nextrec 0.4.3__py3-none-any.whl → 0.4.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nextrec/__version__.py +1 -1
- nextrec/models/ranking/xdeepfm.py +47 -5
- nextrec/utils/config.py +6 -0
- nextrec/utils/initializer.py +12 -16
- {nextrec-0.4.3.dist-info → nextrec-0.4.5.dist-info}/METADATA +34 -28
- {nextrec-0.4.3.dist-info → nextrec-0.4.5.dist-info}/RECORD +9 -9
- {nextrec-0.4.3.dist-info → nextrec-0.4.5.dist-info}/WHEEL +0 -0
- {nextrec-0.4.3.dist-info → nextrec-0.4.5.dist-info}/entry_points.txt +0 -0
- {nextrec-0.4.3.dist-info → nextrec-0.4.5.dist-info}/licenses/LICENSE +0 -0
nextrec/__version__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.4.
|
|
1
|
+
__version__ = "0.4.5"
|
|
@@ -1,12 +1,54 @@
|
|
|
1
1
|
"""
|
|
2
2
|
Date: create on 09/11/2025
|
|
3
3
|
Author:
|
|
4
|
-
|
|
4
|
+
Yang Zhou,zyaztec@gmail.com
|
|
5
5
|
Reference:
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
6
|
+
[1] Lian J, Zhou X, Zhang F, et al. xdeepfm: Combining explicit and implicit feature interactions
|
|
7
|
+
for recommender systems[C]//Proceedings of the 24th ACM SIGKDD international conference on
|
|
8
|
+
knowledge discovery & data mining. 2018: 1754-1763.
|
|
9
|
+
(https://arxiv.org/abs/1803.05170)
|
|
10
|
+
|
|
11
|
+
xDeepFM is a CTR prediction model that unifies explicit and implicit
|
|
12
|
+
feature interaction learning. It extends DeepFM by adding the
|
|
13
|
+
Compressed Interaction Network (CIN) to explicitly model high-order
|
|
14
|
+
interactions at the vector-wise level, while an MLP captures implicit
|
|
15
|
+
non-linear crosses. A linear term retains first-order signals, and all
|
|
16
|
+
three parts are learned jointly end-to-end.
|
|
17
|
+
|
|
18
|
+
In the forward pass:
|
|
19
|
+
(1) Embedding Layer: transforms sparse/sequence fields into dense vectors
|
|
20
|
+
(2) Linear Part: captures first-order contributions of sparse/sequence fields
|
|
21
|
+
(3) CIN: explicitly builds higher-order feature crosses via convolution over
|
|
22
|
+
outer products of field embeddings, with optional split-half connections
|
|
23
|
+
(4) Deep Part (MLP): models implicit, non-linear interactions across all fields
|
|
24
|
+
(5) Combination: sums outputs from linear, CIN, and deep branches before the
|
|
25
|
+
task-specific prediction layer
|
|
26
|
+
|
|
27
|
+
Key Advantages:
|
|
28
|
+
- Jointly learns first-order, explicit high-order, and implicit interactions
|
|
29
|
+
- CIN offers interpretable vector-wise crosses with controlled complexity
|
|
30
|
+
- Deep branch enhances representation power for non-linear patterns
|
|
31
|
+
- End-to-end optimization eliminates heavy manual feature engineering
|
|
32
|
+
- Flexible design supports both sparse and sequence features
|
|
33
|
+
|
|
34
|
+
xDeepFM 是一个 CTR 预估模型,将显式与隐式的特征交互学习统一到同一框架。
|
|
35
|
+
在 DeepFM 的基础上,额外引入了 CIN(Compressed Interaction Network)
|
|
36
|
+
显式建模高阶向量级交互,同时 MLP 负责隐式非线性交互,线性部分保留一阶信号,
|
|
37
|
+
三者联合训练。
|
|
38
|
+
|
|
39
|
+
前向流程:
|
|
40
|
+
(1) 嵌入层:将稀疏/序列特征映射为稠密向量
|
|
41
|
+
(2) 线性部分:建模稀疏/序列特征的一阶贡献
|
|
42
|
+
(3) CIN:通过对字段嵌入做外积并卷积,显式捕获高阶交叉,可选 split-half 以控参
|
|
43
|
+
(4) 深层部分(MLP):对所有特征进行隐式非线性交互建模
|
|
44
|
+
(5) 融合:线性、CIN、MLP 输出求和后进入任务预测层
|
|
45
|
+
|
|
46
|
+
主要优点:
|
|
47
|
+
- 同时学习一阶、显式高阶、隐式交互
|
|
48
|
+
- CIN 提供可解释的向量级交叉并可控复杂度
|
|
49
|
+
- 深层分支提升非线性表达能力
|
|
50
|
+
- 端到端训练降低人工特征工程需求
|
|
51
|
+
- 兼容稀疏与序列特征的建模
|
|
10
52
|
"""
|
|
11
53
|
|
|
12
54
|
import torch
|
nextrec/utils/config.py
CHANGED
|
@@ -160,8 +160,11 @@ def build_feature_objects(
|
|
|
160
160
|
SparseFeature(
|
|
161
161
|
name=name,
|
|
162
162
|
vocab_size=int(vocab_size),
|
|
163
|
+
embedding_name=embed_cfg.get("embedding_name", name),
|
|
163
164
|
embedding_dim=embed_cfg.get("embedding_dim"),
|
|
164
165
|
padding_idx=embed_cfg.get("padding_idx"),
|
|
166
|
+
init_type=embed_cfg.get("init_type", "xavier_uniform"),
|
|
167
|
+
init_params=embed_cfg.get("init_params"),
|
|
165
168
|
l1_reg=embed_cfg.get("l1_reg", 0.0),
|
|
166
169
|
l2_reg=embed_cfg.get("l2_reg", 1e-5),
|
|
167
170
|
trainable=embed_cfg.get("trainable", True),
|
|
@@ -184,9 +187,12 @@ def build_feature_objects(
|
|
|
184
187
|
name=name,
|
|
185
188
|
vocab_size=int(vocab_size),
|
|
186
189
|
max_len=embed_cfg.get("max_len") or proc_cfg.get("max_len", 50),
|
|
190
|
+
embedding_name=embed_cfg.get("embedding_name", name),
|
|
187
191
|
embedding_dim=embed_cfg.get("embedding_dim"),
|
|
188
192
|
padding_idx=embed_cfg.get("padding_idx"),
|
|
189
193
|
combiner=embed_cfg.get("combiner", "mean"),
|
|
194
|
+
init_type=embed_cfg.get("init_type", "xavier_uniform"),
|
|
195
|
+
init_params=embed_cfg.get("init_params"),
|
|
190
196
|
l1_reg=embed_cfg.get("l1_reg", 0.0),
|
|
191
197
|
l2_reg=embed_cfg.get("l2_reg", 1e-5),
|
|
192
198
|
trainable=embed_cfg.get("trainable", True),
|
nextrec/utils/initializer.py
CHANGED
|
@@ -5,10 +5,9 @@ Date: create on 13/11/2025
|
|
|
5
5
|
Author: Yang Zhou, zyaztec@gmail.com
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
|
-
from typing import Any, Dict, Set
|
|
8
|
+
from typing import Any, Dict, Set
|
|
9
9
|
|
|
10
10
|
import torch.nn as nn
|
|
11
|
-
from torch.nn.init import _NonlinearityType
|
|
12
11
|
|
|
13
12
|
KNOWN_NONLINEARITIES: Set[str] = {
|
|
14
13
|
"linear",
|
|
@@ -27,28 +26,25 @@ KNOWN_NONLINEARITIES: Set[str] = {
|
|
|
27
26
|
}
|
|
28
27
|
|
|
29
28
|
|
|
30
|
-
def resolve_nonlinearity(activation: str
|
|
31
|
-
if
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
# Fall back to linear for custom activations (gain handled separately).
|
|
35
|
-
return "linear"
|
|
36
|
-
return activation
|
|
29
|
+
def resolve_nonlinearity(activation: str):
|
|
30
|
+
if activation in KNOWN_NONLINEARITIES:
|
|
31
|
+
return activation
|
|
32
|
+
return "linear"
|
|
37
33
|
|
|
38
34
|
|
|
39
|
-
def resolve_gain(activation: str
|
|
35
|
+
def resolve_gain(activation: str, param: Dict[str, Any]) -> float:
|
|
40
36
|
if "gain" in param:
|
|
41
37
|
return param["gain"]
|
|
42
38
|
nonlinearity = resolve_nonlinearity(activation)
|
|
43
39
|
try:
|
|
44
|
-
return nn.init.calculate_gain(nonlinearity, param.get("param"))
|
|
40
|
+
return nn.init.calculate_gain(nonlinearity, param.get("param")) # type: ignore
|
|
45
41
|
except ValueError:
|
|
46
|
-
return 1.0
|
|
42
|
+
return 1.0
|
|
47
43
|
|
|
48
44
|
|
|
49
45
|
def get_initializer(
|
|
50
46
|
init_type: str = "normal",
|
|
51
|
-
activation: str
|
|
47
|
+
activation: str = "linear",
|
|
52
48
|
param: Dict[str, Any] | None = None,
|
|
53
49
|
):
|
|
54
50
|
param = param or {}
|
|
@@ -62,11 +58,11 @@ def get_initializer(
|
|
|
62
58
|
nn.init.xavier_normal_(tensor, gain=gain)
|
|
63
59
|
elif init_type == "kaiming_uniform":
|
|
64
60
|
nn.init.kaiming_uniform_(
|
|
65
|
-
tensor, a=param.get("a", 0), nonlinearity=nonlinearity
|
|
61
|
+
tensor, a=param.get("a", 0), nonlinearity=nonlinearity # type: ignore
|
|
66
62
|
)
|
|
67
63
|
elif init_type == "kaiming_normal":
|
|
68
64
|
nn.init.kaiming_normal_(
|
|
69
|
-
tensor, a=param.get("a", 0), nonlinearity=nonlinearity
|
|
65
|
+
tensor, a=param.get("a", 0), nonlinearity=nonlinearity # type: ignore
|
|
70
66
|
)
|
|
71
67
|
elif init_type == "orthogonal":
|
|
72
68
|
nn.init.orthogonal_(tensor, gain=gain)
|
|
@@ -80,4 +76,4 @@ def get_initializer(
|
|
|
80
76
|
raise ValueError(f"Unknown init_type: {init_type}")
|
|
81
77
|
return tensor
|
|
82
78
|
|
|
83
|
-
return initializer_fn
|
|
79
|
+
return initializer_fn
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: nextrec
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.5
|
|
4
4
|
Summary: A comprehensive recommendation library with match, ranking, and multi-task learning models
|
|
5
5
|
Project-URL: Homepage, https://github.com/zerolovesea/NextRec
|
|
6
6
|
Project-URL: Repository, https://github.com/zerolovesea/NextRec
|
|
@@ -63,7 +63,7 @@ Description-Content-Type: text/markdown
|
|
|
63
63
|

|
|
64
64
|

|
|
65
65
|

|
|
66
|
-

|
|
67
67
|
|
|
68
68
|
English | [中文文档](README_zh.md)
|
|
69
69
|
|
|
@@ -84,60 +84,65 @@ English | [中文文档](README_zh.md)
|
|
|
84
84
|
|
|
85
85
|
## Introduction
|
|
86
86
|
|
|
87
|
-
NextRec is a modern recommendation
|
|
87
|
+
NextRec is a modern recommendation framework built on PyTorch, delivering a unified experience for modeling, training, and evaluation. Design with rich model implementations, data-processing utilities, and engineering-ready training components. NextRec focuses on large-scale industrial recommendation scenarios on Spark clusters, training on massive offline features(`parquet/csv`).
|
|
88
88
|
|
|
89
89
|
## Why NextRec
|
|
90
90
|
|
|
91
|
-
- **Unified feature engineering & data pipeline**: NextRec
|
|
92
|
-
- **Multi-scenario
|
|
93
|
-
- **Developer-friendly experience**:
|
|
94
|
-
- **
|
|
95
|
-
- **Efficient training & evaluation**: NextRec's standardized training engine comes with various optimizers, learning rate schedulers, early stopping, model checkpoints, and detailed log management built-in, ready to use out of the box.
|
|
91
|
+
- **Unified feature engineering & data pipeline**: NextRec provide unified Dense/Sparse/Sequence feature definitions, DataProcessor, and batch-optimized RecDataLoader, matching offline feature training/inference in industrial big-data settings.
|
|
92
|
+
- **Multi-scenario coverage**: Ranking (CTR/CVR), retrieval, multi-task learning, and more marketing/rec models, with a continuously expanding model zoo.
|
|
93
|
+
- **Developer-friendly experience**: `Stream processing/distributed training/inference` for `csv/parquet/pathlike` data, plus GPU/MPS acceleration and visualization support.
|
|
94
|
+
- **Efficient training & evaluation**: Standardized engine with optimizers, LR schedulers, early stopping, checkpoints, and detailed logging out of the box.
|
|
96
95
|
|
|
97
96
|
## Architecture
|
|
98
97
|
|
|
99
|
-
NextRec adopts a modular
|
|
98
|
+
NextRec adopts a modular design, enabling full-pipeline reusability and scalability across data processing → model construction → training & evaluation → inference & deployment. Its core components include: a Feature-Spec-driven Embedding architecture, the BaseModel abstraction, a set of independent reusable Layers, a unified DataLoader for both training and inference, and a ready-to-use Model Zoo.
|
|
100
99
|
|
|
101
100
|

|
|
102
101
|
|
|
103
|
-
> The project borrows ideas from excellent open-source rec libraries
|
|
102
|
+
> The project borrows ideas from excellent open-source rec libraries, for example: [torch-rechub](https://github.com/datawhalechina/torch-rechub). torch-rechub remains mature in architecture and models; the author contributed a bit there—feel free to check it out.
|
|
104
103
|
|
|
105
104
|
---
|
|
106
105
|
|
|
107
106
|
## Installation
|
|
108
107
|
|
|
109
|
-
You can quickly install the latest NextRec via `pip install nextrec`; Python 3.10+ is required.
|
|
108
|
+
You can quickly install the latest NextRec via `pip install nextrec`; Python 3.10+ is required. If you want to run some tutorial codes, pull this project first:
|
|
110
109
|
|
|
110
|
+
```bash
|
|
111
|
+
git clone https://github.com/zerolovesea/NextRec.git
|
|
112
|
+
cd NextRec/
|
|
113
|
+
pip install nextrec # or pip install -e .
|
|
114
|
+
```
|
|
111
115
|
|
|
112
116
|
## Tutorials
|
|
113
117
|
|
|
114
|
-
|
|
118
|
+
See `tutorials/` for examples covering ranking, retrieval, multi-task learning, and data processing:
|
|
119
|
+
|
|
120
|
+
- [movielen_ranking_deepfm.py](/tutorials/movielen_ranking_deepfm.py) — DeepFM training on MovieLens 100k dataset
|
|
121
|
+
- [example_ranking_din.py](/tutorials/example_ranking_din.py) — DIN Deep Interest Network training on e-commerce dataset
|
|
122
|
+
- [example_multitask.py](/tutorials/example_multitask.py) — ESMM multi-task learning training on e-commerce dataset
|
|
123
|
+
- [movielen_match_dssm.py](/tutorials/example_match_dssm.py) — DSSM retrieval model training on MovieLens 100k dataset
|
|
115
124
|
|
|
116
|
-
- [
|
|
117
|
-
- [
|
|
118
|
-
- [
|
|
119
|
-
- [movielen_match_dssm.py](/tutorials/example_match_dssm.py) — DSSM retrieval model example trained on MovieLens 100k dataset
|
|
120
|
-
- [run_all_ranking_models.py](/tutorials/run_all_ranking_models.py) — Quickly verify the availability of all ranking models
|
|
121
|
-
- [run_all_multitask_models.py](/tutorials/run_all_multitask_models.py) — Quickly verify the availability of all multi-task models
|
|
122
|
-
- [run_all_match_models.py](/tutorials/run_all_match_models.py) — Quickly verify the availability of all retrieval models
|
|
125
|
+
- [run_all_ranking_models.py](/tutorials/run_all_ranking_models.py) — Quickly validate availability of all ranking models
|
|
126
|
+
- [run_all_multitask_models.py](/tutorials/run_all_multitask_models.py) — Quickly validate availability of all multi-task models
|
|
127
|
+
- [run_all_match_models.py](/tutorials/run_all_match_models.py) — Quickly validate availability of all retrieval models
|
|
123
128
|
|
|
124
|
-
|
|
129
|
+
To dive deeper into NextRec framework details, Jupyter notebooks are available:
|
|
125
130
|
|
|
126
|
-
- [
|
|
127
|
-
- [
|
|
131
|
+
- [Hands on the NextRec framework](/tutorials/notebooks/en/Hands%20on%20nextrec.ipynb)
|
|
132
|
+
- [Using the data processor for preprocessing](/tutorials/notebooks/en/Hands%20on%20dataprocessor.ipynb)
|
|
128
133
|
|
|
129
134
|
## 5-Minute Quick Start
|
|
130
135
|
|
|
131
|
-
We provide a detailed quick
|
|
136
|
+
We provide a detailed quick-start guide and paired datasets to help you get familiar with different features of NextRec framework. In `datasets/` you'll find an e-commerce scenario test dataset like this:
|
|
132
137
|
|
|
133
138
|
| user_id | item_id | dense_0 | dense_1 | dense_2 | dense_3 | dense_4 | dense_5 | dense_6 | dense_7 | sparse_0 | sparse_1 | sparse_2 | sparse_3 | sparse_4 | sparse_5 | sparse_6 | sparse_7 | sparse_8 | sparse_9 | sequence_0 | sequence_1 | label |
|
|
134
139
|
|--------|---------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------------------------|-----------------------------------------------------------|-------|
|
|
135
140
|
| 1 | 7817 | 0.14704075 | 0.31020382 | 0.77780896 | 0.944897 | 0.62315375 | 0.57124174 | 0.77009535 | 0.3211029 | 315 | 260 | 379 | 146 | 168 | 161 | 138 | 88 | 5 | 312 | [170,175,97,338,105,353,272,546,175,545,463,128,0,0,0] | [368,414,820,405,548,63,327,0,0,0,0,0,0,0,0] | 0 |
|
|
136
141
|
| 1 | 3579 | 0.77811223 | 0.80359334 | 0.5185201 | 0.91091245 | 0.043562356 | 0.82142705 | 0.8803686 | 0.33748195 | 149 | 229 | 442 | 6 | 167 | 252 | 25 | 402 | 7 | 168 | [179,48,61,551,284,165,344,151,0,0,0,0,0,0,0] | [814,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 1 |
|
|
137
142
|
|
|
138
|
-
|
|
143
|
+
Below is a short example showing how to train a DIN (Deep Interest Network) model. You can also run `python tutorials/example_ranking_din.py` directly to execute the training and inference code.
|
|
139
144
|
|
|
140
|
-
After
|
|
145
|
+
After training starts, you can find detailed training logs at `nextrec_logs/din_tutorial`.
|
|
141
146
|
|
|
142
147
|
```python
|
|
143
148
|
import pandas as pd
|
|
@@ -215,6 +220,7 @@ metrics = model.evaluate(
|
|
|
215
220
|
NextRec provides a powerful command-line interface for model training and prediction using YAML configuration files. For detailed CLI documentation, see:
|
|
216
221
|
|
|
217
222
|
- [NextRec CLI User Guide](/nextrec_cli_preset/NextRec-CLI.md) - Complete guide for using the CLI
|
|
223
|
+
- [NextRec CLI Configuration Examples](/nextrec_cli_preset/) - CLI configuration file examples
|
|
218
224
|
|
|
219
225
|
```bash
|
|
220
226
|
# Train a model
|
|
@@ -224,11 +230,11 @@ nextrec --mode=train --train_config=path/to/train_config.yaml
|
|
|
224
230
|
nextrec --mode=predict --predict_config=path/to/predict_config.yaml
|
|
225
231
|
```
|
|
226
232
|
|
|
227
|
-
> As of version 0.4.
|
|
233
|
+
> As of version 0.4.5, NextRec CLI supports single-machine training; distributed training features are currently under development.
|
|
228
234
|
|
|
229
235
|
## Platform Compatibility
|
|
230
236
|
|
|
231
|
-
The current version is 0.4.
|
|
237
|
+
The current version is 0.4.5. All models and test code have been validated on the following platforms. If you encounter compatibility issues, please report them in the issue tracker with your system version:
|
|
232
238
|
|
|
233
239
|
| Platform | Configuration |
|
|
234
240
|
|----------|---------------|
|
|
@@ -299,7 +305,7 @@ We welcome contributions of any form!
|
|
|
299
305
|
4. Push your branch (`git push origin feature/AmazingFeature`)
|
|
300
306
|
5. Open a Pull Request
|
|
301
307
|
|
|
302
|
-
> Before submitting a PR, please run `python test/run_tests.py` and `python scripts/format_code.py` to ensure all tests pass and code style is
|
|
308
|
+
> Before submitting a PR, please run `python test/run_tests.py` and `python scripts/format_code.py` to ensure all tests pass and code style is consistent.
|
|
303
309
|
|
|
304
310
|
### Code Style
|
|
305
311
|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
nextrec/__init__.py,sha256=_M3oUqyuvQ5k8Th_3wId6hQ_caclh7M5ad51XN09m98,235
|
|
2
|
-
nextrec/__version__.py,sha256=
|
|
2
|
+
nextrec/__version__.py,sha256=ErkLkI2TDBX1OIqi2GGa20CPeu4ZculEi-XffRbLU6M,22
|
|
3
3
|
nextrec/cli.py,sha256=b6tv7ZO7UBRVR6IfyqVP24JEcdu9-2_vV5MlfWcQucM,18468
|
|
4
4
|
nextrec/basic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
5
|
nextrec/basic/activation.py,sha256=uzTWfCOtBSkbu_Gk9XBNTj8__s241CaYLJk6l8nGX9I,2885
|
|
@@ -49,21 +49,21 @@ nextrec/models/ranking/fm.py,sha256=ko_Eao9UfklakEk_TVEFZSyVAojmtclo1uIMBhL4FLU,
|
|
|
49
49
|
nextrec/models/ranking/masknet.py,sha256=IDp2XyGHdjuiUTIBv2JxNQlMw5ANdv12_9YJOX7tnzw,12367
|
|
50
50
|
nextrec/models/ranking/pnn.py,sha256=twwixy26mfAVaI9AqNnMLdwOG-WtDga60xsNiyJrFjI,8174
|
|
51
51
|
nextrec/models/ranking/widedeep.py,sha256=Xm2klmKBOoSKWCBQN7FhwLStu0BHSTOgAJ9kwLmtiFY,5077
|
|
52
|
-
nextrec/models/ranking/xdeepfm.py,sha256=
|
|
52
|
+
nextrec/models/ranking/xdeepfm.py,sha256=kcPLoNC1940YxRMgWZS4mSxIXlwtc_HfNDIae_uYrsU,8156
|
|
53
53
|
nextrec/utils/__init__.py,sha256=zqU9vjRUpVzJepcvdbxboik68K5jnMR40kdVjr6tpXY,2599
|
|
54
|
-
nextrec/utils/config.py,sha256=
|
|
54
|
+
nextrec/utils/config.py,sha256=zbcZtpB24FQxUPYyY1MGilzn_rinhUC_L4iaGGXqLg4,18488
|
|
55
55
|
nextrec/utils/device.py,sha256=DtgmrJnVJQKtgtVUbm0SW0vZ5Le0R9HU8TsvqPnRLZc,2453
|
|
56
56
|
nextrec/utils/distributed.py,sha256=tIkgUjzEjR_FHOm9ckyM8KddkCfxNSogP-rdHcVGhuk,4782
|
|
57
57
|
nextrec/utils/embedding.py,sha256=YSVnBeve0hVTPSfyxN4weGCK_Jd8SezRBqZgwJAR3Qw,496
|
|
58
58
|
nextrec/utils/feature.py,sha256=LcXaWP98zMZhJTKL92VVHX8mqOE5Q0MyVq3hw5Z9kxs,300
|
|
59
59
|
nextrec/utils/file.py,sha256=s2cO1LRbU7xPeAbVoOA6XOoV6wvLrW6oy6p9fVSz9pc,3024
|
|
60
|
-
nextrec/utils/initializer.py,sha256=
|
|
60
|
+
nextrec/utils/initializer.py,sha256=4E3WgZNRBmO789m-Ip-7nmt4iPRcWpWNNMuw_xn1IGE,2202
|
|
61
61
|
nextrec/utils/model.py,sha256=dYl1XfIZt6aVjNyV2AAhcArwFRMcEAKrjG_pr8AVHs0,1163
|
|
62
62
|
nextrec/utils/optimizer.py,sha256=eX8baIvWOpwDTGninbyp6pQfzdHbIL62GTi4ldpYcfM,2337
|
|
63
63
|
nextrec/utils/synthetic_data.py,sha256=WSbC5cs7TbuDc57BCO74S7VJdlK0fQmnZA2KM4vUpoI,17566
|
|
64
64
|
nextrec/utils/tensor.py,sha256=Z6MBpSuQpHw4kGjeKxG0cXZMpRBCM45zTKhk9WolyiM,2220
|
|
65
|
-
nextrec-0.4.
|
|
66
|
-
nextrec-0.4.
|
|
67
|
-
nextrec-0.4.
|
|
68
|
-
nextrec-0.4.
|
|
69
|
-
nextrec-0.4.
|
|
65
|
+
nextrec-0.4.5.dist-info/METADATA,sha256=WDMMfIO6LNfmnZsSVuZHM7YYv3UJi6ZPcvcMRMlwG_4,18094
|
|
66
|
+
nextrec-0.4.5.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
67
|
+
nextrec-0.4.5.dist-info/entry_points.txt,sha256=NN-dNSdfMRTv86bNXM7d3ZEPW2BQC6bRi7QP7i9cIps,45
|
|
68
|
+
nextrec-0.4.5.dist-info/licenses/LICENSE,sha256=2fQfVKeafywkni7MYHyClC6RGGC3laLTXCNBx-ubtp0,1064
|
|
69
|
+
nextrec-0.4.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|