nextrec 0.4.1__py3-none-any.whl → 0.4.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. nextrec/__init__.py +1 -1
  2. nextrec/__version__.py +1 -1
  3. nextrec/basic/activation.py +10 -5
  4. nextrec/basic/callback.py +1 -0
  5. nextrec/basic/features.py +30 -22
  6. nextrec/basic/layers.py +250 -112
  7. nextrec/basic/loggers.py +63 -44
  8. nextrec/basic/metrics.py +270 -120
  9. nextrec/basic/model.py +1084 -402
  10. nextrec/basic/session.py +10 -3
  11. nextrec/cli.py +492 -0
  12. nextrec/data/__init__.py +19 -25
  13. nextrec/data/batch_utils.py +11 -3
  14. nextrec/data/data_processing.py +51 -45
  15. nextrec/data/data_utils.py +26 -15
  16. nextrec/data/dataloader.py +273 -96
  17. nextrec/data/preprocessor.py +320 -199
  18. nextrec/loss/listwise.py +17 -9
  19. nextrec/loss/loss_utils.py +7 -8
  20. nextrec/loss/pairwise.py +2 -0
  21. nextrec/loss/pointwise.py +30 -12
  22. nextrec/models/generative/hstu.py +103 -38
  23. nextrec/models/match/dssm.py +82 -68
  24. nextrec/models/match/dssm_v2.py +72 -57
  25. nextrec/models/match/mind.py +175 -107
  26. nextrec/models/match/sdm.py +104 -87
  27. nextrec/models/match/youtube_dnn.py +73 -59
  28. nextrec/models/multi_task/esmm.py +69 -46
  29. nextrec/models/multi_task/mmoe.py +91 -53
  30. nextrec/models/multi_task/ple.py +117 -58
  31. nextrec/models/multi_task/poso.py +163 -55
  32. nextrec/models/multi_task/share_bottom.py +63 -36
  33. nextrec/models/ranking/afm.py +80 -45
  34. nextrec/models/ranking/autoint.py +74 -57
  35. nextrec/models/ranking/dcn.py +110 -48
  36. nextrec/models/ranking/dcn_v2.py +265 -45
  37. nextrec/models/ranking/deepfm.py +39 -24
  38. nextrec/models/ranking/dien.py +335 -146
  39. nextrec/models/ranking/din.py +158 -92
  40. nextrec/models/ranking/fibinet.py +134 -52
  41. nextrec/models/ranking/fm.py +68 -26
  42. nextrec/models/ranking/masknet.py +95 -33
  43. nextrec/models/ranking/pnn.py +128 -58
  44. nextrec/models/ranking/widedeep.py +40 -28
  45. nextrec/models/ranking/xdeepfm.py +67 -40
  46. nextrec/utils/__init__.py +59 -34
  47. nextrec/utils/config.py +496 -0
  48. nextrec/utils/device.py +30 -20
  49. nextrec/utils/distributed.py +36 -9
  50. nextrec/utils/embedding.py +1 -0
  51. nextrec/utils/feature.py +1 -0
  52. nextrec/utils/file.py +33 -11
  53. nextrec/utils/initializer.py +61 -16
  54. nextrec/utils/model.py +22 -0
  55. nextrec/utils/optimizer.py +25 -9
  56. nextrec/utils/synthetic_data.py +283 -165
  57. nextrec/utils/tensor.py +24 -13
  58. {nextrec-0.4.1.dist-info → nextrec-0.4.3.dist-info}/METADATA +53 -24
  59. nextrec-0.4.3.dist-info/RECORD +69 -0
  60. nextrec-0.4.3.dist-info/entry_points.txt +2 -0
  61. nextrec-0.4.1.dist-info/RECORD +0 -66
  62. {nextrec-0.4.1.dist-info → nextrec-0.4.3.dist-info}/WHEEL +0 -0
  63. {nextrec-0.4.1.dist-info → nextrec-0.4.3.dist-info}/licenses/LICENSE +0 -0
nextrec/utils/tensor.py CHANGED
@@ -6,56 +6,67 @@ Author: Yang Zhou, zyaztec@gmail.com
6
6
  """
7
7
 
8
8
  import torch
9
- import numpy as np
10
9
  from typing import Any
11
10
 
12
11
 
13
12
  def to_tensor(
14
- value: Any,
15
- dtype: torch.dtype,
16
- device: torch.device | str | None = None
13
+ value: Any, dtype: torch.dtype, device: torch.device | str | None = None
17
14
  ) -> torch.Tensor:
18
15
  if value is None:
19
16
  raise ValueError("[Tensor Utils Error] Cannot convert None to tensor.")
20
17
  tensor = value if isinstance(value, torch.Tensor) else torch.as_tensor(value)
21
18
  if tensor.dtype != dtype:
22
19
  tensor = tensor.to(dtype=dtype)
23
-
20
+
24
21
  if device is not None:
25
- target_device = device if isinstance(device, torch.device) else torch.device(device)
22
+ target_device = (
23
+ device if isinstance(device, torch.device) else torch.device(device)
24
+ )
26
25
  if tensor.device != target_device:
27
26
  tensor = tensor.to(target_device)
28
27
  return tensor
29
28
 
29
+
30
30
  def stack_tensors(tensors: list[torch.Tensor], dim: int = 0) -> torch.Tensor:
31
31
  if not tensors:
32
32
  raise ValueError("[Tensor Utils Error] Cannot stack empty list of tensors.")
33
33
  return torch.stack(tensors, dim=dim)
34
34
 
35
+
35
36
  def concat_tensors(tensors: list[torch.Tensor], dim: int = 0) -> torch.Tensor:
36
37
  if not tensors:
37
- raise ValueError("[Tensor Utils Error] Cannot concatenate empty list of tensors.")
38
+ raise ValueError(
39
+ "[Tensor Utils Error] Cannot concatenate empty list of tensors."
40
+ )
38
41
  return torch.cat(tensors, dim=dim)
39
42
 
43
+
40
44
  def pad_sequence_tensors(
41
45
  tensors: list[torch.Tensor],
42
46
  max_len: int | None = None,
43
47
  padding_value: float = 0.0,
44
- padding_side: str = 'right'
48
+ padding_side: str = "right",
45
49
  ) -> torch.Tensor:
46
50
  if not tensors:
47
51
  raise ValueError("[Tensor Utils Error] Cannot pad empty list of tensors.")
48
52
  if max_len is None:
49
53
  max_len = max(t.size(0) for t in tensors)
50
54
  batch_size = len(tensors)
51
- padded = torch.full((batch_size, max_len), padding_value, dtype=tensors[0].dtype, device=tensors[0].device)
52
-
55
+ padded = torch.full(
56
+ (batch_size, max_len),
57
+ padding_value,
58
+ dtype=tensors[0].dtype,
59
+ device=tensors[0].device,
60
+ )
61
+
53
62
  for i, tensor in enumerate(tensors):
54
63
  length = min(tensor.size(0), max_len)
55
- if padding_side == 'right':
64
+ if padding_side == "right":
56
65
  padded[i, :length] = tensor[:length]
57
- elif padding_side == 'left':
66
+ elif padding_side == "left":
58
67
  padded[i, -length:] = tensor[:length]
59
68
  else:
60
- raise ValueError(f"[Tensor Utils Error] padding_side must be 'right' or 'left', got {padding_side}")
69
+ raise ValueError(
70
+ f"[Tensor Utils Error] padding_side must be 'right' or 'left', got {padding_side}"
71
+ )
61
72
  return padded
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nextrec
3
- Version: 0.4.1
3
+ Version: 0.4.3
4
4
  Summary: A comprehensive recommendation library with match, ranking, and multi-task learning models
5
5
  Project-URL: Homepage, https://github.com/zerolovesea/NextRec
6
6
  Project-URL: Repository, https://github.com/zerolovesea/NextRec
@@ -63,7 +63,7 @@ Description-Content-Type: text/markdown
63
63
  ![Python](https://img.shields.io/badge/Python-3.10+-blue.svg)
64
64
  ![PyTorch](https://img.shields.io/badge/PyTorch-1.10+-ee4c2c.svg)
65
65
  ![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)
66
- ![Version](https://img.shields.io/badge/Version-0.4.1-orange.svg)
66
+ ![Version](https://img.shields.io/badge/Version-0.4.3-orange.svg)
67
67
 
68
68
  English | [中文文档](README_zh.md)
69
69
 
@@ -71,16 +71,28 @@ English | [中文文档](README_zh.md)
71
71
 
72
72
  </div>
73
73
 
74
+ ## Table of Contents
75
+
76
+ - [Introduction](#introduction)
77
+ - [Installation](#installation)
78
+ - [Architecture](#architecture)
79
+ - [5-Minute Quick Start](#5-minute-quick-start)
80
+ - [CLI Usage](#cli-usage)
81
+ - [Platform Compatibility](#platform-compatibility)
82
+ - [Supported Models](#supported-models)
83
+ - [Contributing](#contributing)
84
+
74
85
  ## Introduction
75
86
 
76
- NextRec is a modern recommendation framework built on PyTorch, delivering a unified experience for modeling, training, and evaluation. It follows a modular design with rich model implementations, data-processing utilities, and engineering-ready training components. NextRec focuses on large-scale industrial recall scenarios on Spark clusters, training on massive offline parquet features.
87
+ NextRec is a modern recommendation system framework built on PyTorch, providing researchers and engineering teams with a fast modeling, training, and evaluation experience. The framework adopts a modular design with rich built-in model implementations, data processing tools, and engineering-ready training components, covering various recommendation scenarios. NextRec provides easy-to-use interfaces, command-line tools, and tutorials, enabling recommendation algorithm learners to quickly understand model architectures and train and infer models at the fastest speed.
77
88
 
78
89
  ## Why NextRec
79
90
 
80
- - **Unified feature engineering & data pipeline**: Dense/Sparse/Sequence feature definitions, persistent DataProcessor, and batch-optimized RecDataLoader, matching offline feature training/inference in industrial big-data settings.
81
- - **Multi-scenario coverage**: Ranking (CTR/CVR), retrieval, multi-task learning, and more marketing/rec models, with a continuously expanding model zoo.
82
- - **Developer-friendly experience**: Stream processing/training/inference for csv/parquet/pathlike data, plus GPU/MPS acceleration and visualization support.
83
- - **Efficient training & evaluation**: Standardized engine with optimizers, LR schedulers, early stopping, checkpoints, and detailed logging out of the box.
91
+ - **Unified feature engineering & data pipeline**: NextRec provides Dense/Sparse/Sequence feature definitions, persistent DataProcessor, and batch-optimized RecDataLoader, matching the model training and inference process based on offline `parquet/csv` features in industrial big-data Spark/Hive scenarios.
92
+ - **Multi-scenario recommendation capabilities**: Covers ranking (CTR/CVR), retrieval, multi-task learning and other recommendation/marketing models, with a continuously expanding model zoo.
93
+ - **Developer-friendly experience**: Supports stream preprocessing/distributed training/inference for various data formats (`csv/parquet/pathlike`), GPU acceleration and visual metric monitoring, facilitating experiments for business algorithm engineers and recommendation algorithm learners.
94
+ - **Flexible command-line tool**: Through configuring training and inference config files, start training and inference processes with one command `nextrec --mode=train --train_config=train_config.yaml`, facilitating rapid experiment iteration and agile deployment.
95
+ - **Efficient training & evaluation**: NextRec's standardized training engine comes with various optimizers, learning rate schedulers, early stopping, model checkpoints, and detailed log management built-in, ready to use out of the box.
84
96
 
85
97
  ## Architecture
86
98
 
@@ -96,34 +108,36 @@ NextRec adopts a modular and low-coupling engineering design, enabling full-pipe
96
108
 
97
109
  You can quickly install the latest NextRec via `pip install nextrec`; Python 3.10+ is required.
98
110
 
99
- ## Tutorials
100
111
 
101
- See `tutorials/` for examples covering ranking, retrieval, multi-task learning, and data processing:
112
+ ## Tutorials
102
113
 
103
- - [movielen_ranking_deepfm.py](/tutorials/movielen_ranking_deepfm.py) DeepFM training on MovieLens 100k
104
- - [example_ranking_din.py](/tutorials/example_ranking_din.py) — DIN training on the e-commerce dataset
105
- - [example_multitask.py](/tutorials/example_multitask.py) — ESMM multi-task training on the e-commerce dataset
106
- - [movielen_match_dssm.py](/tutorials/example_match_dssm.py) — DSSM retrieval on MovieLens 100k
114
+ We provide multiple examples in the `tutorials/` directory, covering ranking, retrieval, multi-task, and data processing scenarios:
107
115
 
108
- To dive deeper, Jupyter notebooks are available:
116
+ - [movielen_ranking_deepfm.py](/tutorials/movielen_ranking_deepfm.py) DeepFM model training example on MovieLens 100k dataset
117
+ - [example_ranking_din.py](/tutorials/example_ranking_din.py) — DIN deep interest network training example on e-commerce dataset
118
+ - [example_multitask.py](/tutorials/example_multitask.py) — ESMM multi-task learning training example on e-commerce dataset
119
+ - [movielen_match_dssm.py](/tutorials/example_match_dssm.py) — DSSM retrieval model example trained on MovieLens 100k dataset
120
+ - [run_all_ranking_models.py](/tutorials/run_all_ranking_models.py) — Quickly verify the availability of all ranking models
121
+ - [run_all_multitask_models.py](/tutorials/run_all_multitask_models.py) — Quickly verify the availability of all multi-task models
122
+ - [run_all_match_models.py](/tutorials/run_all_match_models.py) — Quickly verify the availability of all retrieval models
109
123
 
110
- - [Hands on the NextRec framework](/tutorials/notebooks/en/Hands%20on%20nextrec.ipynb)
111
- - [Using the data processor for preprocessing](/tutorials/notebooks/en/Hands%20on%20dataprocessor.ipynb)
124
+ If you want to learn more details about the NextRec framework, we also provide Jupyter notebooks to help you understand:
112
125
 
113
- > Current version [0.4.1]: the matching module is not fully polished yet and may have compatibility issues or unexpected errors. Please raise an issue if you run into problems.
126
+ - [How to get started with the NextRec framework](/tutorials/notebooks/en/Hands%20on%20nextrec.ipynb)
127
+ - [How to use the data processor for data preprocessing](/tutorials/notebooks/en/Hands%20on%20dataprocessor.ipynb)
114
128
 
115
129
  ## 5-Minute Quick Start
116
130
 
117
- We provide a detailed quick start and paired datasets to help you learn the framework. In `datasets/` you’ll find an e-commerce sample dataset like this:
131
+ We provide a detailed quick start guide and paired datasets to help you become familiar with different features of the NextRec framework. We provide a test dataset from an e-commerce scenario in the `datasets/` path, with data examples as follows:
118
132
 
119
133
  | user_id | item_id | dense_0 | dense_1 | dense_2 | dense_3 | dense_4 | dense_5 | dense_6 | dense_7 | sparse_0 | sparse_1 | sparse_2 | sparse_3 | sparse_4 | sparse_5 | sparse_6 | sparse_7 | sparse_8 | sparse_9 | sequence_0 | sequence_1 | label |
120
134
  |--------|---------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------------------------|-----------------------------------------------------------|-------|
121
135
  | 1 | 7817 | 0.14704075 | 0.31020382 | 0.77780896 | 0.944897 | 0.62315375 | 0.57124174 | 0.77009535 | 0.3211029 | 315 | 260 | 379 | 146 | 168 | 161 | 138 | 88 | 5 | 312 | [170,175,97,338,105,353,272,546,175,545,463,128,0,0,0] | [368,414,820,405,548,63,327,0,0,0,0,0,0,0,0] | 0 |
122
136
  | 1 | 3579 | 0.77811223 | 0.80359334 | 0.5185201 | 0.91091245 | 0.043562356 | 0.82142705 | 0.8803686 | 0.33748195 | 149 | 229 | 442 | 6 | 167 | 252 | 25 | 402 | 7 | 168 | [179,48,61,551,284,165,344,151,0,0,0,0,0,0,0] | [814,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 1 |
123
137
 
124
- Below is a short example showing how to train a DIN model. DIN (Deep Interest Network) won Best Paper at KDD 2018 for CTR prediction. You can also run `python tutorials/example_ranking_din.py` directly.
138
+ Next, we'll use a short example to show you how to train a DIN model using NextRec. DIN (Deep Interest Network) is from Alibaba's 2018 KDD Best Paper, used for CTR prediction scenarios. You can also directly execute `python tutorials/example_ranking_din.py` to run the training and inference code.
125
139
 
126
- After training, detailed logs are available under `nextrec_logs/din_tutorial`.
140
+ After starting training, you can view detailed training logs in the `nextrec_logs/din_tutorial` path.
127
141
 
128
142
  ```python
129
143
  import pandas as pd
@@ -196,9 +210,25 @@ metrics = model.evaluate(
196
210
  )
197
211
  ```
198
212
 
213
+ ## CLI Usage
214
+
215
+ NextRec provides a powerful command-line interface for model training and prediction using YAML configuration files. For detailed CLI documentation, see:
216
+
217
+ - [NextRec CLI User Guide](/nextrec_cli_preset/NextRec-CLI.md) - Complete guide for using the CLI
218
+
219
+ ```bash
220
+ # Train a model
221
+ nextrec --mode=train --train_config=path/to/train_config.yaml
222
+
223
+ # Run prediction
224
+ nextrec --mode=predict --predict_config=path/to/predict_config.yaml
225
+ ```
226
+
227
+ > As of version 0.4.3, NextRec CLI supports single-machine training; distributed training features are currently under development.
228
+
199
229
  ## Platform Compatibility
200
230
 
201
- The current version is 0.4.1. All models and test code have been validated on the following platforms. If you encounter compatibility issues, please report them in the issue tracker with your system version:
231
+ The current version is 0.4.3. All models and test code have been validated on the following platforms. If you encounter compatibility issues, please report them in the issue tracker with your system version:
202
232
 
203
233
  | Platform | Configuration |
204
234
  |----------|---------------|
@@ -247,14 +277,13 @@ The current version is 0.4.1. All models and test code have been validated on th
247
277
  | [ESMM](nextrec/models/multi_task/esmm.py) | Entire Space Multi-task Model | SIGIR 2018 | Supported |
248
278
  | [ShareBottom](nextrec/models/multi_task/share_bottom.py) | Multitask Learning | - | Supported |
249
279
  | [POSO](nextrec/models/multi_task/poso.py) | POSO: Personalized Cold-start Modules for Large-scale Recommender Systems | 2021 | Supported |
250
- | [POSO-IFLYTEK](nextrec/models/multi_task/poso_iflytek.py) | POSO with PLE-style gating for sequential marketing tasks | - | Supported |
251
280
 
252
281
  ### Generative Models
253
282
 
254
283
  | Model | Paper | Year | Status |
255
284
  |-------|-------|------|--------|
256
285
  | [TIGER](nextrec/models/generative/tiger.py) | Recommender Systems with Generative Retrieval | NeurIPS 2023 | In Progress |
257
- | [HSTU](nextrec/models/generative/hstu.py) | Hierarchical Sequential Transduction Units | - | In Progress |
286
+ | [HSTU](nextrec/models/generative/hstu.py) | Hierarchical Sequential Transduction Units | - | Supported |
258
287
 
259
288
  ---
260
289
 
@@ -270,7 +299,7 @@ We welcome contributions of any form!
270
299
  4. Push your branch (`git push origin feature/AmazingFeature`)
271
300
  5. Open a Pull Request
272
301
 
273
- > Before submitting a PR, please run tests using `pytest test/ -v` or `python -m pytest` to ensure everything passes.
302
+ > Before submitting a PR, please run `python test/run_tests.py` and `python scripts/format_code.py` to ensure all tests pass and code style is unified.
274
303
 
275
304
  ### Code Style
276
305
 
@@ -0,0 +1,69 @@
1
+ nextrec/__init__.py,sha256=_M3oUqyuvQ5k8Th_3wId6hQ_caclh7M5ad51XN09m98,235
2
+ nextrec/__version__.py,sha256=Nyg0pmk5ea9-SLCAFEIF96ByFx4-TJFtrqYPN-Zn6g4,22
3
+ nextrec/cli.py,sha256=b6tv7ZO7UBRVR6IfyqVP24JEcdu9-2_vV5MlfWcQucM,18468
4
+ nextrec/basic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ nextrec/basic/activation.py,sha256=uzTWfCOtBSkbu_Gk9XBNTj8__s241CaYLJk6l8nGX9I,2885
6
+ nextrec/basic/callback.py,sha256=YPkuSmy3WV8cXj8YmLKxwNP2kULpkUlJQf8pV8CkNYQ,1037
7
+ nextrec/basic/features.py,sha256=ZvFzH05yQzmeWpH74h5gpALz5XOqVZTibUZRzXvwdLU,4141
8
+ nextrec/basic/layers.py,sha256=hQrxOw1XPmUKODaFG1l_K9TGJrNYHBUYcIQFirjUd7s,26004
9
+ nextrec/basic/loggers.py,sha256=p9wNmLuRYyvHsOzP0eNOYSlV3hrTDjrt6ggrH_r4RE0,6243
10
+ nextrec/basic/metrics.py,sha256=jr6Yqdig1gCZQP3NAWA_1fU8bTIG_7TGatrtrlzTK9E,23135
11
+ nextrec/basic/model.py,sha256=7-9CffXDvUG9G5Yx7_yCF17EWKup4Tl87JLdbmNIjb0,97118
12
+ nextrec/basic/session.py,sha256=UOG_-EgCOxvqZwCkiEd8sgNV2G1sm_HbzKYVQw8yYDI,4483
13
+ nextrec/data/__init__.py,sha256=auT_PkbgU9pUCt7KQl6H2ajcUorRhSyHa8NG3wExcG8,1197
14
+ nextrec/data/batch_utils.py,sha256=FAJiweuDyAIzX7rICVmcxMofdFs2-7RLinovwB-lAYM,2878
15
+ nextrec/data/data_processing.py,sha256=JTjNU55vj8UV2VgXwo0Qh4MQqWfD3z5uc95uOHIC4ck,5337
16
+ nextrec/data/data_utils.py,sha256=LaVNXATcqu0ARPV-6WESQz6JXi3g-zq4uKjcoqBFlqI,1219
17
+ nextrec/data/dataloader.py,sha256=L4VBpWUZrxozFBV54nhJAAC-ZX5Hg6zFwIwpGnguJ9c,18789
18
+ nextrec/data/preprocessor.py,sha256=BxoD6GHEre86i-TbxPi58Uwmg_G7oLkiER6f7VfmVHo,41583
19
+ nextrec/loss/__init__.py,sha256=mO5t417BneZ8Ysa51GyjDaffjWyjzFgPXIQrrggasaQ,827
20
+ nextrec/loss/listwise.py,sha256=UT9vJCOTOQLogVwaeTV7Z5uxIYnngGdxk-p9e97MGkU,5744
21
+ nextrec/loss/loss_utils.py,sha256=dFbVB9NAZdBDY-fnWkPvXrvCGL2Bz4I4DvpBlzz0X8w,2579
22
+ nextrec/loss/pairwise.py,sha256=X9yg-8pcPt2IWU0AiUhWAt3_4W_3wIF0uSdDYTdoPFY,3398
23
+ nextrec/loss/pointwise.py,sha256=o9J3OznY0hlbDsUXqn3k-BBzYiuUH5dopz8QBFqS_kQ,7343
24
+ nextrec/models/generative/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
+ nextrec/models/generative/hstu.py,sha256=FHdH4f7S38lLHcP0YmJPcHulJnZLHN6tn0u6zU0-RQ8,17190
26
+ nextrec/models/generative/tiger.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
+ nextrec/models/match/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
+ nextrec/models/match/dssm.py,sha256=suvle-7EF-P-FK3KAhoPG1FRCLvqbiu6HA8USFGf7kk,7854
29
+ nextrec/models/match/dssm_v2.py,sha256=TOTMEdIC6APIcQDonXLoOnO_wTD_UIrqq5M-ptEUATg,6878
30
+ nextrec/models/match/mind.py,sha256=so7XkuCHr5k5UBhEB65GL0JavFOjLGLYeN9Nuc4eNKA,15020
31
+ nextrec/models/match/sdm.py,sha256=MGEpLe1-UZ8kiHhR7-Q6zW-d9NnOm0ptHQWYVzh7m_Y,10488
32
+ nextrec/models/match/youtube_dnn.py,sha256=DxMn-WLaLGAWRy5qhpRszUugbpPxOMUsWEuh7QEAWQw,7214
33
+ nextrec/models/multi_task/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
+ nextrec/models/multi_task/esmm.py,sha256=tQg_jE51VDTyc-F0auviyP8CI9uzYQ_KjybbCAXWp1s,6491
35
+ nextrec/models/multi_task/mmoe.py,sha256=qFWKdCE_VSGpVrMgx0NOO-HtLRNGdVxCWdkMfoEgjLA,8583
36
+ nextrec/models/multi_task/ple.py,sha256=SMTgKqz8huXzmyMwACVG8yisHvd3GFGshYl7LOpnJXs,13016
37
+ nextrec/models/multi_task/poso.py,sha256=JkNlMcqjMuE4PTGM6HeGcJTxhbLklXpusfyY8A1BjTQ,19017
38
+ nextrec/models/multi_task/share_bottom.py,sha256=mkWaGHimUqp-2dmPHXjb5ffxX7ixv1BF0gQXTbx9kBo,6519
39
+ nextrec/models/ranking/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
+ nextrec/models/ranking/afm.py,sha256=XaiUYm36-pVNzB31lEtMstjg42-shn94khja0LMQB3s,10125
41
+ nextrec/models/ranking/autoint.py,sha256=CyHnYyHJiQIOiPGI-j_16nCpECDQJ3FlVZ4nq3qu-l8,8109
42
+ nextrec/models/ranking/dcn.py,sha256=vxbrDu9RxXznXNpXVeYJR4wdxoc4Vo0ygML6fFArY18,7299
43
+ nextrec/models/ranking/dcn_v2.py,sha256=VNMiHf6BeBOxnoommjGZfF-9t_B88niiVEgmPVcGjQM,11163
44
+ nextrec/models/ranking/deepfm.py,sha256=D9RPM40QAhogw8_RAOfE3JD1gnGf4F3-gXR40EZq-RU,5224
45
+ nextrec/models/ranking/dien.py,sha256=G1W_pj8XyGBPgZo_86I3LgfHzQvR-xvR-PGNJZdRdAM,18958
46
+ nextrec/models/ranking/din.py,sha256=gcibKTxK6nQCCxYMymO9ttu3UG2MSrOWRNBPCmJgMEM,9422
47
+ nextrec/models/ranking/fibinet.py,sha256=OuE4MoG7rHycyRRQtKOvxHbuf7C6zoJFxGFerXmmn9U,7919
48
+ nextrec/models/ranking/fm.py,sha256=ko_Eao9UfklakEk_TVEFZSyVAojmtclo1uIMBhL4FLU,4525
49
+ nextrec/models/ranking/masknet.py,sha256=IDp2XyGHdjuiUTIBv2JxNQlMw5ANdv12_9YJOX7tnzw,12367
50
+ nextrec/models/ranking/pnn.py,sha256=twwixy26mfAVaI9AqNnMLdwOG-WtDga60xsNiyJrFjI,8174
51
+ nextrec/models/ranking/widedeep.py,sha256=Xm2klmKBOoSKWCBQN7FhwLStu0BHSTOgAJ9kwLmtiFY,5077
52
+ nextrec/models/ranking/xdeepfm.py,sha256=LI_cCHjfQCG9H2tQKFC7NfyrLkm8FAUyjjbLoTIIpzY,5930
53
+ nextrec/utils/__init__.py,sha256=zqU9vjRUpVzJepcvdbxboik68K5jnMR40kdVjr6tpXY,2599
54
+ nextrec/utils/config.py,sha256=KGcKA7a592FkZ5wtbDmpvIc9Fk3uedj-BtJuRk2f4t8,18088
55
+ nextrec/utils/device.py,sha256=DtgmrJnVJQKtgtVUbm0SW0vZ5Le0R9HU8TsvqPnRLZc,2453
56
+ nextrec/utils/distributed.py,sha256=tIkgUjzEjR_FHOm9ckyM8KddkCfxNSogP-rdHcVGhuk,4782
57
+ nextrec/utils/embedding.py,sha256=YSVnBeve0hVTPSfyxN4weGCK_Jd8SezRBqZgwJAR3Qw,496
58
+ nextrec/utils/feature.py,sha256=LcXaWP98zMZhJTKL92VVHX8mqOE5Q0MyVq3hw5Z9kxs,300
59
+ nextrec/utils/file.py,sha256=s2cO1LRbU7xPeAbVoOA6XOoV6wvLrW6oy6p9fVSz9pc,3024
60
+ nextrec/utils/initializer.py,sha256=GzxasKewn4C14ERNdSo9el2jEa8GXXEB2hTQnRcK2IA,2517
61
+ nextrec/utils/model.py,sha256=dYl1XfIZt6aVjNyV2AAhcArwFRMcEAKrjG_pr8AVHs0,1163
62
+ nextrec/utils/optimizer.py,sha256=eX8baIvWOpwDTGninbyp6pQfzdHbIL62GTi4ldpYcfM,2337
63
+ nextrec/utils/synthetic_data.py,sha256=WSbC5cs7TbuDc57BCO74S7VJdlK0fQmnZA2KM4vUpoI,17566
64
+ nextrec/utils/tensor.py,sha256=Z6MBpSuQpHw4kGjeKxG0cXZMpRBCM45zTKhk9WolyiM,2220
65
+ nextrec-0.4.3.dist-info/METADATA,sha256=rD4niOz9T9rLsvQwcXakLQpU6Zn2Jj8BFZeGZDMhiyE,18952
66
+ nextrec-0.4.3.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
67
+ nextrec-0.4.3.dist-info/entry_points.txt,sha256=NN-dNSdfMRTv86bNXM7d3ZEPW2BQC6bRi7QP7i9cIps,45
68
+ nextrec-0.4.3.dist-info/licenses/LICENSE,sha256=2fQfVKeafywkni7MYHyClC6RGGC3laLTXCNBx-ubtp0,1064
69
+ nextrec-0.4.3.dist-info/RECORD,,
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ nextrec = nextrec.cli:main
@@ -1,66 +0,0 @@
1
- nextrec/__init__.py,sha256=nFRpUAjezaxyMJDTgy4g9PtpDTq28sMHleSrlg3QkVA,235
2
- nextrec/__version__.py,sha256=pMtTmSUht-XtbR_7Doz6bsQqopJJd8rZ8I8zy2HwwoA,22
3
- nextrec/basic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- nextrec/basic/activation.py,sha256=1qs9pq4hT3BUxIiYdYs57axMCm4-JyOBFQ6x7xkHTwM,2849
5
- nextrec/basic/callback.py,sha256=wwh0I2kKYyywCB-sG9eQXShlpXFJIo75qApJmnI5p6c,1036
6
- nextrec/basic/features.py,sha256=DFwYjG13GYHOujS_CMKa7Qrux9faF7MQNoaoRDF_Eks,4263
7
- nextrec/basic/layers.py,sha256=CCicyaZtsDF5R_OzVRjSsmvX_lfEDOEVETq41pbxK20,23749
8
- nextrec/basic/loggers.py,sha256=YLmeXsnzm9M2qxtmBOLMGZRg9wOAUQYl8UNpbWFzs8s,6147
9
- nextrec/basic/metrics.py,sha256=8-hMZJXU5L4F8GnToxMZey5dlBrtFyRtTuI_zoQCtIo,21579
10
- nextrec/basic/model.py,sha256=5MbyYmn1gLV2vy5GQoTxgnOCm2thjWTdquTYwyEeYvk,87093
11
- nextrec/basic/session.py,sha256=kYpUE6KzN2_Jli4l-YuoeMBaghGi3kzDnGRP3E08FbQ,4430
12
- nextrec/data/__init__.py,sha256=OJsuESaE0NZorAkAwydWJtsWsbNBzKfmQCrDJTzA5a0,1227
13
- nextrec/data/batch_utils.py,sha256=6G-E85H-PqYJ20EYVLnC3MqC8xYrXzZ1XYe82MhRPck,2816
14
- nextrec/data/data_processing.py,sha256=P-25xFHU87RqQA7loivN_O1fxtVRTluTQZ2qxgE2Prk,5433
15
- nextrec/data/data_utils.py,sha256=-3xLPW3csOiGNmj0kzzpOkCxZyu09RNBgfPkwX7nDAc,1172
16
- nextrec/data/dataloader.py,sha256=NLmCXyG1NUzrO6TgdwEanjBpzzcE07fjQFjceqHLTgU,16325
17
- nextrec/data/preprocessor.py,sha256=_A3eEc1MpUGDEpno1TToA-dyJ_k707Mr3GilTi_9j5I,40419
18
- nextrec/loss/__init__.py,sha256=mO5t417BneZ8Ysa51GyjDaffjWyjzFgPXIQrrggasaQ,827
19
- nextrec/loss/listwise.py,sha256=gxDbO1td5IeS28jKzdE35o1KAYBRdCYoMzyZzfNLhc0,5689
20
- nextrec/loss/loss_utils.py,sha256=uZ4m9ChLr-UgIc5Yxm1LjwXDDepApQ-Fas8njweZ9qg,2641
21
- nextrec/loss/pairwise.py,sha256=MN_3Pk6Nj8KCkmUqGT5cmyx1_nQa3TIx_kxXT_HB58c,3396
22
- nextrec/loss/pointwise.py,sha256=shgdRJwTV7vAnVxHSffOJU4TPQeKyrwudQ8y-R10nYM,7144
23
- nextrec/models/generative/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
- nextrec/models/generative/hstu.py,sha256=Dh1lYgVCIii0NOSJ8CRACi8mLkB3W36I-Nqp2WXlhTE,16427
25
- nextrec/models/generative/tiger.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
- nextrec/models/match/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
- nextrec/models/match/dssm.py,sha256=iywpz-UwWLCZODpsLelS_nt6i_IpeZ2r8fVAVcXtuwQ,8177
28
- nextrec/models/match/dssm_v2.py,sha256=gGmCIdCLQLWaVoNsCesoBGI74KTzYIch_SXSo-yKRMU,7134
29
- nextrec/models/match/mind.py,sha256=-bwpVz0UaWIopUTOC2784CHwb10xQLrjnnwx79tBXPo,14833
30
- nextrec/models/match/sdm.py,sha256=8YGzHWM1JTaQcHN2Xb9DAiui5WP-JE-NHdrCHXYYgyU,10865
31
- nextrec/models/match/youtube_dnn.py,sha256=QKHnj4a7lgDd8bHDT2OXxt9kXT1ubBf6zkTTEJwY-LY,7491
32
- nextrec/models/multi_task/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
- nextrec/models/multi_task/esmm.py,sha256=VEEklO-PPO9ie5P8F5BEsVapXzWYtLbbcuebisKevgM,6361
34
- nextrec/models/multi_task/mmoe.py,sha256=Uzo5GbOS5bgP3ngRXU-Q-jh0mbP0rk-6PhS-5XU4JRg,7935
35
- nextrec/models/multi_task/ple.py,sha256=eNUuOgd4sOAvqjVh3j6TvwoH4V3fYJPifwisAWdkdqU,12081
36
- nextrec/models/multi_task/poso.py,sha256=tuvmHgA5eUj7yBwlRPTtLUNrV1aDX9LI0PP0ckYlTxk,16782
37
- nextrec/models/multi_task/share_bottom.py,sha256=kZep9Cs1bCbRMNE2hl13IsAWV1orO1126_sOyS3Sqc0,5998
38
- nextrec/models/ranking/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
39
- nextrec/models/ranking/afm.py,sha256=smE_0irnTWlG0cXxSPS5qGJldFV57db3iALoIaO9k08,9692
40
- nextrec/models/ranking/autoint.py,sha256=Zu2GF8aRNzPepl2YsUFl8TOrvrWgKQ9-4SAHPai78TQ,8120
41
- nextrec/models/ranking/dcn.py,sha256=q1FAw3O2zN3lSta_4DtUq3RxfxEnS-TWKi25T12X_xY,4899
42
- nextrec/models/ranking/dcn_v2.py,sha256=ivHwLRxi4VcNzh9DWQQ227Gw5dhyRZ5LezuqkAdD89o,3630
43
- nextrec/models/ranking/deepfm.py,sha256=X6b8-rMRWxjCaHwG49DXbNTGSOFOFFACgw85gX4gaxk,5021
44
- nextrec/models/ranking/dien.py,sha256=AkzcNdo5g4vnWWQe6HjwCT6DPAA_m2ONXbNyqdkOgLw,12768
45
- nextrec/models/ranking/din.py,sha256=pW1AjTnLoCr7-pOWiP_65_LObZVw3Zexn_Z4Tyw8bEw,7222
46
- nextrec/models/ranking/fibinet.py,sha256=KqQAEM3bP9HlElPcEASk_O3oC7kc4n1L747-ngZO_xQ,4887
47
- nextrec/models/ranking/fm.py,sha256=DqYFqwfNzjv4oAVpCT3P-e3OvScjZmGsICUWrKTcTac,2987
48
- nextrec/models/ranking/masknet.py,sha256=Zk8PdAD1Lc8KX9GrV-yVgvnqj7Qk1XBbfoFUgy2_9oM,11464
49
- nextrec/models/ranking/pnn.py,sha256=rExX9p17BUS6m_1zjQscN9jb91BRqJaolRwp5MTPA5A,4983
50
- nextrec/models/ranking/widedeep.py,sha256=N5pxP5KKzMZs5HgxnS6gAqlMUcWhnpjjbv1B7f5UYQc,5061
51
- nextrec/models/ranking/xdeepfm.py,sha256=mu2Cd3n7sf7lW9_aHeJpSFnlUkq1IqHWK_K8GZLKtf8,5708
52
- nextrec/utils/__init__.py,sha256=Q1QroXls9Aq320WSJmo8NBzSU8251Y2Ji0UFFExhy6w,2033
53
- nextrec/utils/device.py,sha256=GX_ThOXQD8wYFIEW2NGlTKxAXHdg_zgiOhwweAa84eo,2315
54
- nextrec/utils/distributed.py,sha256=AGmGZ1OV3J7Ld1rQCbQ6hkbo3eXZ9Es64mYMIKDRROw,4513
55
- nextrec/utils/embedding.py,sha256=yxYSdFx0cJITh3Gf-K4SdhwRtKGcI0jOsyBgZ0NLa_c,465
56
- nextrec/utils/feature.py,sha256=s0eMEuvbOsotjll7eSYjb0b-1cXnvVy1mSI1Syg_7n4,299
57
- nextrec/utils/file.py,sha256=wxKvd1_U9ugFDP7EzLNG6-3PBInA0QhxoHzBWKfe_B8,2384
58
- nextrec/utils/initializer.py,sha256=BkP6-vJdsc0A-8ya-AVEs7W24dPXyxIilNnckwXgPEc,1391
59
- nextrec/utils/model.py,sha256=FB7QbatO0uEvghBEfByJtRS0waaBEB1UI0YzfA_2k04,535
60
- nextrec/utils/optimizer.py,sha256=cVkDrEkxwig17UAEhL8p9v3iVNiXI8B067Yf_6LqUp8,2198
61
- nextrec/utils/synthetic_data.py,sha256=JijSkWxZsAClclZ_fmDxo_JG1PEGakM8EN4wkbk6ifY,16383
62
- nextrec/utils/tensor.py,sha256=_RibR6BMPizhzRLVdnJqwUgzA0zpzkZuKfTrdSjbL60,2136
63
- nextrec-0.4.1.dist-info/METADATA,sha256=wcvolWRMdDvMHXmJfwYbJxWqgfNDeRmsIG8vMNxFAF8,16753
64
- nextrec-0.4.1.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
65
- nextrec-0.4.1.dist-info/licenses/LICENSE,sha256=2fQfVKeafywkni7MYHyClC6RGGC3laLTXCNBx-ubtp0,1064
66
- nextrec-0.4.1.dist-info/RECORD,,