nextrec 0.4.22__py3-none-any.whl → 0.4.24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. nextrec/__version__.py +1 -1
  2. nextrec/basic/layers.py +96 -46
  3. nextrec/basic/metrics.py +128 -114
  4. nextrec/basic/model.py +94 -91
  5. nextrec/basic/summary.py +36 -2
  6. nextrec/data/dataloader.py +2 -0
  7. nextrec/data/preprocessor.py +137 -5
  8. nextrec/loss/listwise.py +19 -6
  9. nextrec/loss/pairwise.py +6 -4
  10. nextrec/loss/pointwise.py +8 -6
  11. nextrec/models/multi_task/aitm.py +0 -0
  12. nextrec/models/multi_task/apg.py +0 -0
  13. nextrec/models/multi_task/cross_stitch.py +0 -0
  14. nextrec/models/multi_task/esmm.py +5 -28
  15. nextrec/models/multi_task/mmoe.py +6 -28
  16. nextrec/models/multi_task/pepnet.py +335 -0
  17. nextrec/models/multi_task/ple.py +21 -40
  18. nextrec/models/multi_task/poso.py +17 -39
  19. nextrec/models/multi_task/share_bottom.py +5 -28
  20. nextrec/models/multi_task/snr_trans.py +0 -0
  21. nextrec/models/ranking/afm.py +3 -27
  22. nextrec/models/ranking/autoint.py +5 -38
  23. nextrec/models/ranking/dcn.py +1 -26
  24. nextrec/models/ranking/dcn_v2.py +6 -34
  25. nextrec/models/ranking/deepfm.py +2 -29
  26. nextrec/models/ranking/dien.py +2 -28
  27. nextrec/models/ranking/din.py +2 -27
  28. nextrec/models/ranking/eulernet.py +3 -30
  29. nextrec/models/ranking/ffm.py +0 -26
  30. nextrec/models/ranking/fibinet.py +8 -32
  31. nextrec/models/ranking/fm.py +0 -29
  32. nextrec/models/ranking/lr.py +0 -30
  33. nextrec/models/ranking/masknet.py +4 -30
  34. nextrec/models/ranking/pnn.py +4 -28
  35. nextrec/models/ranking/widedeep.py +0 -32
  36. nextrec/models/ranking/xdeepfm.py +0 -30
  37. nextrec/models/retrieval/dssm.py +4 -28
  38. nextrec/models/retrieval/dssm_v2.py +4 -28
  39. nextrec/models/retrieval/mind.py +2 -22
  40. nextrec/models/retrieval/sdm.py +4 -24
  41. nextrec/models/retrieval/youtube_dnn.py +4 -25
  42. nextrec/models/sequential/hstu.py +0 -18
  43. nextrec/utils/model.py +91 -4
  44. nextrec/utils/types.py +35 -0
  45. {nextrec-0.4.22.dist-info → nextrec-0.4.24.dist-info}/METADATA +8 -6
  46. nextrec-0.4.24.dist-info/RECORD +86 -0
  47. nextrec-0.4.22.dist-info/RECORD +0 -81
  48. {nextrec-0.4.22.dist-info → nextrec-0.4.24.dist-info}/WHEEL +0 -0
  49. {nextrec-0.4.22.dist-info → nextrec-0.4.24.dist-info}/entry_points.txt +0 -0
  50. {nextrec-0.4.22.dist-info → nextrec-0.4.24.dist-info}/licenses/LICENSE +0 -0
nextrec/__version__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.4.22"
1
+ __version__ = "0.4.24"
nextrec/basic/layers.py CHANGED
@@ -20,6 +20,7 @@ import torch.nn.functional as F
20
20
  from nextrec.basic.activation import activation_layer
21
21
  from nextrec.basic.features import DenseFeature, SequenceFeature, SparseFeature
22
22
  from nextrec.utils.torch_utils import get_initializer
23
+ from nextrec.utils.types import ActivationName
23
24
 
24
25
 
25
26
  class PredictionLayer(nn.Module):
@@ -590,71 +591,48 @@ class MLP(nn.Module):
590
591
  def __init__(
591
592
  self,
592
593
  input_dim: int,
593
- output_layer: bool = True,
594
- dims: list[int] | None = None,
594
+ hidden_dims: list[int] | None = None,
595
+ output_dim: int | None = 1,
595
596
  dropout: float = 0.0,
596
- activation: Literal[
597
- "dice",
598
- "relu",
599
- "relu6",
600
- "elu",
601
- "selu",
602
- "leaky_relu",
603
- "prelu",
604
- "gelu",
605
- "sigmoid",
606
- "tanh",
607
- "softplus",
608
- "softsign",
609
- "hardswish",
610
- "mish",
611
- "silu",
612
- "swish",
613
- "hardsigmoid",
614
- "tanhshrink",
615
- "softshrink",
616
- "none",
617
- "linear",
618
- "identity",
619
- ] = "relu",
620
- use_norm: bool = True,
621
- norm_type: Literal["batch_norm", "layer_norm"] = "layer_norm",
597
+ activation: ActivationName = "relu",
598
+ norm_type: Literal["batch_norm", "layer_norm", "none"] = "none",
599
+ output_activation: ActivationName = "none",
622
600
  ):
623
601
  """
624
602
  Multi-Layer Perceptron (MLP) module.
625
603
 
626
604
  Args:
627
605
  input_dim: Dimension of the input features.
628
- output_layer: Whether to include the final output layer. If False, the MLP will output the last hidden layer, else it will output a single value.
629
- dims: List of hidden layer dimensions. If None, no hidden layers are added.
606
+ output_dim: Output dimension of the final layer. If None, no output layer is added.
607
+ hidden_dims: List of hidden layer dimensions. If None, no hidden layers are added.
630
608
  dropout: Dropout rate between layers.
631
609
  activation: Activation function to use between layers.
632
- use_norm: Whether to use normalization layers.
633
- norm_type: Type of normalization to use ("batch_norm" or "layer_norm").
610
+ norm_type: Type of normalization to use ("batch_norm", "layer_norm", or "none").
611
+ output_activation: Activation function applied after the output layer.
634
612
  """
635
613
  super().__init__()
636
- if dims is None:
637
- dims = []
614
+ hidden_dims = hidden_dims or []
638
615
  layers = []
639
616
  current_dim = input_dim
640
- for i_dim in dims:
617
+ for i_dim in hidden_dims:
641
618
  layers.append(nn.Linear(current_dim, i_dim))
642
- if use_norm:
643
- if norm_type == "batch_norm":
644
- # **IMPORTANT** be careful when using BatchNorm1d in distributed training, nextrec does not support sync batch norm now
645
- layers.append(nn.BatchNorm1d(i_dim))
646
- elif norm_type == "layer_norm":
647
- layers.append(nn.LayerNorm(i_dim))
648
- else:
649
- raise ValueError(f"Unsupported norm_type: {norm_type}")
619
+ if norm_type == "batch_norm":
620
+ # **IMPORTANT** be careful when using BatchNorm1d in distributed training, nextrec does not support sync batch norm now
621
+ layers.append(nn.BatchNorm1d(i_dim))
622
+ elif norm_type == "layer_norm":
623
+ layers.append(nn.LayerNorm(i_dim))
624
+ elif norm_type != "none":
625
+ raise ValueError(f"Unsupported norm_type: {norm_type}")
650
626
 
651
627
  layers.append(activation_layer(activation))
652
628
  layers.append(nn.Dropout(p=dropout))
653
629
  current_dim = i_dim
654
630
  # output layer
655
- if output_layer:
656
- layers.append(nn.Linear(current_dim, 1))
657
- self.output_dim = 1
631
+ if output_dim is not None:
632
+ layers.append(nn.Linear(current_dim, output_dim))
633
+ if output_activation != "none":
634
+ layers.append(activation_layer(output_activation))
635
+ self.output_dim = output_dim
658
636
  else:
659
637
  self.output_dim = current_dim
660
638
  self.mlp = nn.Sequential(*layers)
@@ -663,6 +641,47 @@ class MLP(nn.Module):
663
641
  return self.mlp(x)
664
642
 
665
643
 
644
+ class GateMLP(nn.Module):
645
+ """
646
+ Lightweight gate network: sigmoid MLP scaled by a constant factor.
647
+
648
+ Args:
649
+ input_dim: Dimension of the input features.
650
+ hidden_dim: Dimension of the hidden layer. If None, defaults to output_dim.
651
+ output_dim: Output dimension of the gate.
652
+ activation: Activation function to use in the hidden layer.
653
+ dropout: Dropout rate between layers.
654
+ use_bn: Whether to use batch normalization.
655
+ scale_factor: Scaling factor applied to the sigmoid output.
656
+ """
657
+
658
+ def __init__(
659
+ self,
660
+ input_dim: int,
661
+ hidden_dim: int | None,
662
+ output_dim: int,
663
+ activation: ActivationName = "relu",
664
+ dropout: float = 0.0,
665
+ use_bn: bool = False,
666
+ scale_factor: float = 2.0,
667
+ ) -> None:
668
+ super().__init__()
669
+ hidden_dim = output_dim if hidden_dim is None else hidden_dim
670
+ self.gate = MLP(
671
+ input_dim=input_dim,
672
+ hidden_dims=[hidden_dim],
673
+ output_dim=output_dim,
674
+ activation=activation,
675
+ dropout=dropout,
676
+ norm_type="batch_norm" if use_bn else "none",
677
+ output_activation="sigmoid",
678
+ )
679
+ self.scale_factor = scale_factor
680
+
681
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
682
+ return self.gate(inputs) * self.scale_factor
683
+
684
+
666
685
  class FM(nn.Module):
667
686
  def __init__(self, reduce_sum: bool = True):
668
687
  super().__init__()
@@ -1007,3 +1026,34 @@ class RMSNorm(torch.nn.Module):
1007
1026
  variance = torch.mean(x**2, dim=-1, keepdim=True)
1008
1027
  x_normalized = x * torch.rsqrt(variance + self.eps)
1009
1028
  return self.weight * x_normalized
1029
+
1030
+
1031
+ class DomainBatchNorm(nn.Module):
1032
+ """Domain-specific BatchNorm (applied per-domain with a shared interface)."""
1033
+
1034
+ def __init__(self, num_features: int, num_domains: int):
1035
+ super().__init__()
1036
+ if num_domains < 1:
1037
+ raise ValueError("num_domains must be >= 1")
1038
+ self.bns = nn.ModuleList(
1039
+ [nn.BatchNorm1d(num_features) for _ in range(num_domains)]
1040
+ )
1041
+
1042
+ def forward(self, x: torch.Tensor, domain_mask: torch.Tensor) -> torch.Tensor:
1043
+ if x.dim() != 2:
1044
+ raise ValueError("DomainBatchNorm expects 2D inputs [B, D].")
1045
+ output = x.clone()
1046
+ if domain_mask.dim() == 1:
1047
+ domain_ids = domain_mask.long()
1048
+ for idx, bn in enumerate(self.bns):
1049
+ mask = domain_ids == idx
1050
+ if mask.any():
1051
+ output[mask] = bn(x[mask])
1052
+ return output
1053
+ if domain_mask.dim() != 2:
1054
+ raise ValueError("domain_mask must be 1D indices or 2D one-hot mask.")
1055
+ for idx, bn in enumerate(self.bns):
1056
+ mask = domain_mask[:, idx] > 0
1057
+ if mask.any():
1058
+ output[mask] = bn(x[mask])
1059
+ return output
nextrec/basic/metrics.py CHANGED
@@ -2,7 +2,7 @@
2
2
  Metrics computation and configuration for model evaluation.
3
3
 
4
4
  Date: create on 27/10/2025
5
- Checkpoint: edit on 20/12/2025
5
+ Checkpoint: edit on 30/12/2025
6
6
  Author: Yang Zhou,zyaztec@gmail.com
7
7
  """
8
8
 
@@ -21,25 +21,12 @@ from sklearn.metrics import (
21
21
  recall_score,
22
22
  roc_auc_score,
23
23
  )
24
+ from nextrec.utils.types import TaskTypeName, MetricsName
25
+
24
26
 
25
- CLASSIFICATION_METRICS = {
26
- "auc",
27
- "gauc",
28
- "ks",
29
- "logloss",
30
- "accuracy",
31
- "acc",
32
- "precision",
33
- "recall",
34
- "f1",
35
- "micro_f1",
36
- "macro_f1",
37
- }
38
- REGRESSION_METRICS = {"mse", "mae", "rmse", "r2", "mape", "msle"}
39
27
  TASK_DEFAULT_METRICS = {
40
28
  "binary": ["auc", "gauc", "ks", "logloss", "accuracy", "precision", "recall", "f1"],
41
29
  "regression": ["mse", "mae", "rmse", "r2", "mape"],
42
- "multilabel": ["auc", "hamming_loss", "subset_accuracy", "micro_f1", "macro_f1"],
43
30
  "matching": ["auc", "gauc", "precision@10", "hitrate@10", "map@10", "cosine"]
44
31
  + [f"recall@{k}" for k in (5, 10, 20)]
45
32
  + [f"ndcg@{k}" for k in (5, 10, 20)]
@@ -59,7 +46,7 @@ def check_user_id(*metric_sources: Any) -> bool:
59
46
  stack.extend(item.values())
60
47
  continue
61
48
  if isinstance(item, str):
62
- metric_names.add(item.lower())
49
+ metric_names.add(item)
63
50
  continue
64
51
  try:
65
52
  stack.extend(item)
@@ -362,9 +349,9 @@ def compute_cosine_separation(y_true: np.ndarray, y_pred: np.ndarray) -> float:
362
349
 
363
350
 
364
351
  def configure_metrics(
365
- task: str | list[str], # 'binary' or ['binary', 'regression']
352
+ task: TaskTypeName | list[TaskTypeName], # 'binary' or ['binary', 'regression']
366
353
  metrics: (
367
- list[str] | dict[str, list[str]] | None
354
+ list[MetricsName] | dict[str, list[MetricsName]] | None
368
355
  ), # ['auc', 'logloss'] or {'task1': ['auc'], 'task2': ['mse']}
369
356
  target_names: list[str], # ['target1', 'target2']
370
357
  ) -> tuple[list[str], dict[str, list[str]] | None, str]:
@@ -384,13 +371,12 @@ def configure_metrics(
384
371
  f"[Metrics Warning] Task {task_name} not found in targets {target_names}, skipping its metrics"
385
372
  )
386
373
  continue
387
- lowered = [m.lower() for m in task_metrics]
388
- task_specific_metrics[task_name] = lowered
389
- for metric in lowered:
374
+ task_specific_metrics[task_name] = task_metrics
375
+ for metric in task_metrics:
390
376
  if metric not in metrics_list:
391
377
  metrics_list.append(metric)
392
378
  elif metrics:
393
- metrics_list = [m.lower() for m in metrics]
379
+ metrics_list = [m for m in metrics]
394
380
  else:
395
381
  # No user provided metrics, derive per task type
396
382
  if nums_task > 1 and isinstance(task, list):
@@ -417,11 +403,10 @@ def configure_metrics(
417
403
  return metrics_list, task_specific_metrics, best_metrics_mode
418
404
 
419
405
 
420
- def getbest_metric_mode(first_metric: str, primary_task: str) -> str:
406
+ def getbest_metric_mode(first_metric: MetricsName, primary_task: TaskTypeName) -> str:
421
407
  """Determine if metric should be maximized or minimized."""
422
- first_metric_lower = first_metric.lower()
423
408
  # Metrics that should be maximized
424
- if first_metric_lower in {
409
+ if first_metric in {
425
410
  "auc",
426
411
  "gauc",
427
412
  "ks",
@@ -437,20 +422,20 @@ def getbest_metric_mode(first_metric: str, primary_task: str) -> str:
437
422
  return "max"
438
423
  # Ranking metrics that should be maximized (with @K suffix)
439
424
  if (
440
- first_metric_lower.startswith("recall@")
441
- or first_metric_lower.startswith("precision@")
442
- or first_metric_lower.startswith("hitrate@")
443
- or first_metric_lower.startswith("hr@")
444
- or first_metric_lower.startswith("mrr@")
445
- or first_metric_lower.startswith("ndcg@")
446
- or first_metric_lower.startswith("map@")
425
+ first_metric.startswith("recall@")
426
+ or first_metric.startswith("precision@")
427
+ or first_metric.startswith("hitrate@")
428
+ or first_metric.startswith("hr@")
429
+ or first_metric.startswith("mrr@")
430
+ or first_metric.startswith("ndcg@")
431
+ or first_metric.startswith("map@")
447
432
  ):
448
433
  return "max"
449
434
  # Cosine separation should be maximized
450
- if first_metric_lower == "cosine":
435
+ if first_metric == "cosine":
451
436
  return "max"
452
437
  # Metrics that should be minimized
453
- if first_metric_lower in {"logloss", "mse", "mae", "rmse", "mape", "msle"}:
438
+ if first_metric in {"logloss", "mse", "mae", "rmse", "mape", "msle"}:
454
439
  return "min"
455
440
  # Default based on task type
456
441
  if primary_task == "regression":
@@ -459,7 +444,7 @@ def getbest_metric_mode(first_metric: str, primary_task: str) -> str:
459
444
 
460
445
 
461
446
  def compute_single_metric(
462
- metric: str,
447
+ metric: MetricsName,
463
448
  y_true: np.ndarray,
464
449
  y_pred: np.ndarray,
465
450
  task_type: str,
@@ -467,30 +452,32 @@ def compute_single_metric(
467
452
  ) -> float:
468
453
  """Compute a single metric given true and predicted values."""
469
454
 
455
+ if y_true.size == 0:
456
+ return 0.0
457
+
470
458
  y_p_binary = (y_pred > 0.5).astype(int)
471
- metric_lower = metric.lower()
472
459
  try:
473
- if metric_lower.startswith("recall@"):
474
- k = int(metric_lower.split("@")[1])
460
+ if metric.startswith("recall@"):
461
+ k = int(metric.split("@")[1])
475
462
  return compute_recall_at_k(y_true, y_pred, user_ids, k) # type: ignore
476
- if metric_lower.startswith("precision@"):
477
- k = int(metric_lower.split("@")[1])
463
+ if metric.startswith("precision@"):
464
+ k = int(metric.split("@")[1])
478
465
  return compute_precision_at_k(y_true, y_pred, user_ids, k) # type: ignore
479
- if metric_lower.startswith("hitrate@") or metric_lower.startswith("hr@"):
480
- k_str = metric_lower.split("@")[1]
466
+ if metric.startswith("hitrate@") or metric.startswith("hr@"):
467
+ k_str = metric.split("@")[1]
481
468
  k = int(k_str)
482
469
  return compute_hitrate_at_k(y_true, y_pred, user_ids, k) # type: ignore
483
- if metric_lower.startswith("mrr@"):
484
- k = int(metric_lower.split("@")[1])
470
+ if metric.startswith("mrr@"):
471
+ k = int(metric.split("@")[1])
485
472
  return compute_mrr_at_k(y_true, y_pred, user_ids, k) # type: ignore
486
- if metric_lower.startswith("ndcg@"):
487
- k = int(metric_lower.split("@")[1])
473
+ if metric.startswith("ndcg@"):
474
+ k = int(metric.split("@")[1])
488
475
  return compute_ndcg_at_k(y_true, y_pred, user_ids, k) # type: ignore
489
- if metric_lower.startswith("map@"):
490
- k = int(metric_lower.split("@")[1])
476
+ if metric.startswith("map@"):
477
+ k = int(metric.split("@")[1])
491
478
  return compute_map_at_k(y_true, y_pred, user_ids, k) # type: ignore
492
479
  # cosine for matching task
493
- if metric_lower == "cosine":
480
+ if metric == "cosine":
494
481
  return compute_cosine_separation(y_true, y_pred)
495
482
  if metric == "auc":
496
483
  value = float(
@@ -571,15 +558,31 @@ def compute_single_metric(
571
558
  def evaluate_metrics(
572
559
  y_true: np.ndarray | None,
573
560
  y_pred: np.ndarray | None,
574
- metrics: list[str], # example: ['auc', 'logloss']
575
- task: str | list[str], # example: 'binary' or ['binary', 'regression']
576
- target_names: list[str], # example: ['target1', 'target2']
577
- task_specific_metrics: (
578
- dict[str, list[str]] | None
579
- ) = None, # example: {'target1': ['auc', 'logloss'], 'target2': ['mse']}
580
- user_ids: np.ndarray | None = None, # example: User IDs for GAUC computation
581
- ) -> dict: # {'auc': 0.75, 'logloss': 0.45, 'mse_target2': 3.2}
582
- """Evaluate specified metrics for given true and predicted values."""
561
+ metrics: list[MetricsName],
562
+ task: TaskTypeName | list[TaskTypeName],
563
+ target_names: list[str],
564
+ task_specific_metrics: dict[str, list[MetricsName]] | None = None,
565
+ user_ids: np.ndarray | None = None,
566
+ ignore_label: int | float | None = None,
567
+ ) -> dict:
568
+ """
569
+ Evaluate specified metrics for given true and predicted values.
570
+ Supports single-task and multi-task evaluation.
571
+ Handles optional ignore_label to exclude certain samples.
572
+
573
+ Args:
574
+ y_true: Ground truth labels.
575
+ y_pred: Predicted values.
576
+ metrics: List of metric names to compute.
577
+ task: Task type(s) - 'binary', 'regression', etc.
578
+ target_names: Names of target variables. e.g., ['target1', 'target2']
579
+ task_specific_metrics: Optional dict mapping target names to specific metrics. e.g., {'target1': ['auc', 'logloss'], 'target2': ['mse']}
580
+ user_ids: Optional user IDs for GAUC and ranking metrics. e.g., User IDs for GAUC computation
581
+ ignore_label: Optional label value to ignore during evaluation.
582
+
583
+ Returns: Dictionary of computed metric values. {'auc': 0.75, 'logloss': 0.45, 'mse_target2': 3.2}
584
+
585
+ """
583
586
 
584
587
  result = {}
585
588
  if y_true is None or y_pred is None:
@@ -589,70 +592,81 @@ def evaluate_metrics(
589
592
  nums_task = len(task) if isinstance(task, list) else 1
590
593
  # Single task evaluation
591
594
  if nums_task == 1:
595
+ if ignore_label is not None:
596
+ valid_mask = y_true != ignore_label
597
+ if np.any(valid_mask):
598
+ y_true = y_true[valid_mask]
599
+ y_pred = y_pred[valid_mask]
600
+ if user_ids is not None:
601
+ user_ids = user_ids[valid_mask]
602
+ else:
603
+ return result
592
604
  for metric in metrics:
593
- metric_lower = metric.lower()
594
605
  value = compute_single_metric(
595
- metric_lower, y_true, y_pred, primary_task, user_ids
606
+ metric, y_true, y_pred, primary_task, user_ids
596
607
  )
597
- result[metric_lower] = value
608
+ result[metric] = value
598
609
  # Multi-task evaluation
599
610
  else:
600
- for metric in metrics:
601
- metric_lower = metric.lower()
602
- for task_idx in range(nums_task):
603
- # Check if metric should be computed for given task
604
- should_compute = True
605
- if task_specific_metrics is not None and task_idx < len(target_names):
606
- task_name = target_names[task_idx]
607
- should_compute = metric_lower in task_specific_metrics.get(
608
- task_name, []
609
- )
610
- else:
611
- # Get task type for specific index
612
- if isinstance(task, list) and task_idx < len(task):
613
- task_type = task[task_idx]
614
- elif isinstance(task, str):
615
- task_type = task
616
- else:
617
- task_type = "binary"
618
- if task_type in ["binary", "multilabel"]:
619
- should_compute = metric_lower in {
620
- "auc",
621
- "gauc",
622
- "ks",
623
- "logloss",
624
- "accuracy",
625
- "acc",
626
- "precision",
627
- "recall",
628
- "f1",
629
- "micro_f1",
630
- "macro_f1",
631
- }
632
- elif task_type == "regression":
633
- should_compute = metric_lower in {
634
- "mse",
635
- "mae",
636
- "rmse",
637
- "r2",
638
- "mape",
639
- "msle",
640
- }
641
- if not should_compute:
611
+ task_types = []
612
+ for task_idx in range(nums_task):
613
+ if isinstance(task, list) and task_idx < len(task):
614
+ task_types.append(task[task_idx])
615
+ elif isinstance(task, str):
616
+ task_types.append(task)
617
+ else:
618
+ task_types.append("binary")
619
+ metric_allowlist = {
620
+ "binary": {
621
+ "auc",
622
+ "gauc",
623
+ "ks",
624
+ "logloss",
625
+ "accuracy",
626
+ "acc",
627
+ "precision",
628
+ "recall",
629
+ "f1",
630
+ "micro_f1",
631
+ "macro_f1",
632
+ },
633
+ "regression": {
634
+ "mse",
635
+ "mae",
636
+ "rmse",
637
+ "r2",
638
+ "mape",
639
+ "msle",
640
+ },
641
+ }
642
+ for task_idx in range(nums_task):
643
+ task_type = task_types[task_idx]
644
+ target_name = target_names[task_idx]
645
+ if task_specific_metrics is not None and task_idx < len(target_names):
646
+ allowed_metrics = {
647
+ m for m in task_specific_metrics.get(target_name, [])
648
+ }
649
+ else:
650
+ allowed_metrics = metric_allowlist.get(task_type)
651
+ for metric in metrics:
652
+ if allowed_metrics is not None and metric not in allowed_metrics:
642
653
  continue
643
- target_name = target_names[task_idx]
644
- # Get task type for specific index
645
- if isinstance(task, list) and task_idx < len(task):
646
- task_type = task[task_idx]
647
- elif isinstance(task, str):
648
- task_type = task
649
- else:
650
- task_type = "binary"
651
654
  y_true_task = y_true[:, task_idx]
652
655
  y_pred_task = y_pred[:, task_idx]
656
+ task_user_ids = user_ids
657
+ if ignore_label is not None:
658
+ valid_mask = y_true_task != ignore_label
659
+ if np.any(valid_mask):
660
+ y_true_task = y_true_task[valid_mask]
661
+ y_pred_task = y_pred_task[valid_mask]
662
+ if task_user_ids is not None:
663
+ task_user_ids = task_user_ids[valid_mask]
664
+ else:
665
+ result[f"{metric}_{target_name}"] = 0.0
666
+ continue
653
667
  # Compute metric
654
668
  value = compute_single_metric(
655
- metric_lower, y_true_task, y_pred_task, task_type, user_ids
669
+ metric, y_true_task, y_pred_task, task_type, task_user_ids
656
670
  )
657
- result[f"{metric_lower}_{target_name}"] = value
671
+ result[f"{metric}_{target_name}"] = value
658
672
  return result