nextrec 0.4.28__py3-none-any.whl → 0.4.30__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nextrec/__version__.py +1 -1
- nextrec/basic/loggers.py +1 -1
- nextrec/models/ranking/afm.py +4 -0
- nextrec/models/ranking/autoint.py +4 -0
- nextrec/models/ranking/dcn.py +4 -0
- nextrec/models/ranking/dcn_v2.py +4 -0
- nextrec/models/ranking/deepfm.py +4 -0
- nextrec/models/ranking/dien.py +4 -0
- nextrec/models/ranking/din.py +4 -0
- nextrec/models/ranking/eulernet.py +4 -0
- nextrec/models/ranking/ffm.py +4 -0
- nextrec/models/ranking/fibinet.py +4 -0
- nextrec/models/ranking/fm.py +4 -0
- nextrec/models/ranking/lr.py +4 -0
- nextrec/models/ranking/masknet.py +4 -0
- nextrec/models/ranking/pnn.py +4 -0
- nextrec/models/ranking/widedeep.py +7 -1
- nextrec/models/ranking/xdeepfm.py +6 -1
- {nextrec-0.4.28.dist-info → nextrec-0.4.30.dist-info}/METADATA +5 -5
- {nextrec-0.4.28.dist-info → nextrec-0.4.30.dist-info}/RECORD +23 -23
- {nextrec-0.4.28.dist-info → nextrec-0.4.30.dist-info}/WHEEL +0 -0
- {nextrec-0.4.28.dist-info → nextrec-0.4.30.dist-info}/entry_points.txt +0 -0
- {nextrec-0.4.28.dist-info → nextrec-0.4.30.dist-info}/licenses/LICENSE +0 -0
nextrec/__version__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.4.
|
|
1
|
+
__version__ = "0.4.30"
|
nextrec/basic/loggers.py
CHANGED
|
@@ -111,7 +111,7 @@ def setup_logger(session_id: str | os.PathLike | None = None):
|
|
|
111
111
|
session = create_session(str(session_id) if session_id is not None else None)
|
|
112
112
|
log_dir = session.logs_dir
|
|
113
113
|
log_dir.mkdir(parents=True, exist_ok=True)
|
|
114
|
-
log_file = log_dir / "
|
|
114
|
+
log_file = log_dir / "runs_log.txt"
|
|
115
115
|
|
|
116
116
|
console_format = "%(message)s"
|
|
117
117
|
file_format = "%(asctime)s - %(levelname)s - %(message)s"
|
nextrec/models/ranking/afm.py
CHANGED
|
@@ -59,6 +59,8 @@ class AFM(BaseModel):
|
|
|
59
59
|
dense_features: list[DenseFeature] | None = None,
|
|
60
60
|
sparse_features: list[SparseFeature] | None = None,
|
|
61
61
|
sequence_features: list[SequenceFeature] | None = None,
|
|
62
|
+
target: str | list[str] | None = None,
|
|
63
|
+
task: str | list[str] | None = None,
|
|
62
64
|
attention_dim: int = 32,
|
|
63
65
|
attention_dropout: float = 0.0,
|
|
64
66
|
**kwargs,
|
|
@@ -72,6 +74,8 @@ class AFM(BaseModel):
|
|
|
72
74
|
dense_features=dense_features,
|
|
73
75
|
sparse_features=sparse_features,
|
|
74
76
|
sequence_features=sequence_features,
|
|
77
|
+
target=target,
|
|
78
|
+
task=task,
|
|
75
79
|
**kwargs,
|
|
76
80
|
)
|
|
77
81
|
|
|
@@ -75,6 +75,8 @@ class AutoInt(BaseModel):
|
|
|
75
75
|
dense_features: list[DenseFeature],
|
|
76
76
|
sparse_features: list[SparseFeature],
|
|
77
77
|
sequence_features: list[SequenceFeature],
|
|
78
|
+
target: str | list[str] | None = None,
|
|
79
|
+
task: str | list[str] | None = None,
|
|
78
80
|
att_layer_num: int = 3,
|
|
79
81
|
att_embedding_dim: int = 8,
|
|
80
82
|
att_head_num: int = 2,
|
|
@@ -87,6 +89,8 @@ class AutoInt(BaseModel):
|
|
|
87
89
|
dense_features=dense_features,
|
|
88
90
|
sparse_features=sparse_features,
|
|
89
91
|
sequence_features=sequence_features,
|
|
92
|
+
target=target,
|
|
93
|
+
task=task,
|
|
90
94
|
**kwargs,
|
|
91
95
|
)
|
|
92
96
|
|
nextrec/models/ranking/dcn.py
CHANGED
|
@@ -93,6 +93,8 @@ class DCN(BaseModel):
|
|
|
93
93
|
dense_features: list[DenseFeature] | None = None,
|
|
94
94
|
sparse_features: list[SparseFeature] | None = None,
|
|
95
95
|
sequence_features: list[SequenceFeature] | None = None,
|
|
96
|
+
target: str | list[str] | None = None,
|
|
97
|
+
task: str | list[str] | None = None,
|
|
96
98
|
cross_num: int = 3,
|
|
97
99
|
mlp_params: dict | None = None,
|
|
98
100
|
**kwargs,
|
|
@@ -107,6 +109,8 @@ class DCN(BaseModel):
|
|
|
107
109
|
dense_features=dense_features,
|
|
108
110
|
sparse_features=sparse_features,
|
|
109
111
|
sequence_features=sequence_features,
|
|
112
|
+
target=target,
|
|
113
|
+
task=task,
|
|
110
114
|
**kwargs,
|
|
111
115
|
)
|
|
112
116
|
|
nextrec/models/ranking/dcn_v2.py
CHANGED
|
@@ -191,6 +191,8 @@ class DCNv2(BaseModel):
|
|
|
191
191
|
dense_features: list[DenseFeature] | None = None,
|
|
192
192
|
sparse_features: list[SparseFeature] | None = None,
|
|
193
193
|
sequence_features: list[SequenceFeature] | None = None,
|
|
194
|
+
target: str | list[str] | None = None,
|
|
195
|
+
task: str | list[str] | None = None,
|
|
194
196
|
cross_num: int = 3,
|
|
195
197
|
cross_type: Literal["matrix", "mix", "low_rank"] = "matrix",
|
|
196
198
|
architecture: Literal["parallel", "stacked"] = "parallel",
|
|
@@ -208,6 +210,8 @@ class DCNv2(BaseModel):
|
|
|
208
210
|
dense_features=dense_features,
|
|
209
211
|
sparse_features=sparse_features,
|
|
210
212
|
sequence_features=sequence_features,
|
|
213
|
+
target=target,
|
|
214
|
+
task=task,
|
|
211
215
|
**kwargs,
|
|
212
216
|
)
|
|
213
217
|
|
nextrec/models/ranking/deepfm.py
CHANGED
|
@@ -61,6 +61,8 @@ class DeepFM(BaseModel):
|
|
|
61
61
|
dense_features: list[DenseFeature] | None = None,
|
|
62
62
|
sparse_features: list[SparseFeature] | None = None,
|
|
63
63
|
sequence_features: list[SequenceFeature] | None = None,
|
|
64
|
+
target: str | list[str] | None = None,
|
|
65
|
+
task: str | list[str] | None = None,
|
|
64
66
|
mlp_params: dict | None = None,
|
|
65
67
|
**kwargs,
|
|
66
68
|
):
|
|
@@ -74,6 +76,8 @@ class DeepFM(BaseModel):
|
|
|
74
76
|
dense_features=dense_features,
|
|
75
77
|
sparse_features=sparse_features,
|
|
76
78
|
sequence_features=sequence_features,
|
|
79
|
+
target=target,
|
|
80
|
+
task=task,
|
|
77
81
|
**kwargs,
|
|
78
82
|
)
|
|
79
83
|
|
nextrec/models/ranking/dien.py
CHANGED
|
@@ -203,6 +203,8 @@ class DIEN(BaseModel):
|
|
|
203
203
|
dense_features: list[DenseFeature] | None = None,
|
|
204
204
|
sparse_features: list[SparseFeature] | None = None,
|
|
205
205
|
sequence_features: list[SequenceFeature] | None = None,
|
|
206
|
+
target: str | list[str] | None = None,
|
|
207
|
+
task: str | list[str] | None = None,
|
|
206
208
|
behavior_feature_name: str | None = None,
|
|
207
209
|
candidate_feature_name: str | None = None,
|
|
208
210
|
neg_behavior_feature_name: str | None = None,
|
|
@@ -226,6 +228,8 @@ class DIEN(BaseModel):
|
|
|
226
228
|
dense_features=dense_features,
|
|
227
229
|
sparse_features=sparse_features,
|
|
228
230
|
sequence_features=sequence_features,
|
|
231
|
+
target=target,
|
|
232
|
+
task=task,
|
|
229
233
|
**kwargs,
|
|
230
234
|
)
|
|
231
235
|
|
nextrec/models/ranking/din.py
CHANGED
|
@@ -72,6 +72,8 @@ class DIN(BaseModel):
|
|
|
72
72
|
dense_features: list[DenseFeature] | None = None,
|
|
73
73
|
sparse_features: list[SparseFeature] | None = None,
|
|
74
74
|
sequence_features: list[SequenceFeature] | None = None,
|
|
75
|
+
target: str | list[str] | None = None,
|
|
76
|
+
task: str | list[str] | None = None,
|
|
75
77
|
behavior_feature_name: str | None = None,
|
|
76
78
|
candidate_feature_name: str | None = None,
|
|
77
79
|
mlp_params: dict | None = None,
|
|
@@ -92,6 +94,8 @@ class DIN(BaseModel):
|
|
|
92
94
|
dense_features=dense_features,
|
|
93
95
|
sparse_features=sparse_features,
|
|
94
96
|
sequence_features=sequence_features,
|
|
97
|
+
target=target,
|
|
98
|
+
task=task,
|
|
95
99
|
**kwargs,
|
|
96
100
|
)
|
|
97
101
|
|
|
@@ -199,6 +199,8 @@ class EulerNet(BaseModel):
|
|
|
199
199
|
dense_features: list[DenseFeature] | None = None,
|
|
200
200
|
sparse_features: list[SparseFeature] | None = None,
|
|
201
201
|
sequence_features: list[SequenceFeature] | None = None,
|
|
202
|
+
target: str | list[str] | None = None,
|
|
203
|
+
task: str | list[str] | None = None,
|
|
202
204
|
num_layers: int = 2,
|
|
203
205
|
num_orders: int = 8,
|
|
204
206
|
use_implicit: bool = True,
|
|
@@ -215,6 +217,8 @@ class EulerNet(BaseModel):
|
|
|
215
217
|
dense_features=dense_features,
|
|
216
218
|
sparse_features=sparse_features,
|
|
217
219
|
sequence_features=sequence_features,
|
|
220
|
+
target=target,
|
|
221
|
+
task=task,
|
|
218
222
|
**kwargs,
|
|
219
223
|
)
|
|
220
224
|
|
nextrec/models/ranking/ffm.py
CHANGED
|
@@ -62,6 +62,8 @@ class FFM(BaseModel):
|
|
|
62
62
|
dense_features: list[DenseFeature] | None = None,
|
|
63
63
|
sparse_features: list[SparseFeature] | None = None,
|
|
64
64
|
sequence_features: list[SequenceFeature] | None = None,
|
|
65
|
+
target: str | list[str] | None = None,
|
|
66
|
+
task: str | list[str] | None = None,
|
|
65
67
|
**kwargs,
|
|
66
68
|
):
|
|
67
69
|
dense_features = dense_features or []
|
|
@@ -72,6 +74,8 @@ class FFM(BaseModel):
|
|
|
72
74
|
dense_features=dense_features,
|
|
73
75
|
sparse_features=sparse_features,
|
|
74
76
|
sequence_features=sequence_features,
|
|
77
|
+
target=target,
|
|
78
|
+
task=task,
|
|
75
79
|
**kwargs,
|
|
76
80
|
)
|
|
77
81
|
|
|
@@ -68,6 +68,8 @@ class FiBiNET(BaseModel):
|
|
|
68
68
|
dense_features: list[DenseFeature] | None = None,
|
|
69
69
|
sparse_features: list[SparseFeature] | None = None,
|
|
70
70
|
sequence_features: list[SequenceFeature] | None = None,
|
|
71
|
+
target: str | list[str] | None = None,
|
|
72
|
+
task: str | list[str] | None = None,
|
|
71
73
|
mlp_params: dict | None = None,
|
|
72
74
|
interaction_combo: Literal[
|
|
73
75
|
"01", "11", "10", "00"
|
|
@@ -88,6 +90,8 @@ class FiBiNET(BaseModel):
|
|
|
88
90
|
dense_features=dense_features,
|
|
89
91
|
sparse_features=sparse_features,
|
|
90
92
|
sequence_features=sequence_features,
|
|
93
|
+
target=target,
|
|
94
|
+
task=task,
|
|
91
95
|
**kwargs,
|
|
92
96
|
)
|
|
93
97
|
|
nextrec/models/ranking/fm.py
CHANGED
|
@@ -59,6 +59,8 @@ class FM(BaseModel):
|
|
|
59
59
|
dense_features: list[DenseFeature] | None = None,
|
|
60
60
|
sparse_features: list[SparseFeature] | None = None,
|
|
61
61
|
sequence_features: list[SequenceFeature] | None = None,
|
|
62
|
+
target: str | list[str] | None = None,
|
|
63
|
+
task: str | list[str] | None = None,
|
|
62
64
|
**kwargs,
|
|
63
65
|
):
|
|
64
66
|
|
|
@@ -70,6 +72,8 @@ class FM(BaseModel):
|
|
|
70
72
|
dense_features=dense_features,
|
|
71
73
|
sparse_features=sparse_features,
|
|
72
74
|
sequence_features=sequence_features,
|
|
75
|
+
target=target,
|
|
76
|
+
task=task,
|
|
73
77
|
**kwargs,
|
|
74
78
|
)
|
|
75
79
|
|
nextrec/models/ranking/lr.py
CHANGED
|
@@ -58,6 +58,8 @@ class LR(BaseModel):
|
|
|
58
58
|
dense_features: list[DenseFeature] | None = None,
|
|
59
59
|
sparse_features: list[SparseFeature] | None = None,
|
|
60
60
|
sequence_features: list[SequenceFeature] | None = None,
|
|
61
|
+
target: str | list[str] | None = None,
|
|
62
|
+
task: str | list[str] | None = None,
|
|
61
63
|
**kwargs,
|
|
62
64
|
):
|
|
63
65
|
|
|
@@ -69,6 +71,8 @@ class LR(BaseModel):
|
|
|
69
71
|
dense_features=dense_features,
|
|
70
72
|
sparse_features=sparse_features,
|
|
71
73
|
sequence_features=sequence_features,
|
|
74
|
+
target=target,
|
|
75
|
+
task=task,
|
|
72
76
|
**kwargs,
|
|
73
77
|
)
|
|
74
78
|
|
|
@@ -166,6 +166,8 @@ class MaskNet(BaseModel):
|
|
|
166
166
|
dense_features: list[DenseFeature] | None = None,
|
|
167
167
|
sparse_features: list[SparseFeature] | None = None,
|
|
168
168
|
sequence_features: list[SequenceFeature] | None = None,
|
|
169
|
+
target: str | list[str] | None = None,
|
|
170
|
+
task: str | list[str] | None = None,
|
|
169
171
|
architecture: Literal[
|
|
170
172
|
"serial", "parallel"
|
|
171
173
|
] = "parallel", # "serial" or "parallel"
|
|
@@ -185,6 +187,8 @@ class MaskNet(BaseModel):
|
|
|
185
187
|
dense_features=dense_features,
|
|
186
188
|
sparse_features=sparse_features,
|
|
187
189
|
sequence_features=sequence_features,
|
|
190
|
+
target=target,
|
|
191
|
+
task=task,
|
|
188
192
|
**kwargs,
|
|
189
193
|
)
|
|
190
194
|
|
nextrec/models/ranking/pnn.py
CHANGED
|
@@ -57,6 +57,8 @@ class PNN(BaseModel):
|
|
|
57
57
|
dense_features: list[DenseFeature] | None = None,
|
|
58
58
|
sparse_features: list[SparseFeature] | None = None,
|
|
59
59
|
sequence_features: list[SequenceFeature] | None = None,
|
|
60
|
+
target: str | list[str] | None = None,
|
|
61
|
+
task: str | list[str] | None = None,
|
|
60
62
|
mlp_params: dict | None = None,
|
|
61
63
|
product_type: Literal[
|
|
62
64
|
"inner", "outer", "both"
|
|
@@ -76,6 +78,8 @@ class PNN(BaseModel):
|
|
|
76
78
|
dense_features=dense_features,
|
|
77
79
|
sparse_features=sparse_features,
|
|
78
80
|
sequence_features=sequence_features,
|
|
81
|
+
target=target,
|
|
82
|
+
task=task,
|
|
79
83
|
**kwargs,
|
|
80
84
|
)
|
|
81
85
|
|
|
@@ -57,14 +57,20 @@ class WideDeep(BaseModel):
|
|
|
57
57
|
dense_features: list[DenseFeature],
|
|
58
58
|
sparse_features: list[SparseFeature],
|
|
59
59
|
sequence_features: list[SequenceFeature],
|
|
60
|
-
|
|
60
|
+
target: str | list[str] | None = None,
|
|
61
|
+
task: str | list[str] | None = None,
|
|
62
|
+
mlp_params: dict | None = None,
|
|
61
63
|
**kwargs,
|
|
62
64
|
):
|
|
63
65
|
|
|
66
|
+
mlp_params = mlp_params or {}
|
|
67
|
+
|
|
64
68
|
super(WideDeep, self).__init__(
|
|
65
69
|
dense_features=dense_features,
|
|
66
70
|
sparse_features=sparse_features,
|
|
67
71
|
sequence_features=sequence_features,
|
|
72
|
+
target=target,
|
|
73
|
+
task=task,
|
|
68
74
|
**kwargs,
|
|
69
75
|
)
|
|
70
76
|
|
|
@@ -116,18 +116,23 @@ class xDeepFM(BaseModel):
|
|
|
116
116
|
dense_features: list[DenseFeature],
|
|
117
117
|
sparse_features: list[SparseFeature],
|
|
118
118
|
sequence_features: list[SequenceFeature],
|
|
119
|
-
|
|
119
|
+
target: str | list[str] | None = None,
|
|
120
|
+
task: str | list[str] | None = None,
|
|
121
|
+
mlp_params: dict | None = None,
|
|
120
122
|
cin_size: list[int] | None = None,
|
|
121
123
|
split_half: bool = True,
|
|
122
124
|
**kwargs,
|
|
123
125
|
):
|
|
124
126
|
|
|
125
127
|
cin_size = cin_size or [128, 128]
|
|
128
|
+
mlp_params = mlp_params or {}
|
|
126
129
|
|
|
127
130
|
super(xDeepFM, self).__init__(
|
|
128
131
|
dense_features=dense_features,
|
|
129
132
|
sparse_features=sparse_features,
|
|
130
133
|
sequence_features=sequence_features,
|
|
134
|
+
target=target,
|
|
135
|
+
task=task,
|
|
131
136
|
**kwargs,
|
|
132
137
|
)
|
|
133
138
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: nextrec
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.30
|
|
4
4
|
Summary: A comprehensive recommendation library with match, ranking, and multi-task learning models
|
|
5
5
|
Project-URL: Homepage, https://github.com/zerolovesea/NextRec
|
|
6
6
|
Project-URL: Repository, https://github.com/zerolovesea/NextRec
|
|
@@ -69,7 +69,7 @@ Description-Content-Type: text/markdown
|
|
|
69
69
|

|
|
70
70
|

|
|
71
71
|

|
|
72
|
-

|
|
73
73
|
[](https://deepwiki.com/zerolovesea/NextRec)
|
|
74
74
|
|
|
75
75
|
中文文档 | [English Version](README_en.md)
|
|
@@ -102,7 +102,7 @@ NextRec是一个基于PyTorch的现代推荐系统框架,旨在为研究工程
|
|
|
102
102
|
- **高效训练与评估**:内置多种优化器、学习率调度、早停、模型检查点与详细的日志管理,开箱即用。
|
|
103
103
|
|
|
104
104
|
## NextRec近期进展
|
|
105
|
-
- **01/01/2026** 新年好,在v0.4.
|
|
105
|
+
- **01/01/2026** 新年好,在v0.4.27中加入了多个多目标模型的支持:[APG](nextrec/models/multi_task/apg.py), [ESCM](nextrec/models/multi_task/escm.py), [HMoE](nextrec/models/multi_task/hmoe.py), [Cross Stitch](nextrec/models/multi_task/cross_stitch.py)
|
|
106
106
|
- **28/12/2025** 在v0.4.21中加入了对SwanLab和Wandb的支持,通过model的`fit`方法进行配置:`use_swanlab=True, swanlab_kwargs={"project": "NextRec","name":"tutorial_movielens_deepfm"},`
|
|
107
107
|
- **21/12/2025** 在v0.4.16中加入了对[GradNorm](/nextrec/loss/grad_norm.py)的支持,通过compile的`loss_weight='grad_norm'`进行配置
|
|
108
108
|
- **12/12/2025** 在v0.4.9中加入了[RQ-VAE](/nextrec/models/representation/rqvae.py)模块。配套的[数据集](/dataset/ecommerce_task.csv)和[代码](tutorials/notebooks/zh/使用RQ-VAE构建语义ID.ipynb)已经同步在仓库中
|
|
@@ -254,11 +254,11 @@ nextrec --mode=predict --predict_config=path/to/predict_config.yaml
|
|
|
254
254
|
|
|
255
255
|
预测结果固定保存到 `{checkpoint_path}/predictions/{name}.{save_data_format}`。
|
|
256
256
|
|
|
257
|
-
> 截止当前版本0.4.
|
|
257
|
+
> 截止当前版本0.4.30,NextRec CLI支持单机训练,分布式训练相关功能尚在开发中。
|
|
258
258
|
|
|
259
259
|
## 兼容平台
|
|
260
260
|
|
|
261
|
-
当前最新版本为0.4.
|
|
261
|
+
当前最新版本为0.4.30,所有模型和测试代码均已在以下平台通过验证,如果开发者在使用中遇到兼容问题,请在issue区提出错误报告及系统版本:
|
|
262
262
|
|
|
263
263
|
| 平台 | 配置 |
|
|
264
264
|
|------|------|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
nextrec/__init__.py,sha256=_M3oUqyuvQ5k8Th_3wId6hQ_caclh7M5ad51XN09m98,235
|
|
2
|
-
nextrec/__version__.py,sha256=
|
|
2
|
+
nextrec/__version__.py,sha256=oJL8XtG8mmnvRfpE8L0X7P-SyENhGR162XgumWN6O4A,23
|
|
3
3
|
nextrec/cli.py,sha256=uOaXnlAM-ARrbxKOVWWkTE_rv-54px168kBhFUHtIAg,25073
|
|
4
4
|
nextrec/basic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
5
|
nextrec/basic/activation.py,sha256=uekcJsOy8SiT0_NaDO2VNSStyYFzVikDFVLDk-VrjwQ,2949
|
|
@@ -8,7 +8,7 @@ nextrec/basic/callback.py,sha256=7geza5iMMlMojlrIKH5A7nzvCe4IYwgUaMRh_xpblWk,125
|
|
|
8
8
|
nextrec/basic/features.py,sha256=zLijBNkKwCXv9TKxSWwvmt7aVfWn2D5JvfwukeIRqec,9174
|
|
9
9
|
nextrec/basic/heads.py,sha256=BshykLxD41KxKuZaBxf4Fmy1Mc52b3ioJliN1BVaGlk,3374
|
|
10
10
|
nextrec/basic/layers.py,sha256=tr8XFOcTvUHEZ6T3zJwmtKMA-u_xfzHloIkItGs821U,40084
|
|
11
|
-
nextrec/basic/loggers.py,sha256=
|
|
11
|
+
nextrec/basic/loggers.py,sha256=LAfnhdSNEzHybrXaKxCWoAML1c2A-FJF6atpfrrm_Kw,13840
|
|
12
12
|
nextrec/basic/metrics.py,sha256=CPzENDcpO6QTDZLBtQlfAGKUYYQc0FT-eaMKJ4MURFo,23396
|
|
13
13
|
nextrec/basic/model.py,sha256=4vBp-vXAWC5Oiu_x4mtVaXTKJCcKDYT0IJ7UOyHD5lw,110162
|
|
14
14
|
nextrec/basic/session.py,sha256=mrIsjRJhmvcAfoO1pXX-KB3SK5CCgz89wH8XDoAiGEI,4475
|
|
@@ -41,22 +41,22 @@ nextrec/models/multi_task/ple.py,sha256=cO-NqEm-UZKRz2MznBjqsXL8ImH7WU1HRzXdWAtb
|
|
|
41
41
|
nextrec/models/multi_task/poso.py,sha256=Xjw9JBAiGR9CGewp1uS4b1soA7fOvSWTsIT6pS9_o30,18215
|
|
42
42
|
nextrec/models/multi_task/share_bottom.py,sha256=BT-nu0NZTV4HlFkva_KnoKLSxB0-gYuJWPw7PRDGwC8,5172
|
|
43
43
|
nextrec/models/ranking/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
44
|
-
nextrec/models/ranking/afm.py,sha256=
|
|
45
|
-
nextrec/models/ranking/autoint.py,sha256=
|
|
46
|
-
nextrec/models/ranking/dcn.py,sha256=
|
|
47
|
-
nextrec/models/ranking/dcn_v2.py,sha256=
|
|
48
|
-
nextrec/models/ranking/deepfm.py,sha256=
|
|
49
|
-
nextrec/models/ranking/dien.py,sha256=
|
|
50
|
-
nextrec/models/ranking/din.py,sha256=
|
|
51
|
-
nextrec/models/ranking/eulernet.py,sha256=
|
|
52
|
-
nextrec/models/ranking/ffm.py,sha256=
|
|
53
|
-
nextrec/models/ranking/fibinet.py,sha256=
|
|
54
|
-
nextrec/models/ranking/fm.py,sha256=
|
|
55
|
-
nextrec/models/ranking/lr.py,sha256=
|
|
56
|
-
nextrec/models/ranking/masknet.py,sha256=
|
|
57
|
-
nextrec/models/ranking/pnn.py,sha256=
|
|
58
|
-
nextrec/models/ranking/widedeep.py,sha256=
|
|
59
|
-
nextrec/models/ranking/xdeepfm.py,sha256=
|
|
44
|
+
nextrec/models/ranking/afm.py,sha256=lLcsWB1wOaiVJEn9rtNu2EOqXCP0LIPij7d6Jo9r8KM,9331
|
|
45
|
+
nextrec/models/ranking/autoint.py,sha256=vY4Lp3a5007hzXp-38lmdlLcbcI4ImVELGMV7SuWzuM,7193
|
|
46
|
+
nextrec/models/ranking/dcn.py,sha256=C6sYVCExCzhuInmNaTAyUTABcx1zYi_DCE0QoWmG3Zg,6613
|
|
47
|
+
nextrec/models/ranking/dcn_v2.py,sha256=5nT8rP3_0g7Uy-Kaasw_xQDu6bshOiZBCjO3SKqjKjE,10316
|
|
48
|
+
nextrec/models/ranking/deepfm.py,sha256=AhP20JPT1EAa6_8mw8IbJj6OoD7Epu74iFTAEvU20LM,4338
|
|
49
|
+
nextrec/models/ranking/dien.py,sha256=SqgJqSNuPDiREEzMFYyqQcoWBowJj5M4Q16BGt-aHXc,18295
|
|
50
|
+
nextrec/models/ranking/din.py,sha256=fMkQ3ZzROuafbd8UY4IBst3OU_5FF3mSJMmuOPh-6ko,8789
|
|
51
|
+
nextrec/models/ranking/eulernet.py,sha256=aiDBmx2K90r2Zkg5Wqc8SaK1oIAhKaFG3lJ2hkbJTCs,11418
|
|
52
|
+
nextrec/models/ranking/ffm.py,sha256=a4OaauKltUUF9rUV-B1qyG54r3wYN2oRT_r-ljEyLSM,10446
|
|
53
|
+
nextrec/models/ranking/fibinet.py,sha256=fMe1PSIghyt7ccca0V-o0L_vFAx62S50na6VntmCns0,7217
|
|
54
|
+
nextrec/models/ranking/fm.py,sha256=qwQ_QdBn5PTMYhCDGict8JU5kdVLbk_6ZLhg1H1IdRg,3729
|
|
55
|
+
nextrec/models/ranking/lr.py,sha256=ZpWbM9aMn3tzWlbe8RMmhVz0QBnIeTs5rVDINc0E11I,3161
|
|
56
|
+
nextrec/models/ranking/masknet.py,sha256=h5fE4iG-YLEEpDl9gpOcJgvUsAWQGvXexojyLsrURTQ,11540
|
|
57
|
+
nextrec/models/ranking/pnn.py,sha256=fFcOo4QQjA-dB_yEpOLAtFG4ZrkwpBfFo_FrPry3V9s,7482
|
|
58
|
+
nextrec/models/ranking/widedeep.py,sha256=bW53VPVt7xz3c16pO2JXArp346zEQbG3NAGNqZga8G4,4201
|
|
59
|
+
nextrec/models/ranking/xdeepfm.py,sha256=1H230whaeZ_uqgZsTE-jIrEmwTQPKv_7DnAcYJ6vZvg,7441
|
|
60
60
|
nextrec/models/representation/__init__.py,sha256=O3QHMMXBszwM-mTl7bA3wawNZvDGet-QIv6Ys5GHGJ8,190
|
|
61
61
|
nextrec/models/representation/autorec.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
62
62
|
nextrec/models/representation/bpr.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -83,8 +83,8 @@ nextrec/utils/loss.py,sha256=GBWQGpDaYkMJySpdG078XbeUNXUC34PVqFy0AqNS9N0,4578
|
|
|
83
83
|
nextrec/utils/model.py,sha256=PI9y8oWz1lhktgapZsiXb8rTr2NrFFlc80tr4yOFHik,5334
|
|
84
84
|
nextrec/utils/torch_utils.py,sha256=UQpWS7F3nITYqvx2KRBaQJc9oTowRkIvowhuQLt6NFM,11953
|
|
85
85
|
nextrec/utils/types.py,sha256=VhtLXUVvu0zAZVAUgRUML4FExRC-GH-ZmC1UiVSr3HE,1523
|
|
86
|
-
nextrec-0.4.
|
|
87
|
-
nextrec-0.4.
|
|
88
|
-
nextrec-0.4.
|
|
89
|
-
nextrec-0.4.
|
|
90
|
-
nextrec-0.4.
|
|
86
|
+
nextrec-0.4.30.dist-info/METADATA,sha256=Bv8blGCAsM6dGbFTa_QYpH3TmbfWENF3JgH4H83ON2Q,23188
|
|
87
|
+
nextrec-0.4.30.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
88
|
+
nextrec-0.4.30.dist-info/entry_points.txt,sha256=NN-dNSdfMRTv86bNXM7d3ZEPW2BQC6bRi7QP7i9cIps,45
|
|
89
|
+
nextrec-0.4.30.dist-info/licenses/LICENSE,sha256=2fQfVKeafywkni7MYHyClC6RGGC3laLTXCNBx-ubtp0,1064
|
|
90
|
+
nextrec-0.4.30.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|