ngio 0.1.6__py3-none-any.whl → 0.2.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (84) hide show
  1. ngio/__init__.py +31 -5
  2. ngio/common/__init__.py +44 -0
  3. ngio/common/_array_pipe.py +160 -0
  4. ngio/common/_axes_transforms.py +63 -0
  5. ngio/common/_common_types.py +5 -0
  6. ngio/common/_dimensions.py +113 -0
  7. ngio/common/_pyramid.py +222 -0
  8. ngio/{core/roi.py → common/_roi.py} +22 -23
  9. ngio/common/_slicer.py +97 -0
  10. ngio/{pipes/_zoom_utils.py → common/_zoom.py} +2 -78
  11. ngio/hcs/__init__.py +60 -0
  12. ngio/images/__init__.py +23 -0
  13. ngio/images/abstract_image.py +240 -0
  14. ngio/images/create.py +251 -0
  15. ngio/images/image.py +383 -0
  16. ngio/images/label.py +96 -0
  17. ngio/images/omezarr_container.py +512 -0
  18. ngio/ome_zarr_meta/__init__.py +35 -0
  19. ngio/ome_zarr_meta/_generic_handlers.py +320 -0
  20. ngio/ome_zarr_meta/_meta_handlers.py +142 -0
  21. ngio/ome_zarr_meta/ngio_specs/__init__.py +63 -0
  22. ngio/ome_zarr_meta/ngio_specs/_axes.py +481 -0
  23. ngio/ome_zarr_meta/ngio_specs/_channels.py +378 -0
  24. ngio/ome_zarr_meta/ngio_specs/_dataset.py +134 -0
  25. ngio/ome_zarr_meta/ngio_specs/_ngio_hcs.py +5 -0
  26. ngio/ome_zarr_meta/ngio_specs/_ngio_image.py +434 -0
  27. ngio/ome_zarr_meta/ngio_specs/_pixel_size.py +84 -0
  28. ngio/ome_zarr_meta/v04/__init__.py +11 -0
  29. ngio/ome_zarr_meta/v04/_meta_handlers.py +54 -0
  30. ngio/ome_zarr_meta/v04/_v04_spec_utils.py +412 -0
  31. ngio/tables/__init__.py +21 -5
  32. ngio/tables/_validators.py +192 -0
  33. ngio/tables/backends/__init__.py +8 -0
  34. ngio/tables/backends/_abstract_backend.py +71 -0
  35. ngio/tables/backends/_anndata_utils.py +194 -0
  36. ngio/tables/backends/_anndata_v1.py +75 -0
  37. ngio/tables/backends/_json_v1.py +56 -0
  38. ngio/tables/backends/_table_backends.py +102 -0
  39. ngio/tables/tables_container.py +300 -0
  40. ngio/tables/v1/__init__.py +6 -5
  41. ngio/tables/v1/_feature_table.py +161 -0
  42. ngio/tables/v1/_generic_table.py +99 -182
  43. ngio/tables/v1/_masking_roi_table.py +175 -0
  44. ngio/tables/v1/_roi_table.py +226 -0
  45. ngio/utils/__init__.py +23 -10
  46. ngio/utils/_datasets.py +51 -0
  47. ngio/utils/_errors.py +10 -4
  48. ngio/utils/_zarr_utils.py +378 -0
  49. {ngio-0.1.6.dist-info → ngio-0.2.0a1.dist-info}/METADATA +18 -39
  50. ngio-0.2.0a1.dist-info/RECORD +53 -0
  51. ngio/core/__init__.py +0 -7
  52. ngio/core/dimensions.py +0 -122
  53. ngio/core/image_handler.py +0 -228
  54. ngio/core/image_like_handler.py +0 -549
  55. ngio/core/label_handler.py +0 -410
  56. ngio/core/ngff_image.py +0 -387
  57. ngio/core/utils.py +0 -287
  58. ngio/io/__init__.py +0 -19
  59. ngio/io/_zarr.py +0 -88
  60. ngio/io/_zarr_array_utils.py +0 -0
  61. ngio/io/_zarr_group_utils.py +0 -60
  62. ngio/iterators/__init__.py +0 -1
  63. ngio/ngff_meta/__init__.py +0 -27
  64. ngio/ngff_meta/fractal_image_meta.py +0 -1267
  65. ngio/ngff_meta/meta_handler.py +0 -92
  66. ngio/ngff_meta/utils.py +0 -235
  67. ngio/ngff_meta/v04/__init__.py +0 -6
  68. ngio/ngff_meta/v04/specs.py +0 -158
  69. ngio/ngff_meta/v04/zarr_utils.py +0 -376
  70. ngio/pipes/__init__.py +0 -7
  71. ngio/pipes/_slicer_transforms.py +0 -176
  72. ngio/pipes/_transforms.py +0 -33
  73. ngio/pipes/data_pipe.py +0 -52
  74. ngio/tables/_ad_reader.py +0 -80
  75. ngio/tables/_utils.py +0 -301
  76. ngio/tables/tables_group.py +0 -252
  77. ngio/tables/v1/feature_tables.py +0 -182
  78. ngio/tables/v1/masking_roi_tables.py +0 -243
  79. ngio/tables/v1/roi_tables.py +0 -285
  80. ngio/utils/_common_types.py +0 -5
  81. ngio/utils/_pydantic_utils.py +0 -52
  82. ngio-0.1.6.dist-info/RECORD +0 -44
  83. {ngio-0.1.6.dist-info → ngio-0.2.0a1.dist-info}/WHEEL +0 -0
  84. {ngio-0.1.6.dist-info → ngio-0.2.0a1.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,434 @@
1
+ """Image metadata models.
2
+
3
+ This module contains the models for the image metadata.
4
+ These metadata models are not adhering to the OME standard.
5
+ But they can be built from the OME standard metadata, and the
6
+ can be converted to the OME standard.
7
+ """
8
+
9
+ from collections.abc import Collection
10
+ from enum import Enum
11
+ from typing import Any, TypeVar
12
+
13
+ import numpy as np
14
+ from pydantic import BaseModel
15
+
16
+ from ngio.ome_zarr_meta.ngio_specs._axes import (
17
+ SpaceUnits,
18
+ TimeUnits,
19
+ canonical_axes,
20
+ )
21
+ from ngio.ome_zarr_meta.ngio_specs._channels import Channel, ChannelsMeta
22
+ from ngio.ome_zarr_meta.ngio_specs._dataset import Dataset
23
+ from ngio.ome_zarr_meta.ngio_specs._pixel_size import PixelSize
24
+ from ngio.utils import NgioValidationError, NgioValueError
25
+
26
+ T = TypeVar("T")
27
+
28
+
29
+ class NgffVersion(str, Enum):
30
+ """Allowed NGFF versions."""
31
+
32
+ v04 = "0.4"
33
+
34
+
35
+ class ImageLabelSource(BaseModel):
36
+ """Image label source model."""
37
+
38
+ version: NgffVersion
39
+ source: dict[str, str | None]
40
+
41
+ @classmethod
42
+ def default_init(cls, version: NgffVersion) -> "ImageLabelSource":
43
+ """Initialize the ImageLabelSource object."""
44
+ return cls(version=version, source={"image": "../../"})
45
+
46
+
47
+ class AbstractNgioImageMeta:
48
+ """Base class for ImageMeta and LabelMeta."""
49
+
50
+ def __init__(self, version: str, name: str | None, datasets: list[Dataset]) -> None:
51
+ """Initialize the ImageMeta object."""
52
+ self._version = NgffVersion(version)
53
+ self._name = name
54
+
55
+ if len(datasets) == 0:
56
+ raise NgioValidationError("At least one dataset must be provided.")
57
+
58
+ self._datasets = datasets
59
+
60
+ def __repr__(self):
61
+ class_name = type(self).__name__
62
+ paths = [dataset.path for dataset in self.datasets]
63
+ on_disk_axes = self.datasets[0].axes_mapper.on_disk_axes_names
64
+ return (
65
+ f"{class_name}(name={self.name}, "
66
+ f"datasets={paths}, "
67
+ f"on_disk_axes={on_disk_axes})"
68
+ )
69
+
70
+ @property
71
+ def version(self) -> NgffVersion:
72
+ """Version of the OME-NFF metadata used to build the object."""
73
+ return self._version
74
+
75
+ @property
76
+ def name(self) -> str | None:
77
+ """Name of the image."""
78
+ return self._name
79
+
80
+ @property
81
+ def datasets(self) -> list[Dataset]:
82
+ """List of datasets in the multiscale."""
83
+ return self._datasets
84
+
85
+ @property
86
+ def levels(self) -> int:
87
+ """Number of levels in the multiscale."""
88
+ return len(self.datasets)
89
+
90
+ @property
91
+ def paths(self) -> list[str]:
92
+ """List of paths of the datasets."""
93
+ return [dataset.path for dataset in self.datasets]
94
+
95
+ def _get_dataset_by_path(self, path: str) -> Dataset:
96
+ """Get a dataset by its path."""
97
+ for dataset in self.datasets:
98
+ if dataset.path == path:
99
+ return dataset
100
+ raise NgioValueError(f"Dataset with path {path} not found.")
101
+
102
+ def _get_dataset_by_index(self, idx: int) -> Dataset:
103
+ """Get a dataset by its index."""
104
+ if idx < 0 or idx >= len(self.datasets):
105
+ raise NgioValueError(f"Index {idx} out of range.")
106
+ return self.datasets[idx]
107
+
108
+ def _get_dataset_by_pixel_size(
109
+ self, pixel_size: PixelSize, strict: bool = False, tol: float = 1e-6
110
+ ) -> Dataset:
111
+ """Get a dataset with the closest pixel size.
112
+
113
+ Args:
114
+ pixel_size(PixelSize): The pixel size to search for.
115
+ strict(bool): If True, the pixel size must smaller than tol.
116
+ tol(float): Any pixel size with a distance less than tol will be considered.
117
+ """
118
+ min_dist = np.inf
119
+
120
+ closest_dataset = None
121
+ for dataset in self.datasets:
122
+ dist = dataset.pixel_size.distance(pixel_size)
123
+ if dist < min_dist:
124
+ min_dist = dist
125
+ closest_dataset = dataset
126
+
127
+ if closest_dataset is None:
128
+ raise NgioValueError("No dataset found.")
129
+
130
+ if strict and min_dist > tol:
131
+ raise NgioValueError("No dataset with a pixel size close enough.")
132
+
133
+ return closest_dataset
134
+
135
+ def get_dataset(
136
+ self,
137
+ *,
138
+ path: str | None = None,
139
+ idx: int | None = None,
140
+ pixel_size: PixelSize | None = None,
141
+ highest_resolution: bool = False,
142
+ strict: bool = False,
143
+ ) -> Dataset:
144
+ """Get a dataset by its path, index or pixel size.
145
+
146
+ Args:
147
+ path(str): The path of the dataset.
148
+ idx(int): The index of the dataset.
149
+ pixel_size(PixelSize): The pixel size to search for.
150
+ highest_resolution(bool): If True, the dataset with the highest resolution
151
+ strict(bool): If True, the pixel size must be exactly the same.
152
+ If pixel_size is None, strict is ignored.
153
+ """
154
+ # Only one of the arguments must be provided
155
+ if (
156
+ sum(
157
+ [
158
+ path is not None,
159
+ idx is not None,
160
+ pixel_size is not None,
161
+ highest_resolution,
162
+ ]
163
+ )
164
+ != 1
165
+ ):
166
+ raise NgioValueError("get_dataset must receive only one argument.")
167
+
168
+ if path is not None:
169
+ return self._get_dataset_by_path(path)
170
+ elif idx is not None:
171
+ return self._get_dataset_by_index(idx)
172
+ elif pixel_size is not None:
173
+ return self._get_dataset_by_pixel_size(pixel_size, strict=strict)
174
+ elif highest_resolution:
175
+ return self.get_highest_resolution_dataset()
176
+ else:
177
+ raise NgioValueError("get_dataset has no valid arguments.")
178
+
179
+ @classmethod
180
+ def default_init(
181
+ cls,
182
+ levels: int | Collection[str],
183
+ axes_names: Collection[str],
184
+ pixel_size: PixelSize,
185
+ scaling_factors: Collection[float] | None = None,
186
+ name: str | None = None,
187
+ version: str = "0.4",
188
+ ):
189
+ """Initialize the ImageMeta object."""
190
+ axes = canonical_axes(
191
+ axes_names,
192
+ space_units=pixel_size.space_unit,
193
+ time_units=pixel_size.time_unit,
194
+ )
195
+
196
+ px_size_dict = pixel_size.as_dict()
197
+ scale = [px_size_dict.get(ax.on_disk_name, 1.0) for ax in axes]
198
+ translation = [0.0] * len(scale)
199
+
200
+ if scaling_factors is None:
201
+ _default = {"x": 2.0, "y": 2.0}
202
+ scaling_factors = [_default.get(ax.on_disk_name, 1.0) for ax in axes]
203
+
204
+ if isinstance(levels, int):
205
+ levels = [str(i) for i in range(levels)]
206
+
207
+ datasets = []
208
+ for level in levels:
209
+ dataset = Dataset(
210
+ path=level,
211
+ on_disk_axes=axes,
212
+ on_disk_scale=scale,
213
+ on_disk_translation=translation,
214
+ allow_non_canonical_axes=False,
215
+ strict_canonical_order=True,
216
+ )
217
+ datasets.append(dataset)
218
+ scale = [s * f for s, f in zip(scale, scaling_factors, strict=True)]
219
+
220
+ return cls(
221
+ version=version,
222
+ name=name,
223
+ datasets=datasets,
224
+ )
225
+
226
+ def get_highest_resolution_dataset(self) -> Dataset:
227
+ """Get the dataset with the highest resolution."""
228
+ return self._get_dataset_by_pixel_size(
229
+ pixel_size=PixelSize(
230
+ x=0.0,
231
+ y=0.0,
232
+ z=0.0,
233
+ t=0.0,
234
+ space_unit=SpaceUnits.micrometer,
235
+ time_unit=TimeUnits.s,
236
+ ),
237
+ strict=False,
238
+ )
239
+
240
+ def get_scaling_factor(self, axis_name: str) -> float:
241
+ """Get the scaling factors of the dataset."""
242
+ scaling_factors = []
243
+ for d1, d2 in zip(self.datasets[1:], self.datasets[:-1], strict=True):
244
+ scale_d1 = d1.get_scale(axis_name)
245
+ scale_d2 = d2.get_scale(axis_name)
246
+ scaling_factors.append(scale_d1 / scale_d2)
247
+
248
+ if not np.allclose(scaling_factors, scaling_factors[0]):
249
+ raise NgioValidationError(
250
+ f"Inconsistent scaling factors are not supported. {scaling_factors}"
251
+ )
252
+ return scaling_factors[0]
253
+
254
+ @property
255
+ def xy_scaling_factor(self) -> float:
256
+ """Get the xy scaling factor of the dataset."""
257
+ x_scaling_factors = self.get_scaling_factor("x")
258
+ y_scaling_factors = self.get_scaling_factor("y")
259
+ if not np.isclose(x_scaling_factors, y_scaling_factors):
260
+ raise NgioValidationError(
261
+ "Inconsistent scaling factors are not supported. "
262
+ f"{x_scaling_factors}, {y_scaling_factors}"
263
+ )
264
+ return x_scaling_factors
265
+
266
+ @property
267
+ def z_scaling_factor(self) -> float:
268
+ """Get the z scaling factor of the dataset."""
269
+ return self.get_scaling_factor("z")
270
+
271
+
272
+ class NgioLabelMeta(AbstractNgioImageMeta):
273
+ """Label metadata model."""
274
+
275
+ def __init__(
276
+ self,
277
+ version: str,
278
+ name: str | None,
279
+ datasets: list[Dataset],
280
+ image_label: ImageLabelSource | None = None,
281
+ ) -> None:
282
+ """Initialize the ImageMeta object."""
283
+ super().__init__(version, name, datasets)
284
+
285
+ # Make sure that there are no channel axes
286
+ channel_axis = self.datasets[0].axes_mapper.get_axis("c")
287
+ if channel_axis is not None:
288
+ raise NgioValidationError("Label metadata must not have channel axes.")
289
+
290
+ image_label = (
291
+ ImageLabelSource.default_init(self.version)
292
+ if image_label is None
293
+ else image_label
294
+ )
295
+ assert image_label is not None
296
+ if image_label.version != version:
297
+ raise NgioValidationError(
298
+ "Label image version must match the metadata version."
299
+ )
300
+ self._image_label = image_label
301
+
302
+ @property
303
+ def source_image(self) -> str | None:
304
+ source = self._image_label.source
305
+ if "image" not in source:
306
+ return None
307
+
308
+ image_path = source["image"]
309
+ return image_path
310
+
311
+ @property
312
+ def image_label(self) -> ImageLabelSource:
313
+ """Get the image label metadata."""
314
+ return self._image_label
315
+
316
+
317
+ class NgioImageMeta(AbstractNgioImageMeta):
318
+ """Image metadata model."""
319
+
320
+ def __init__(
321
+ self,
322
+ version: str,
323
+ name: str | None,
324
+ datasets: list[Dataset],
325
+ channels: ChannelsMeta | None = None,
326
+ ) -> None:
327
+ """Initialize the ImageMeta object."""
328
+ super().__init__(version=version, name=name, datasets=datasets)
329
+ self._channels_meta = channels
330
+
331
+ @property
332
+ def channels_meta(self) -> ChannelsMeta | None:
333
+ """Get the channels_meta metadata."""
334
+ return self._channels_meta
335
+
336
+ def set_channels_meta(self, channels_meta: ChannelsMeta) -> None:
337
+ """Set channels_meta metadata."""
338
+ self._channels_meta = channels_meta
339
+
340
+ def init_channels(
341
+ self,
342
+ labels: list[str] | int,
343
+ wavelength_ids: list[str] | None = None,
344
+ colors: list[str] | None = None,
345
+ active: list[bool] | None = None,
346
+ start: list[int | float] | None = None,
347
+ end: list[int | float] | None = None,
348
+ data_type: Any = np.uint16,
349
+ ) -> None:
350
+ """Set the channels_meta metadata for the image.
351
+
352
+ Args:
353
+ labels (list[str]|int): The labels of the channels.
354
+ wavelength_ids (list[str], optional): The wavelengths of the channels.
355
+ colors (list[str], optional): The colors of the channels.
356
+ adjust_window (bool, optional): Whether to adjust the window.
357
+ start_percentile (int, optional): The start percentile.
358
+ end_percentile (int, optional): The end percentile.
359
+ active (list[bool], optional): Whether the channel is active.
360
+ start (list[int | float], optional): The start value of the channel.
361
+ end (list[int | float], optional): The end value of the channel.
362
+ end (int): The end value of the channel.
363
+ data_type (Any): The data type of the channel.
364
+ """
365
+ channels_meta = ChannelsMeta.default_init(
366
+ labels=labels,
367
+ wavelength_id=wavelength_ids,
368
+ colors=colors,
369
+ active=active,
370
+ start=start,
371
+ end=end,
372
+ data_type=data_type,
373
+ )
374
+ self.set_channels_meta(channels_meta=channels_meta)
375
+
376
+ @property
377
+ def channels(self) -> list[Channel]:
378
+ """Get the channels in the image."""
379
+ if self._channels_meta is None:
380
+ return []
381
+ assert self.channels_meta is not None
382
+ return self.channels_meta.channels
383
+
384
+ @property
385
+ def channel_labels(self) -> list[str]:
386
+ """Get the labels of the channels in the image."""
387
+ return [channel.label for channel in self.channels]
388
+
389
+ @property
390
+ def channel_wavelength_ids(self) -> list[str | None]:
391
+ """Get the wavelength IDs of the channels in the image."""
392
+ return [channel.wavelength_id for channel in self.channels]
393
+
394
+ def _get_channel_idx_by_label(self, label: str) -> int | None:
395
+ """Get the index of a channel by its label."""
396
+ if self._channels_meta is None:
397
+ return None
398
+
399
+ if label not in self.channel_labels:
400
+ raise NgioValueError(f"Channel with label {label} not found.")
401
+
402
+ return self.channel_labels.index(label)
403
+
404
+ def _get_channel_idx_by_wavelength_id(self, wavelength_id: str) -> int | None:
405
+ """Get the index of a channel by its wavelength ID."""
406
+ if self._channels_meta is None:
407
+ return None
408
+
409
+ if wavelength_id not in self.channel_wavelength_ids:
410
+ raise NgioValueError(
411
+ f"Channel with wavelength ID {wavelength_id} not found."
412
+ )
413
+
414
+ return self.channel_wavelength_ids.index(wavelength_id)
415
+
416
+ def get_channel_idx(
417
+ self, label: str | None = None, wavelength_id: str | None = None
418
+ ) -> int | None:
419
+ """Get the index of a channel by its label or wavelength ID."""
420
+ # Only one of the arguments must be provided
421
+ if sum([label is not None, wavelength_id is not None]) != 1:
422
+ raise NgioValueError("get_channel_idx must receive only one argument.")
423
+
424
+ if label is not None:
425
+ return self._get_channel_idx_by_label(label)
426
+ elif wavelength_id is not None:
427
+ return self._get_channel_idx_by_wavelength_id(wavelength_id)
428
+ else:
429
+ raise NgioValueError(
430
+ "get_channel_idx must receive either label or wavelength_id."
431
+ )
432
+
433
+
434
+ NgioImageLabelMeta = NgioImageMeta | NgioLabelMeta
@@ -0,0 +1,84 @@
1
+ """Fractal internal module for dataset metadata handling."""
2
+
3
+ import numpy as np
4
+
5
+ from ngio.ome_zarr_meta.ngio_specs import SpaceUnits, TimeUnits
6
+
7
+ ################################################################################################
8
+ #
9
+ # PixelSize model
10
+ # The PixelSize model is used to store the pixel size in 3D space.
11
+ # The model does not store scaling factors and units for other axes.
12
+ #
13
+ #################################################################################################
14
+
15
+
16
+ def _validate_type(value: float, name: str) -> float:
17
+ """Check the type of the value."""
18
+ if not isinstance(value, int | float):
19
+ raise TypeError(f"{name} must be a number.")
20
+ return float(value)
21
+
22
+
23
+ class PixelSize:
24
+ """PixelSize class to store the pixel size in 3D space."""
25
+
26
+ def __init__(
27
+ self,
28
+ x: float,
29
+ y: float,
30
+ z: float,
31
+ t: float = 0,
32
+ space_unit: SpaceUnits = SpaceUnits.micrometer,
33
+ time_unit: TimeUnits | None = TimeUnits.s,
34
+ ):
35
+ """Initialize the pixel size."""
36
+ self.x = _validate_type(x, "x")
37
+ self.y = _validate_type(y, "y")
38
+ self.z = _validate_type(z, "z")
39
+ self.t = _validate_type(t, "t")
40
+
41
+ if not isinstance(space_unit, SpaceUnits):
42
+ raise TypeError("space_unit must be of type SpaceUnits.")
43
+ self.space_unit = space_unit
44
+
45
+ if time_unit is not None and not isinstance(time_unit, TimeUnits):
46
+ raise TypeError("time_unit must be of type TimeUnits.")
47
+ self.time_unit = time_unit
48
+
49
+ def __repr__(self) -> str:
50
+ """Return a string representation of the pixel size."""
51
+ return f"PixelSize(x={self.x}, y={self.y}, z={self.z}, t={self.t})"
52
+
53
+ def as_dict(self) -> dict:
54
+ """Return the pixel size as a dictionary."""
55
+ return {"t": self.t, "z": self.z, "y": self.y, "x": self.x}
56
+
57
+ @property
58
+ def zyx(self) -> tuple[float, float, float]:
59
+ """Return the voxel size in z, y, x order."""
60
+ return self.z, self.y, self.x
61
+
62
+ @property
63
+ def yx(self) -> tuple[float, float]:
64
+ """Return the xy plane pixel size in y, x order."""
65
+ return self.y, self.x
66
+
67
+ @property
68
+ def voxel_volume(self) -> float:
69
+ """Return the volume of a voxel."""
70
+ return self.y * self.x * self.z
71
+
72
+ @property
73
+ def xy_plane_area(self) -> float:
74
+ """Return the area of the xy plane."""
75
+ return self.y * self.x
76
+
77
+ @property
78
+ def time_spacing(self) -> float | None:
79
+ """Return the time spacing."""
80
+ return self.t
81
+
82
+ def distance(self, other: "PixelSize") -> float:
83
+ """Return the distance between two pixel sizes in 3D space."""
84
+ return float(np.linalg.norm(np.array(self.zyx) - np.array(other.zyx)))
@@ -0,0 +1,11 @@
1
+ """Utility to read/write OME-Zarr metadata v0.4."""
2
+
3
+ from ngio.ome_zarr_meta.v04._meta_handlers import (
4
+ V04ImageMetaHandler,
5
+ V04LabelMetaHandler,
6
+ )
7
+
8
+ __all__ = [
9
+ "V04ImageMetaHandler",
10
+ "V04LabelMetaHandler",
11
+ ]
@@ -0,0 +1,54 @@
1
+ """Concrete implementation of the OME-Zarr metadata handlers for version 0.4."""
2
+
3
+ from ngio.ome_zarr_meta._generic_handlers import (
4
+ BaseImageMetaHandler,
5
+ BaseLabelMetaHandler,
6
+ )
7
+ from ngio.ome_zarr_meta.ngio_specs import AxesSetup
8
+ from ngio.ome_zarr_meta.v04._v04_spec_utils import (
9
+ ngio_to_v04_image_meta,
10
+ ngio_to_v04_label_meta,
11
+ v04_to_ngio_image_meta,
12
+ v04_to_ngio_label_meta,
13
+ )
14
+ from ngio.utils import ZarrGroupHandler
15
+
16
+
17
+ class V04ImageMetaHandler(BaseImageMetaHandler):
18
+ """Base class for handling OME-Zarr 0.4 metadata."""
19
+
20
+ def __init__(
21
+ self,
22
+ group_handler: ZarrGroupHandler,
23
+ axes_setup: AxesSetup | None = None,
24
+ allow_non_canonical_axes: bool = False,
25
+ strict_canonical_order: bool = True,
26
+ ):
27
+ super().__init__(
28
+ meta_importer=v04_to_ngio_image_meta,
29
+ meta_exporter=ngio_to_v04_image_meta,
30
+ group_handler=group_handler,
31
+ axes_setup=axes_setup,
32
+ allow_non_canonical_axes=allow_non_canonical_axes,
33
+ strict_canonical_order=strict_canonical_order,
34
+ )
35
+
36
+
37
+ class V04LabelMetaHandler(BaseLabelMetaHandler):
38
+ """Base class for handling OME-Zarr 0.4 metadata."""
39
+
40
+ def __init__(
41
+ self,
42
+ group_handler: ZarrGroupHandler,
43
+ axes_setup: AxesSetup | None = None,
44
+ allow_non_canonical_axes: bool = False,
45
+ strict_canonical_order: bool = True,
46
+ ):
47
+ super().__init__(
48
+ meta_importer=v04_to_ngio_label_meta,
49
+ meta_exporter=ngio_to_v04_label_meta,
50
+ group_handler=group_handler,
51
+ axes_setup=axes_setup,
52
+ allow_non_canonical_axes=allow_non_canonical_axes,
53
+ strict_canonical_order=strict_canonical_order,
54
+ )