nextrec 0.3.6__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nextrec/__version__.py +1 -1
- nextrec/basic/layers.py +32 -15
- nextrec/basic/model.py +435 -187
- nextrec/data/data_processing.py +31 -19
- nextrec/data/dataloader.py +40 -10
- nextrec/models/generative/hstu.py +3 -2
- nextrec/models/match/dssm.py +0 -1
- nextrec/models/match/dssm_v2.py +0 -1
- nextrec/models/match/mind.py +0 -1
- nextrec/models/match/sdm.py +0 -1
- nextrec/models/match/youtube_dnn.py +0 -1
- nextrec/models/multi_task/esmm.py +5 -7
- nextrec/models/multi_task/mmoe.py +10 -6
- nextrec/models/multi_task/ple.py +10 -6
- nextrec/models/multi_task/poso.py +9 -6
- nextrec/models/multi_task/share_bottom.py +10 -7
- nextrec/models/ranking/afm.py +113 -21
- nextrec/models/ranking/autoint.py +15 -9
- nextrec/models/ranking/dcn.py +8 -11
- nextrec/models/ranking/deepfm.py +5 -5
- nextrec/models/ranking/dien.py +4 -4
- nextrec/models/ranking/din.py +4 -4
- nextrec/models/ranking/fibinet.py +4 -4
- nextrec/models/ranking/fm.py +4 -4
- nextrec/models/ranking/masknet.py +4 -5
- nextrec/models/ranking/pnn.py +4 -4
- nextrec/models/ranking/widedeep.py +4 -4
- nextrec/models/ranking/xdeepfm.py +4 -4
- nextrec/utils/__init__.py +7 -3
- nextrec/utils/device.py +30 -0
- nextrec/utils/distributed.py +114 -0
- nextrec/utils/synthetic_data.py +413 -0
- {nextrec-0.3.6.dist-info → nextrec-0.4.1.dist-info}/METADATA +15 -5
- nextrec-0.4.1.dist-info/RECORD +66 -0
- nextrec-0.3.6.dist-info/RECORD +0 -64
- {nextrec-0.3.6.dist-info → nextrec-0.4.1.dist-info}/WHEEL +0 -0
- {nextrec-0.3.6.dist-info → nextrec-0.4.1.dist-info}/licenses/LICENSE +0 -0
nextrec/__version__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.
|
|
1
|
+
__version__ = "0.4.1"
|
nextrec/basic/layers.py
CHANGED
|
@@ -80,9 +80,7 @@ class PredictionLayer(nn.Module):
|
|
|
80
80
|
else:
|
|
81
81
|
raise ValueError(f"[PredictionLayer Error]: Unsupported task_type '{task_type}'.")
|
|
82
82
|
outputs.append(activation(task_logits))
|
|
83
|
-
result = torch.cat(outputs, dim=-1)
|
|
84
|
-
if result.shape[-1] == 1:
|
|
85
|
-
result = result.squeeze(-1)
|
|
83
|
+
result = torch.cat(outputs, dim=-1) # single: (N,1), multi-task/multi-class: (N,total_dim)
|
|
86
84
|
return result
|
|
87
85
|
|
|
88
86
|
class EmbeddingLayer(nn.Module):
|
|
@@ -235,14 +233,28 @@ class InputMask(nn.Module):
|
|
|
235
233
|
super().__init__()
|
|
236
234
|
|
|
237
235
|
def forward(self, x: dict[str, torch.Tensor], feature: SequenceFeature, seq_tensor: torch.Tensor | None = None):
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
mask = (values.long() != feature.padding_idx)
|
|
236
|
+
if seq_tensor is not None:
|
|
237
|
+
values = seq_tensor
|
|
241
238
|
else:
|
|
242
|
-
|
|
239
|
+
values = x[feature.name]
|
|
240
|
+
values = values.long()
|
|
241
|
+
padding_idx = feature.padding_idx if feature.padding_idx is not None else 0
|
|
242
|
+
mask = (values != padding_idx)
|
|
243
|
+
|
|
243
244
|
if mask.dim() == 1:
|
|
244
|
-
|
|
245
|
-
|
|
245
|
+
# [B] -> [B, 1, 1]
|
|
246
|
+
mask = mask.unsqueeze(1).unsqueeze(2)
|
|
247
|
+
elif mask.dim() == 2:
|
|
248
|
+
# [B, L] -> [B, 1, L]
|
|
249
|
+
mask = mask.unsqueeze(1)
|
|
250
|
+
elif mask.dim() == 3:
|
|
251
|
+
# [B, 1, L]
|
|
252
|
+
# [B, L, 1] -> [B, L] -> [B, 1, L]
|
|
253
|
+
if mask.size(1) != 1 and mask.size(2) == 1:
|
|
254
|
+
mask = mask.squeeze(-1).unsqueeze(1)
|
|
255
|
+
else:
|
|
256
|
+
raise ValueError(f"InputMask only supports 1D/2D/3D tensors, got shape {values.shape}")
|
|
257
|
+
return mask.float()
|
|
246
258
|
|
|
247
259
|
class LR(nn.Module):
|
|
248
260
|
def __init__(
|
|
@@ -299,20 +311,25 @@ class MLP(nn.Module):
|
|
|
299
311
|
super().__init__()
|
|
300
312
|
if dims is None:
|
|
301
313
|
dims = []
|
|
302
|
-
layers =
|
|
314
|
+
layers = []
|
|
315
|
+
current_dim = input_dim
|
|
316
|
+
|
|
303
317
|
for i_dim in dims:
|
|
304
|
-
layers.append(nn.Linear(
|
|
318
|
+
layers.append(nn.Linear(current_dim, i_dim))
|
|
305
319
|
layers.append(nn.BatchNorm1d(i_dim))
|
|
306
320
|
layers.append(activation_layer(activation))
|
|
307
321
|
layers.append(nn.Dropout(p=dropout))
|
|
308
|
-
|
|
322
|
+
current_dim = i_dim
|
|
323
|
+
|
|
309
324
|
if output_layer:
|
|
310
|
-
layers.append(nn.Linear(
|
|
325
|
+
layers.append(nn.Linear(current_dim, 1))
|
|
326
|
+
self.output_dim = 1
|
|
327
|
+
else:
|
|
328
|
+
self.output_dim = current_dim
|
|
311
329
|
self.mlp = nn.Sequential(*layers)
|
|
312
|
-
|
|
313
330
|
def forward(self, x):
|
|
314
331
|
return self.mlp(x)
|
|
315
|
-
|
|
332
|
+
|
|
316
333
|
class FM(nn.Module):
|
|
317
334
|
def __init__(self, reduce_sum: bool = True):
|
|
318
335
|
super().__init__()
|