init__(self, group_handler: ZarrGroupHandler) -> None:
110
+ """Initialize the LabelGroupHandler."""
111
+ self._group_handler = group_handler
112
+ self._meta_handler = ImplementedImageMetaHandlers().find_meta_handler(
113
+ group_handler
114
+ )
115
+
116
+ @property
117
+ def meta(self) -> NgioImageMeta:
118
+ """Return the metadata."""
119
+ return self._meta_handler.meta
120
+
121
+ @property
122
+ def levels(self) -> int:
123
+ """Return the number of levels in the image."""
124
+ return self._meta_handler.meta.levels
125
+
126
+ @property
127
+ def levels_paths(self) -> list[str]:
128
+ """Return the paths of the levels in the image."""
129
+ return self._meta_handler.meta.paths
130
+
131
+ @property
132
+ def num_channels(self) -> int:
133
+ """Return the number of channels."""
134
+ image = self.get()
135
+ return image.num_channels
136
+
137
+ @property
138
+ def channel_labels(self) -> list[str]:
139
+ """Return the channels of the image."""
140
+ image = self.get()
141
+ return image.channel_labels
142
+
143
+ @property
144
+ def wavelength_ids(self) -> list[str | None]:
145
+ """Return the wavelength of the image."""
146
+ image = self.get()
147
+ return image.wavelength_ids
148
+
149
+ def initialize_channel_meta(
150
+ self,
151
+ labels: Collection[str] | int | None = None,
152
+ wavelength_id: Collection[str] | None = None,
153
+ percentiles: tuple[float, float] | None = None,
154
+ colors: Collection[str] | None = None,
155
+ active: Collection[bool] | None = None,
156
+ **omero_kwargs: dict,
157
+ ) -> None:
158
+ """Create a ChannelsMeta object with the default unit.
159
+
160
+ Args:
161
+ labels(Collection[str] | int): The list of channels names in the image.
162
+ If an integer is provided, the channels will be named "channel_i".
163
+ wavelength_id(Collection[str] | None): The wavelength ID of the channel.
164
+ If None, the wavelength ID will be the same as the channel name.
165
+ percentiles(tuple[float, float] | None): The start and end percentiles
166
+ for each channel. If None, the percentiles will not be computed.
167
+ colors(Collection[str, NgioColors] | None): The list of colors for the
168
+ channels. If None, the colors will be random.
169
+ active (Collection[bool] | None):active(bool): Whether the channel should
170
+ be shown by default.
171
+ omero_kwargs(dict): Extra fields to store in the omero attributes.
172
+ """
173
+ ref = self.get()
174
+
175
+ if percentiles is not None:
176
+ start, end = compute_image_percentile(
177
+ ref, start_percentile=percentiles[0], end_percentile=percentiles[1]
178
+ )
179
+ else:
180
+ start, end = None, None
181
+
182
+ if labels is None:
183
+ labels = ref.num_channels
184
+
185
+ channel_meta = ChannelsMeta.default_init(
186
+ labels=labels,
187
+ wavelength_id=wavelength_id,
188
+ colors=colors,
189
+ start=start,
190
+ end=end,
191
+ active=active,
192
+ data_type=ref.dtype,
193
+ **omero_kwargs,
194
+ )
195
+
196
+ meta = self.meta
197
+ meta.set_channels_meta(channel_meta)
198
+ self._meta_handler.write_meta(meta)
199
+
200
+ def update_percentiles(
201
+ self,
202
+ start_percentile: float = 0.1,
203
+ end_percentile: float = 99.9,
204
+ ) -> None:
205
+ """Update the percentiles of the channels."""
206
+ if self.meta._channels_meta is None:
207
+ raise NgioValidationError("The channels meta is not initialized.")
208
+
209
+ image = self.get()
210
+ starts, ends = compute_image_percentile(
211
+ image, start_percentile=start_percentile, end_percentile=end_percentile
212
+ )
213
+
214
+ channels = []
215
+ for c, channel in enumerate(self.meta._channels_meta.channels):
216
+ new_v = ChannelVisualisation(
217
+ start=starts[c],
218
+ end=ends[c],
219
+ **channel.channel_visualisation.model_dump(exclude={"start", "end"}),
220
+ )
221
+ new_c = Channel(
222
+ channel_visualisation=new_v,
223
+ **channel.model_dump(exclude={"channel_visualisation"}),
224
+ )
225
+ channels.append(new_c)
226
+
227
+ new_meta = ChannelsMeta(channels=channels)
228
+
229
+ meta = self.meta
230
+ meta.set_channels_meta(new_meta)
231
+ self._meta_handler.write_meta(meta)
232
+
233
+ def derive(
234
+ self,
235
+ store: StoreOrGroup,
236
+ ref_path: str | None = None,
237
+ shape: Collection[int] | None = None,
238
+ chunks: Collection[int] | None = None,
239
+ xy_scaling_factor: float = 2.0,
240
+ z_scaling_factor: float = 1.0,
241
+ overwrite: bool = False,
242
+ ) -> "ImagesContainer":
243
+ """Create an OME-Zarr image from a numpy array."""
244
+ return derive_image_container(
245
+ image_container=self,
246
+ store=store,
247
+ ref_path=ref_path,
248
+ shape=shape,
249
+ chunks=chunks,
250
+ xy_scaling_factor=xy_scaling_factor,
251
+ z_scaling_factor=z_scaling_factor,
252
+ overwrite=overwrite,
253
+ )
254
+
255
+ def get(
256
+ self,
257
+ path: str | None = None,
258
+ pixel_size: PixelSize | None = None,
259
+ highest_resolution: bool = True,
260
+ ) -> Image:
261
+ """Get an image at a specific level."""
262
+ if path is not None or pixel_size is not None:
263
+ highest_resolution = False
264
+ dataset = self._meta_handler.meta.get_dataset(
265
+ path=path, pixel_size=pixel_size, highest_resolution=highest_resolution
266
+ )
267
+ return Image(
268
+ group_handler=self._group_handler,
269
+ path=dataset.path,
270
+ meta_handler=self._meta_handler,
271
+ )
272
+
273
+
274
+ def compute_image_percentile(
275
+ image: Image,
276
+ start_percentile: float = 0.1,
277
+ end_percentile: float = 99.9,
278
+ ) -> tuple[list[float], list[float]]:
279
+ """Compute the start and end percentiles for each channel of an image.
280
+
281
+ Args:
282
+ image: The image to compute the percentiles for.
283
+ start_percentile: The start percentile to compute.
284
+ end_percentile: The end percentile to compute.
285
+
286
+ Returns:
287
+ A tuple containing the start and end percentiles for each channel.
288
+ """
289
+ starts, ends = [], []
290
+ for c in range(image.num_channels):
291
+ if image.num_channels == 1:
292
+ data = image.get_array(mode="dask").ravel()
293
+ else:
294
+ data = image.get_array(c=c, mode="dask").ravel()
295
+ # remove all the zeros
296
+ mask = data > 1e-16
297
+ data = data[mask]
298
+ _data = data.compute()
299
+ if _data.size == 0:
300
+ starts.append(0.0)
301
+ ends.append(0.0)
302
+ continue
303
+
304
+ # compute the percentiles
305
+ _s_perc, _e_perc = da.percentile(
306
+ data, [start_percentile, end_percentile], method="nearest"
307
+ ).compute()
308
+
309
+ starts.append(float(_s_perc))
310
+ ends.append(float(_e_perc))
311
+
312
+ return starts, ends
313
+
314
+
315
+ def derive_image_container(
316
+ image_container: ImagesContainer,
317
+ store: StoreOrGroup,
318
+ ref_path: str | None = None,
319
+ shape: Collection[int] | None = None,
320
+ chunks: Collection[int] | None = None,
321
+ xy_scaling_factor: float = 2.0,
322
+ z_scaling_factor: float = 1.0,
323
+ overwrite: bool = False,
324
+ ) -> ImagesContainer:
325
+ """Create an OME-Zarr image from a numpy array."""
326
+ if ref_path is None:
327
+ ref_image = image_container.get()
328
+ else:
329
+ ref_image = image_container.get(path=ref_path)
330
+
331
+ ref_meta = ref_image.meta
332
+
333
+ if shape is None:
334
+ shape = ref_image.shape
335
+ else:
336
+ if len(shape) != len(ref_image.shape):
337
+ raise NgioValidationError(
338
+ "The shape of the new image does not match the reference image."
339
+ )
340
+
341
+ if chunks is None:
342
+ chunks = ref_image.chunks
343
+ else:
344
+ if len(chunks) != len(ref_image.chunks):
345
+ raise NgioValidationError(
346
+ "The chunks of the new image does not match the reference image."
347
+ )
348
+
349
+ handler = _create_empty_image(
350
+ store=store,
351
+ shape=shape,
352
+ xy_pixelsize=ref_image.pixel_size.x,
353
+ z_spacing=ref_image.pixel_size.z,
354
+ time_spacing=ref_image.pixel_size.t,
355
+ levels=ref_meta.levels,
356
+ xy_scaling_factor=xy_scaling_factor,
357
+ z_scaling_factor=z_scaling_factor,
358
+ time_unit=ref_image.pixel_size.time_unit,
359
+ space_unit=ref_image.pixel_size.space_unit,
360
+ axes_names=ref_image.dataset.axes_mapper.on_disk_axes_names,
361
+ chunks=chunks,
362
+ dtype=ref_image.dtype,
363
+ overwrite=overwrite,
364
+ version=ref_meta.version,
365
+ )
366
+
367
+ image_container = ImagesContainer(handler)
368
+
369
+ if ref_image.num_channels == image_container.num_channels:
370
+ labels = ref_image.channel_labels
371
+ wavelength_id = ref_image.wavelength_ids
372
+ colors = [
373
+ c.channel_visualisation.color for c in ref_image._channels_meta.channels
374
+ ]
375
+ active = [
376
+ c.channel_visualisation.active for c in ref_image._channels_meta.channels
377
+ ]
378
+
379
+ image_container.initialize_channel_meta(
380
+ labels=labels,
381
+ wavelength_id=wavelength_id,
382
+ percentiles=None,
383
+ colors=colors,
384
+ active=active,
385
+ )
386
+ else:
387
+ image_container.initialize_channel_meta()
388
+
389
+ return image_container