nextrec 0.4.8__py3-none-any.whl → 0.4.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nextrec/__version__.py +1 -1
- nextrec/basic/callback.py +30 -15
- nextrec/basic/features.py +1 -0
- nextrec/basic/layers.py +6 -8
- nextrec/basic/loggers.py +14 -7
- nextrec/basic/metrics.py +6 -76
- nextrec/basic/model.py +312 -318
- nextrec/cli.py +5 -10
- nextrec/data/__init__.py +13 -16
- nextrec/data/batch_utils.py +3 -2
- nextrec/data/data_processing.py +10 -2
- nextrec/data/data_utils.py +9 -14
- nextrec/data/dataloader.py +12 -13
- nextrec/data/preprocessor.py +328 -255
- nextrec/loss/__init__.py +1 -5
- nextrec/loss/loss_utils.py +2 -8
- nextrec/models/generative/__init__.py +1 -8
- nextrec/models/generative/hstu.py +6 -4
- nextrec/models/multi_task/esmm.py +2 -2
- nextrec/models/multi_task/mmoe.py +2 -2
- nextrec/models/multi_task/ple.py +2 -2
- nextrec/models/multi_task/poso.py +2 -3
- nextrec/models/multi_task/share_bottom.py +2 -2
- nextrec/models/ranking/afm.py +2 -2
- nextrec/models/ranking/autoint.py +2 -2
- nextrec/models/ranking/dcn.py +2 -2
- nextrec/models/ranking/dcn_v2.py +2 -2
- nextrec/models/ranking/deepfm.py +2 -2
- nextrec/models/ranking/dien.py +3 -3
- nextrec/models/ranking/din.py +3 -3
- nextrec/models/ranking/ffm.py +0 -0
- nextrec/models/ranking/fibinet.py +5 -5
- nextrec/models/ranking/fm.py +3 -7
- nextrec/models/ranking/lr.py +0 -0
- nextrec/models/ranking/masknet.py +2 -2
- nextrec/models/ranking/pnn.py +2 -2
- nextrec/models/ranking/widedeep.py +2 -2
- nextrec/models/ranking/xdeepfm.py +2 -2
- nextrec/models/representation/__init__.py +9 -0
- nextrec/models/{generative → representation}/rqvae.py +9 -9
- nextrec/models/retrieval/__init__.py +0 -0
- nextrec/models/{match → retrieval}/dssm.py +8 -3
- nextrec/models/{match → retrieval}/dssm_v2.py +8 -3
- nextrec/models/{match → retrieval}/mind.py +4 -3
- nextrec/models/{match → retrieval}/sdm.py +4 -3
- nextrec/models/{match → retrieval}/youtube_dnn.py +8 -3
- nextrec/utils/__init__.py +60 -46
- nextrec/utils/config.py +8 -7
- nextrec/utils/console.py +371 -0
- nextrec/utils/{synthetic_data.py → data.py} +102 -15
- nextrec/utils/feature.py +15 -0
- nextrec/utils/torch_utils.py +411 -0
- {nextrec-0.4.8.dist-info → nextrec-0.4.9.dist-info}/METADATA +6 -6
- nextrec-0.4.9.dist-info/RECORD +70 -0
- nextrec/utils/cli_utils.py +0 -58
- nextrec/utils/device.py +0 -78
- nextrec/utils/distributed.py +0 -141
- nextrec/utils/file.py +0 -92
- nextrec/utils/initializer.py +0 -79
- nextrec/utils/optimizer.py +0 -75
- nextrec/utils/tensor.py +0 -72
- nextrec-0.4.8.dist-info/RECORD +0 -71
- /nextrec/models/{match/__init__.py → ranking/eulernet.py} +0 -0
- {nextrec-0.4.8.dist-info → nextrec-0.4.9.dist-info}/WHEEL +0 -0
- {nextrec-0.4.8.dist-info → nextrec-0.4.9.dist-info}/entry_points.txt +0 -0
- {nextrec-0.4.8.dist-info → nextrec-0.4.9.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,17 +1,101 @@
|
|
|
1
1
|
"""
|
|
2
|
-
|
|
2
|
+
Data utilities for NextRec.
|
|
3
3
|
|
|
4
|
-
This module provides
|
|
5
|
-
and tutorial purposes in the NextRec framework.
|
|
4
|
+
This module provides file I/O helpers and synthetic data generation.
|
|
6
5
|
|
|
7
|
-
Date: create on
|
|
6
|
+
Date: create on 19/12/2025
|
|
7
|
+
Checkpoint: edit on 19/12/2025
|
|
8
8
|
Author: Yang Zhou, zyaztec@gmail.com
|
|
9
9
|
"""
|
|
10
10
|
|
|
11
|
-
import
|
|
11
|
+
from __future__ import annotations
|
|
12
|
+
|
|
13
|
+
from pathlib import Path
|
|
14
|
+
from typing import Dict, Generator, List, Optional, Tuple
|
|
15
|
+
|
|
12
16
|
import numpy as np
|
|
13
17
|
import pandas as pd
|
|
14
|
-
|
|
18
|
+
import pyarrow.parquet as pq
|
|
19
|
+
import torch
|
|
20
|
+
import yaml
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def resolve_file_paths(path: str) -> tuple[list[str], str]:
|
|
24
|
+
"""
|
|
25
|
+
Resolve file or directory path into a sorted list of files and file type.
|
|
26
|
+
|
|
27
|
+
Args: path: Path to a file or directory
|
|
28
|
+
Returns: tuple: (list of file paths, file type)
|
|
29
|
+
"""
|
|
30
|
+
path_obj = Path(path)
|
|
31
|
+
|
|
32
|
+
if path_obj.is_file():
|
|
33
|
+
file_type = path_obj.suffix.lower().lstrip(".")
|
|
34
|
+
assert file_type in [
|
|
35
|
+
"csv",
|
|
36
|
+
"parquet",
|
|
37
|
+
], f"Unsupported file extension: {file_type}"
|
|
38
|
+
return [str(path_obj)], file_type
|
|
39
|
+
|
|
40
|
+
if path_obj.is_dir():
|
|
41
|
+
collected_files = [p for p in path_obj.iterdir() if p.is_file()]
|
|
42
|
+
csv_files = [str(p) for p in collected_files if p.suffix.lower() == ".csv"]
|
|
43
|
+
parquet_files = [
|
|
44
|
+
str(p) for p in collected_files if p.suffix.lower() == ".parquet"
|
|
45
|
+
]
|
|
46
|
+
|
|
47
|
+
if csv_files and parquet_files:
|
|
48
|
+
raise ValueError(
|
|
49
|
+
"Directory contains both CSV and Parquet files. Please keep a single format."
|
|
50
|
+
)
|
|
51
|
+
file_paths = csv_files if csv_files else parquet_files
|
|
52
|
+
if not file_paths:
|
|
53
|
+
raise ValueError(f"No CSV or Parquet files found in directory: {path}")
|
|
54
|
+
file_paths.sort()
|
|
55
|
+
file_type = "csv" if csv_files else "parquet"
|
|
56
|
+
return file_paths, file_type
|
|
57
|
+
|
|
58
|
+
raise ValueError(f"Invalid path: {path}")
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def read_table(path: str | Path, data_format: str | None = None) -> pd.DataFrame:
|
|
62
|
+
data_path = Path(path)
|
|
63
|
+
fmt = data_format.lower() if data_format else data_path.suffix.lower().lstrip(".")
|
|
64
|
+
if data_path.is_dir() and not fmt:
|
|
65
|
+
fmt = "parquet"
|
|
66
|
+
if fmt in {"parquet", ""}:
|
|
67
|
+
return pd.read_parquet(data_path)
|
|
68
|
+
if fmt in {"csv", "txt"}:
|
|
69
|
+
# Use low_memory=False to avoid mixed-type DtypeWarning on wide CSVs
|
|
70
|
+
return pd.read_csv(data_path, low_memory=False)
|
|
71
|
+
raise ValueError(f"Unsupported data format: {data_path}")
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def load_dataframes(file_paths: list[str], file_type: str) -> list[pd.DataFrame]:
|
|
75
|
+
return [read_table(fp, file_type) for fp in file_paths]
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def iter_file_chunks(
|
|
79
|
+
file_path: str, file_type: str, chunk_size: int
|
|
80
|
+
) -> Generator[pd.DataFrame, None, None]:
|
|
81
|
+
if file_type == "csv":
|
|
82
|
+
yield from pd.read_csv(file_path, chunksize=chunk_size)
|
|
83
|
+
return
|
|
84
|
+
parquet_file = pq.ParquetFile(file_path)
|
|
85
|
+
for batch in parquet_file.iter_batches(batch_size=chunk_size):
|
|
86
|
+
yield batch.to_pandas()
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def default_output_dir(path: str) -> Path:
|
|
90
|
+
path_obj = Path(path)
|
|
91
|
+
if path_obj.is_file():
|
|
92
|
+
return path_obj.parent / f"{path_obj.stem}_preprocessed"
|
|
93
|
+
return path_obj.with_name(f"{path_obj.name}_preprocessed")
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def read_yaml(path: str | Path):
|
|
97
|
+
with open(path, "r", encoding="utf-8") as file:
|
|
98
|
+
return yaml.safe_load(file) or {}
|
|
15
99
|
|
|
16
100
|
|
|
17
101
|
def generate_ranking_data(
|
|
@@ -90,13 +174,14 @@ def generate_ranking_data(
|
|
|
90
174
|
sequence_vocabs.append(seq_vocab)
|
|
91
175
|
|
|
92
176
|
if "gender" in data and "dense_0" in data:
|
|
177
|
+
dense_1 = data.get("dense_1", 0)
|
|
93
178
|
# Complex label generation with feature correlation
|
|
94
179
|
label_probs = 1 / (
|
|
95
180
|
1
|
|
96
181
|
+ np.exp(
|
|
97
182
|
-(
|
|
98
183
|
data["dense_0"] * 0.3
|
|
99
|
-
+
|
|
184
|
+
+ dense_1 * 0.2
|
|
100
185
|
+ (data["gender"] - 0.5) * 0.5
|
|
101
186
|
+ np.random.randn(n_samples) * 0.1
|
|
102
187
|
)
|
|
@@ -112,7 +197,7 @@ def generate_ranking_data(
|
|
|
112
197
|
print(f"Positive rate: {data['label'].mean():.4f}")
|
|
113
198
|
|
|
114
199
|
# Import here to avoid circular import
|
|
115
|
-
from nextrec.basic.features import DenseFeature,
|
|
200
|
+
from nextrec.basic.features import DenseFeature, SequenceFeature, SparseFeature
|
|
116
201
|
|
|
117
202
|
# Create feature definitions
|
|
118
203
|
# Use input_dim for dense features to be compatible with both simple and complex scenarios
|
|
@@ -273,7 +358,7 @@ def generate_match_data(
|
|
|
273
358
|
print(f"Positive rate: {data['label'].mean():.4f}")
|
|
274
359
|
|
|
275
360
|
# Import here to avoid circular import
|
|
276
|
-
from nextrec.basic.features import DenseFeature,
|
|
361
|
+
from nextrec.basic.features import DenseFeature, SequenceFeature, SparseFeature
|
|
277
362
|
|
|
278
363
|
# User dense features
|
|
279
364
|
user_dense_features = [DenseFeature(name="user_age", input_dim=1)]
|
|
@@ -413,15 +498,17 @@ def generate_multitask_data(
|
|
|
413
498
|
|
|
414
499
|
# Generate multi-task labels with correlation
|
|
415
500
|
# CTR (click) is relatively easier to predict
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
)
|
|
501
|
+
dense_0 = data.get("dense_0", 0)
|
|
502
|
+
dense_1 = data.get("dense_1", 0)
|
|
503
|
+
dense_2 = data.get("dense_2", 0)
|
|
504
|
+
dense_3 = data.get("dense_3", 0)
|
|
505
|
+
ctr_logits = dense_0 * 0.3 + dense_1 * 0.2 + np.random.randn(n_samples) * 0.5
|
|
419
506
|
data["click"] = (1 / (1 + np.exp(-ctr_logits)) > 0.5).astype(np.float32)
|
|
420
507
|
|
|
421
508
|
# CVR (conversion) depends on click and is harder
|
|
422
509
|
cvr_logits = (
|
|
423
|
-
|
|
424
|
-
+
|
|
510
|
+
dense_2 * 0.2
|
|
511
|
+
+ dense_3 * 0.15
|
|
425
512
|
+ data["click"] * 1.5 # Strong dependency on click
|
|
426
513
|
+ np.random.randn(n_samples) * 0.8
|
|
427
514
|
)
|
|
@@ -441,7 +528,7 @@ def generate_multitask_data(
|
|
|
441
528
|
print(f"CTCVR rate: {data['ctcvr'].mean():.4f}")
|
|
442
529
|
|
|
443
530
|
# Import here to avoid circular import
|
|
444
|
-
from nextrec.basic.features import DenseFeature,
|
|
531
|
+
from nextrec.basic.features import DenseFeature, SequenceFeature, SparseFeature
|
|
445
532
|
|
|
446
533
|
# Create feature definitions
|
|
447
534
|
dense_features = [
|
nextrec/utils/feature.py
CHANGED
|
@@ -2,9 +2,13 @@
|
|
|
2
2
|
Feature processing utilities for NextRec
|
|
3
3
|
|
|
4
4
|
Date: create on 03/12/2025
|
|
5
|
+
Checkpoint: edit on 19/12/2025
|
|
5
6
|
Author: Yang Zhou, zyaztec@gmail.com
|
|
6
7
|
"""
|
|
7
8
|
|
|
9
|
+
import numbers
|
|
10
|
+
from typing import Any
|
|
11
|
+
|
|
8
12
|
|
|
9
13
|
def normalize_to_list(value: str | list[str] | None) -> list[str]:
|
|
10
14
|
if value is None:
|
|
@@ -12,3 +16,14 @@ def normalize_to_list(value: str | list[str] | None) -> list[str]:
|
|
|
12
16
|
if isinstance(value, str):
|
|
13
17
|
return [value]
|
|
14
18
|
return list(value)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def as_float(value: Any) -> float | None:
|
|
22
|
+
if isinstance(value, numbers.Number):
|
|
23
|
+
return float(value)
|
|
24
|
+
if hasattr(value, "item"):
|
|
25
|
+
try:
|
|
26
|
+
return float(value.item())
|
|
27
|
+
except Exception:
|
|
28
|
+
return None
|
|
29
|
+
return None
|
|
@@ -0,0 +1,411 @@
|
|
|
1
|
+
"""
|
|
2
|
+
PyTorch-related utilities for NextRec.
|
|
3
|
+
|
|
4
|
+
This module groups device setup, distributed helpers, optimizers/schedulers,
|
|
5
|
+
initialization, and tensor helpers.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from __future__ import annotations
|
|
9
|
+
|
|
10
|
+
import logging
|
|
11
|
+
from typing import Any, Dict, Iterable, Set
|
|
12
|
+
|
|
13
|
+
import numpy as np
|
|
14
|
+
import torch
|
|
15
|
+
import torch.distributed as dist
|
|
16
|
+
import torch.nn as nn
|
|
17
|
+
from torch.utils.data import DataLoader, IterableDataset
|
|
18
|
+
from torch.utils.data.distributed import DistributedSampler
|
|
19
|
+
|
|
20
|
+
from nextrec.basic.loggers import colorize
|
|
21
|
+
|
|
22
|
+
KNOWN_NONLINEARITIES: Set[str] = {
|
|
23
|
+
"linear",
|
|
24
|
+
"conv1d",
|
|
25
|
+
"conv2d",
|
|
26
|
+
"conv3d",
|
|
27
|
+
"conv_transpose1d",
|
|
28
|
+
"conv_transpose2d",
|
|
29
|
+
"conv_transpose3d",
|
|
30
|
+
"sigmoid",
|
|
31
|
+
"tanh",
|
|
32
|
+
"relu",
|
|
33
|
+
"leaky_relu",
|
|
34
|
+
"selu",
|
|
35
|
+
"gelu",
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def resolve_nonlinearity(activation: str) -> str:
|
|
40
|
+
if activation in KNOWN_NONLINEARITIES:
|
|
41
|
+
return activation
|
|
42
|
+
return "linear"
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def resolve_gain(activation: str, param: Dict[str, Any]) -> float:
|
|
46
|
+
if "gain" in param:
|
|
47
|
+
return param["gain"]
|
|
48
|
+
nonlinearity = resolve_nonlinearity(activation)
|
|
49
|
+
try:
|
|
50
|
+
return nn.init.calculate_gain(nonlinearity, param.get("param")) # type: ignore
|
|
51
|
+
except ValueError:
|
|
52
|
+
return 1.0
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def get_initializer(
|
|
56
|
+
init_type: str = "normal",
|
|
57
|
+
activation: str = "linear",
|
|
58
|
+
param: Dict[str, Any] | None = None,
|
|
59
|
+
):
|
|
60
|
+
param = param or {}
|
|
61
|
+
nonlinearity = resolve_nonlinearity(activation)
|
|
62
|
+
gain = resolve_gain(activation, param)
|
|
63
|
+
|
|
64
|
+
def initializer_fn(tensor):
|
|
65
|
+
if init_type == "xavier_uniform":
|
|
66
|
+
nn.init.xavier_uniform_(tensor, gain=gain)
|
|
67
|
+
elif init_type == "xavier_normal":
|
|
68
|
+
nn.init.xavier_normal_(tensor, gain=gain)
|
|
69
|
+
elif init_type == "kaiming_uniform":
|
|
70
|
+
nn.init.kaiming_uniform_(
|
|
71
|
+
tensor, a=param.get("a", 0), nonlinearity=nonlinearity # type: ignore
|
|
72
|
+
)
|
|
73
|
+
elif init_type == "kaiming_normal":
|
|
74
|
+
nn.init.kaiming_normal_(
|
|
75
|
+
tensor, a=param.get("a", 0), nonlinearity=nonlinearity # type: ignore
|
|
76
|
+
)
|
|
77
|
+
elif init_type == "orthogonal":
|
|
78
|
+
nn.init.orthogonal_(tensor, gain=gain)
|
|
79
|
+
elif init_type == "normal":
|
|
80
|
+
nn.init.normal_(
|
|
81
|
+
tensor, mean=param.get("mean", 0.0), std=param.get("std", 0.0001)
|
|
82
|
+
)
|
|
83
|
+
elif init_type == "uniform":
|
|
84
|
+
nn.init.uniform_(tensor, a=param.get("a", -0.05), b=param.get("b", 0.05))
|
|
85
|
+
else:
|
|
86
|
+
raise ValueError(f"Unknown init_type: {init_type}")
|
|
87
|
+
return tensor
|
|
88
|
+
|
|
89
|
+
return initializer_fn
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def resolve_device() -> str:
|
|
93
|
+
if torch.cuda.is_available():
|
|
94
|
+
return "cuda"
|
|
95
|
+
if torch.backends.mps.is_available():
|
|
96
|
+
import platform
|
|
97
|
+
|
|
98
|
+
mac_ver = platform.mac_ver()[0]
|
|
99
|
+
try:
|
|
100
|
+
major, _ = (int(x) for x in mac_ver.split(".")[:2])
|
|
101
|
+
except Exception:
|
|
102
|
+
major, _ = 0, 0
|
|
103
|
+
if major >= 14:
|
|
104
|
+
return "mps"
|
|
105
|
+
return "cpu"
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def get_device_info() -> dict:
|
|
109
|
+
info = {
|
|
110
|
+
"cuda_available": torch.cuda.is_available(),
|
|
111
|
+
"cuda_device_count": (
|
|
112
|
+
torch.cuda.device_count() if torch.cuda.is_available() else 0
|
|
113
|
+
),
|
|
114
|
+
"mps_available": torch.backends.mps.is_available(),
|
|
115
|
+
"current_device": resolve_device(),
|
|
116
|
+
}
|
|
117
|
+
|
|
118
|
+
if torch.cuda.is_available():
|
|
119
|
+
info["cuda_device_name"] = torch.cuda.get_device_name(0)
|
|
120
|
+
info["cuda_capability"] = torch.cuda.get_device_capability(0)
|
|
121
|
+
|
|
122
|
+
return info
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def configure_device(
|
|
126
|
+
distributed: bool, local_rank: int, base_device: torch.device | str = "cpu"
|
|
127
|
+
) -> torch.device:
|
|
128
|
+
try:
|
|
129
|
+
device = torch.device(base_device)
|
|
130
|
+
except Exception:
|
|
131
|
+
logging.warning(
|
|
132
|
+
"[configure_device Warning] Invalid base_device, falling back to CPU."
|
|
133
|
+
)
|
|
134
|
+
return torch.device("cpu")
|
|
135
|
+
|
|
136
|
+
if distributed:
|
|
137
|
+
if device.type == "cuda":
|
|
138
|
+
if not torch.cuda.is_available():
|
|
139
|
+
logging.warning(
|
|
140
|
+
"[Distributed Warning] CUDA requested but unavailable. Falling back to CPU."
|
|
141
|
+
)
|
|
142
|
+
return torch.device("cpu")
|
|
143
|
+
if not (0 <= local_rank < torch.cuda.device_count()):
|
|
144
|
+
logging.warning(
|
|
145
|
+
f"[Distributed Warning] local_rank {local_rank} is invalid for available CUDA devices. Falling back to CPU."
|
|
146
|
+
)
|
|
147
|
+
return torch.device("cpu")
|
|
148
|
+
try:
|
|
149
|
+
torch.cuda.set_device(local_rank)
|
|
150
|
+
return torch.device(f"cuda:{local_rank}")
|
|
151
|
+
except Exception as exc:
|
|
152
|
+
logging.warning(
|
|
153
|
+
f"[Distributed Warning] Failed to set CUDA device for local_rank {local_rank}: {exc}. Falling back to CPU."
|
|
154
|
+
)
|
|
155
|
+
return torch.device("cpu")
|
|
156
|
+
return torch.device("cpu")
|
|
157
|
+
return device
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def get_optimizer(
|
|
161
|
+
optimizer: str | torch.optim.Optimizer = "adam",
|
|
162
|
+
params: Iterable[torch.nn.Parameter] | None = None,
|
|
163
|
+
**optimizer_params,
|
|
164
|
+
):
|
|
165
|
+
if params is None:
|
|
166
|
+
raise ValueError("params cannot be None. Please provide model parameters.")
|
|
167
|
+
|
|
168
|
+
if "lr" not in optimizer_params:
|
|
169
|
+
optimizer_params["lr"] = 1e-3
|
|
170
|
+
if isinstance(optimizer, str):
|
|
171
|
+
opt_name = optimizer.lower()
|
|
172
|
+
if opt_name == "adam":
|
|
173
|
+
opt_class = torch.optim.Adam
|
|
174
|
+
elif opt_name == "sgd":
|
|
175
|
+
opt_class = torch.optim.SGD
|
|
176
|
+
elif opt_name == "adamw":
|
|
177
|
+
opt_class = torch.optim.AdamW
|
|
178
|
+
elif opt_name == "adagrad":
|
|
179
|
+
opt_class = torch.optim.Adagrad
|
|
180
|
+
elif opt_name == "rmsprop":
|
|
181
|
+
opt_class = torch.optim.RMSprop
|
|
182
|
+
else:
|
|
183
|
+
raise NotImplementedError(f"Unsupported optimizer: {optimizer}")
|
|
184
|
+
optimizer_fn = opt_class(params=params, **optimizer_params)
|
|
185
|
+
elif isinstance(optimizer, torch.optim.Optimizer):
|
|
186
|
+
optimizer_fn = optimizer
|
|
187
|
+
else:
|
|
188
|
+
raise TypeError(f"Invalid optimizer type: {type(optimizer)}")
|
|
189
|
+
return optimizer_fn
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
def get_scheduler(
|
|
193
|
+
scheduler: (
|
|
194
|
+
str
|
|
195
|
+
| torch.optim.lr_scheduler._LRScheduler
|
|
196
|
+
| torch.optim.lr_scheduler.LRScheduler
|
|
197
|
+
| type[torch.optim.lr_scheduler._LRScheduler]
|
|
198
|
+
| type[torch.optim.lr_scheduler.LRScheduler]
|
|
199
|
+
| None
|
|
200
|
+
),
|
|
201
|
+
optimizer,
|
|
202
|
+
**scheduler_params,
|
|
203
|
+
):
|
|
204
|
+
if isinstance(scheduler, str):
|
|
205
|
+
if scheduler == "step":
|
|
206
|
+
scheduler_fn = torch.optim.lr_scheduler.StepLR(
|
|
207
|
+
optimizer, **scheduler_params
|
|
208
|
+
)
|
|
209
|
+
elif scheduler == "cosine":
|
|
210
|
+
scheduler_fn = torch.optim.lr_scheduler.CosineAnnealingLR(
|
|
211
|
+
optimizer, **scheduler_params
|
|
212
|
+
)
|
|
213
|
+
else:
|
|
214
|
+
raise NotImplementedError(f"Unsupported scheduler: {scheduler}")
|
|
215
|
+
elif isinstance(
|
|
216
|
+
scheduler,
|
|
217
|
+
(torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.LRScheduler),
|
|
218
|
+
):
|
|
219
|
+
scheduler_fn = scheduler
|
|
220
|
+
else:
|
|
221
|
+
raise TypeError(f"Invalid scheduler type: {type(scheduler)}")
|
|
222
|
+
|
|
223
|
+
return scheduler_fn
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
def to_tensor(
|
|
227
|
+
value: Any, dtype: torch.dtype, device: torch.device | str | None = None
|
|
228
|
+
) -> torch.Tensor:
|
|
229
|
+
if value is None:
|
|
230
|
+
raise ValueError("[Tensor Utils Error] Cannot convert None to tensor.")
|
|
231
|
+
tensor = value if isinstance(value, torch.Tensor) else torch.as_tensor(value)
|
|
232
|
+
if tensor.dtype != dtype:
|
|
233
|
+
tensor = tensor.to(dtype=dtype)
|
|
234
|
+
|
|
235
|
+
if device is not None:
|
|
236
|
+
target_device = (
|
|
237
|
+
device if isinstance(device, torch.device) else torch.device(device)
|
|
238
|
+
)
|
|
239
|
+
if tensor.device != target_device:
|
|
240
|
+
tensor = tensor.to(target_device)
|
|
241
|
+
return tensor
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
def stack_tensors(tensors: list[torch.Tensor], dim: int = 0) -> torch.Tensor:
|
|
245
|
+
if not tensors:
|
|
246
|
+
raise ValueError("[Tensor Utils Error] Cannot stack empty list of tensors.")
|
|
247
|
+
return torch.stack(tensors, dim=dim)
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
def concat_tensors(tensors: list[torch.Tensor], dim: int = 0) -> torch.Tensor:
|
|
251
|
+
if not tensors:
|
|
252
|
+
raise ValueError(
|
|
253
|
+
"[Tensor Utils Error] Cannot concatenate empty list of tensors."
|
|
254
|
+
)
|
|
255
|
+
return torch.cat(tensors, dim=dim)
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
def pad_sequence_tensors(
|
|
259
|
+
tensors: list[torch.Tensor],
|
|
260
|
+
max_len: int | None = None,
|
|
261
|
+
padding_value: float = 0.0,
|
|
262
|
+
padding_side: str = "right",
|
|
263
|
+
) -> torch.Tensor:
|
|
264
|
+
if not tensors:
|
|
265
|
+
raise ValueError("[Tensor Utils Error] Cannot pad empty list of tensors.")
|
|
266
|
+
if max_len is None:
|
|
267
|
+
max_len = max(t.size(0) for t in tensors)
|
|
268
|
+
batch_size = len(tensors)
|
|
269
|
+
padded = torch.full(
|
|
270
|
+
(batch_size, max_len),
|
|
271
|
+
padding_value,
|
|
272
|
+
dtype=tensors[0].dtype,
|
|
273
|
+
device=tensors[0].device,
|
|
274
|
+
)
|
|
275
|
+
|
|
276
|
+
for i, tensor in enumerate(tensors):
|
|
277
|
+
length = min(tensor.size(0), max_len)
|
|
278
|
+
if padding_side == "right":
|
|
279
|
+
padded[i, :length] = tensor[:length]
|
|
280
|
+
elif padding_side == "left":
|
|
281
|
+
padded[i, -length:] = tensor[:length]
|
|
282
|
+
else:
|
|
283
|
+
raise ValueError(
|
|
284
|
+
f"[Tensor Utils Error] padding_side must be 'right' or 'left', got {padding_side}"
|
|
285
|
+
)
|
|
286
|
+
return padded
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
def init_process_group(
|
|
290
|
+
distributed: bool, rank: int, world_size: int, device_id: int | None = None
|
|
291
|
+
) -> None:
|
|
292
|
+
"""
|
|
293
|
+
initialize distributed process group for multi-GPU training.
|
|
294
|
+
|
|
295
|
+
Args:
|
|
296
|
+
distributed: whether to enable distributed training
|
|
297
|
+
rank: global rank of the current process
|
|
298
|
+
world_size: total number of processes
|
|
299
|
+
"""
|
|
300
|
+
if (not distributed) or (not dist.is_available()) or dist.is_initialized():
|
|
301
|
+
return
|
|
302
|
+
backend = "nccl" if device_id is not None else "gloo"
|
|
303
|
+
if backend == "nccl":
|
|
304
|
+
torch.cuda.set_device(device_id)
|
|
305
|
+
dist.init_process_group(
|
|
306
|
+
backend=backend, init_method="env://", rank=rank, world_size=world_size
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
def gather_numpy(self, array: np.ndarray | None) -> np.ndarray | None:
|
|
311
|
+
"""
|
|
312
|
+
Gather numpy arrays (or None) across ranks. Uses all_gather_object to avoid
|
|
313
|
+
shape mismatches and ensures every rank participates even when local data is empty.
|
|
314
|
+
"""
|
|
315
|
+
if not (self.distributed and dist.is_available() and dist.is_initialized()):
|
|
316
|
+
return array
|
|
317
|
+
|
|
318
|
+
world_size = dist.get_world_size()
|
|
319
|
+
gathered: list[np.ndarray | None] = [None for _ in range(world_size)]
|
|
320
|
+
dist.all_gather_object(gathered, array)
|
|
321
|
+
pieces: list[np.ndarray] = []
|
|
322
|
+
for item in gathered:
|
|
323
|
+
if item is None:
|
|
324
|
+
continue
|
|
325
|
+
item_np = np.asarray(item)
|
|
326
|
+
if item_np.size > 0:
|
|
327
|
+
pieces.append(item_np)
|
|
328
|
+
if not pieces:
|
|
329
|
+
return None
|
|
330
|
+
return np.concatenate(pieces, axis=0)
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
def add_distributed_sampler(
|
|
334
|
+
loader: DataLoader,
|
|
335
|
+
distributed: bool,
|
|
336
|
+
world_size: int,
|
|
337
|
+
rank: int,
|
|
338
|
+
shuffle: bool,
|
|
339
|
+
drop_last: bool,
|
|
340
|
+
default_batch_size: int,
|
|
341
|
+
is_main_process: bool = False,
|
|
342
|
+
) -> tuple[DataLoader, DistributedSampler | None]:
|
|
343
|
+
"""
|
|
344
|
+
add distributedsampler to a dataloader, this for distributed training
|
|
345
|
+
when each device has its own dataloader
|
|
346
|
+
"""
|
|
347
|
+
# early return if not distributed
|
|
348
|
+
if not (distributed and dist.is_available() and dist.is_initialized()):
|
|
349
|
+
return loader, None
|
|
350
|
+
# return if already has DistributedSampler
|
|
351
|
+
if isinstance(loader.sampler, DistributedSampler):
|
|
352
|
+
return loader, loader.sampler
|
|
353
|
+
dataset = getattr(loader, "dataset", None)
|
|
354
|
+
if dataset is None:
|
|
355
|
+
return loader, None
|
|
356
|
+
if isinstance(dataset, IterableDataset):
|
|
357
|
+
if is_main_process:
|
|
358
|
+
logging.info(
|
|
359
|
+
colorize(
|
|
360
|
+
"[Distributed Info] Iterable/streaming DataLoader provided; DistributedSampler is skipped. Ensure dataset handles sharding per rank.",
|
|
361
|
+
color="yellow",
|
|
362
|
+
)
|
|
363
|
+
)
|
|
364
|
+
return loader, None
|
|
365
|
+
sampler = DistributedSampler(
|
|
366
|
+
dataset,
|
|
367
|
+
num_replicas=world_size,
|
|
368
|
+
rank=rank,
|
|
369
|
+
shuffle=shuffle,
|
|
370
|
+
drop_last=drop_last,
|
|
371
|
+
)
|
|
372
|
+
loader_kwargs = {
|
|
373
|
+
"batch_size": (
|
|
374
|
+
loader.batch_size if loader.batch_size is not None else default_batch_size
|
|
375
|
+
),
|
|
376
|
+
"shuffle": False,
|
|
377
|
+
"sampler": sampler,
|
|
378
|
+
"num_workers": loader.num_workers,
|
|
379
|
+
"collate_fn": loader.collate_fn,
|
|
380
|
+
"drop_last": drop_last,
|
|
381
|
+
}
|
|
382
|
+
if getattr(loader, "pin_memory", False):
|
|
383
|
+
loader_kwargs["pin_memory"] = True
|
|
384
|
+
pin_memory_device = getattr(loader, "pin_memory_device", None)
|
|
385
|
+
if pin_memory_device:
|
|
386
|
+
loader_kwargs["pin_memory_device"] = pin_memory_device
|
|
387
|
+
timeout = getattr(loader, "timeout", None)
|
|
388
|
+
if timeout:
|
|
389
|
+
loader_kwargs["timeout"] = timeout
|
|
390
|
+
worker_init_fn = getattr(loader, "worker_init_fn", None)
|
|
391
|
+
if worker_init_fn is not None:
|
|
392
|
+
loader_kwargs["worker_init_fn"] = worker_init_fn
|
|
393
|
+
generator = getattr(loader, "generator", None)
|
|
394
|
+
if generator is not None:
|
|
395
|
+
loader_kwargs["generator"] = generator
|
|
396
|
+
if loader.num_workers > 0:
|
|
397
|
+
loader_kwargs["persistent_workers"] = getattr(
|
|
398
|
+
loader, "persistent_workers", False
|
|
399
|
+
)
|
|
400
|
+
prefetch_factor = getattr(loader, "prefetch_factor", None)
|
|
401
|
+
if prefetch_factor is not None:
|
|
402
|
+
loader_kwargs["prefetch_factor"] = prefetch_factor
|
|
403
|
+
distributed_loader = DataLoader(dataset, **loader_kwargs)
|
|
404
|
+
if is_main_process:
|
|
405
|
+
logging.info(
|
|
406
|
+
colorize(
|
|
407
|
+
"[Distributed Info] Attached DistributedSampler to provided DataLoader",
|
|
408
|
+
color="cyan",
|
|
409
|
+
)
|
|
410
|
+
)
|
|
411
|
+
return distributed_loader, sampler
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: nextrec
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.9
|
|
4
4
|
Summary: A comprehensive recommendation library with match, ranking, and multi-task learning models
|
|
5
5
|
Project-URL: Homepage, https://github.com/zerolovesea/NextRec
|
|
6
6
|
Project-URL: Repository, https://github.com/zerolovesea/NextRec
|
|
@@ -33,6 +33,7 @@ Requires-Dist: pyarrow<15.0.0,>=12.0.0; sys_platform == 'win32'
|
|
|
33
33
|
Requires-Dist: pyarrow>=12.0.0; sys_platform == 'darwin'
|
|
34
34
|
Requires-Dist: pyarrow>=16.0.0; sys_platform == 'linux' and python_version >= '3.12'
|
|
35
35
|
Requires-Dist: pyyaml>=6.0
|
|
36
|
+
Requires-Dist: rich>=13.7.0
|
|
36
37
|
Requires-Dist: scikit-learn<2.0,>=1.2; sys_platform == 'linux' and python_version < '3.12'
|
|
37
38
|
Requires-Dist: scikit-learn>=1.3.0; sys_platform == 'darwin'
|
|
38
39
|
Requires-Dist: scikit-learn>=1.3.0; sys_platform == 'linux' and python_version >= '3.12'
|
|
@@ -43,7 +44,6 @@ Requires-Dist: scipy>=1.10.0; sys_platform == 'win32'
|
|
|
43
44
|
Requires-Dist: scipy>=1.11.0; sys_platform == 'linux' and python_version >= '3.12'
|
|
44
45
|
Requires-Dist: torch>=2.0.0
|
|
45
46
|
Requires-Dist: torchvision>=0.15.0
|
|
46
|
-
Requires-Dist: tqdm>=4.65.0
|
|
47
47
|
Requires-Dist: transformers>=4.38.0
|
|
48
48
|
Provides-Extra: dev
|
|
49
49
|
Requires-Dist: jupyter>=1.0.0; extra == 'dev'
|
|
@@ -66,7 +66,7 @@ Description-Content-Type: text/markdown
|
|
|
66
66
|

|
|
67
67
|

|
|
68
68
|

|
|
69
|
-

|
|
70
70
|
|
|
71
71
|
中文文档 | [English Version](README_en.md)
|
|
72
72
|
|
|
@@ -99,7 +99,7 @@ NextRec是一个基于PyTorch的现代推荐系统框架,旨在为研究工程
|
|
|
99
99
|
|
|
100
100
|
## NextRec近期进展
|
|
101
101
|
|
|
102
|
-
- **12/12/2025** 在v0.4.
|
|
102
|
+
- **12/12/2025** 在v0.4.9中加入了[RQ-VAE](/nextrec/models/representation/rqvae.py)模块。配套的[数据集](/dataset/ecommerce_task.csv)和[代码](tutorials/notebooks/zh/使用RQ-VAE构建语义ID.ipynb)已经同步在仓库中
|
|
103
103
|
- **07/12/2025** 发布了NextRec CLI命令行工具,它允许用户根据配置文件进行一键训练和推理,我们提供了相关的[教程](/nextrec_cli_preset/NextRec-CLI_zh.md)和[教学代码](/nextrec_cli_preset)
|
|
104
104
|
- **03/12/2025** NextRec获得了100颗🌟!感谢大家的支持
|
|
105
105
|
- **06/12/2025** 在v0.4.1中支持了单机多卡的分布式DDP训练,并且提供了配套的[代码](tutorials/distributed)
|
|
@@ -241,11 +241,11 @@ nextrec --mode=train --train_config=path/to/train_config.yaml
|
|
|
241
241
|
nextrec --mode=predict --predict_config=path/to/predict_config.yaml
|
|
242
242
|
```
|
|
243
243
|
|
|
244
|
-
> 截止当前版本0.4.
|
|
244
|
+
> 截止当前版本0.4.9,NextRec CLI支持单机训练,分布式训练相关功能尚在开发中。
|
|
245
245
|
|
|
246
246
|
## 兼容平台
|
|
247
247
|
|
|
248
|
-
当前最新版本为0.4.
|
|
248
|
+
当前最新版本为0.4.9,所有模型和测试代码均已在以下平台通过验证,如果开发者在使用中遇到兼容问题,请在issue区提出错误报告及系统版本:
|
|
249
249
|
|
|
250
250
|
| 平台 | 配置 |
|
|
251
251
|
|------|------|
|