nexaai 1.0.4rc15__cp310-cp310-macosx_13_0_x86_64.whl → 1.0.4rc16__cp310-cp310-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (38) hide show
  1. nexaai/__init__.py +6 -1
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +1 -1
  4. nexaai/asr.py +7 -3
  5. nexaai/asr_impl/mlx_asr_impl.py +3 -2
  6. nexaai/asr_impl/pybind_asr_impl.py +3 -2
  7. nexaai/binds/libcrypto.dylib +0 -0
  8. nexaai/binds/libnexa_bridge.dylib +0 -0
  9. nexaai/binds/libssl.dylib +0 -0
  10. nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
  11. nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
  12. nexaai/common.py +7 -0
  13. nexaai/cv.py +7 -3
  14. nexaai/cv_impl/mlx_cv_impl.py +3 -2
  15. nexaai/cv_impl/pybind_cv_impl.py +3 -2
  16. nexaai/embedder.py +7 -3
  17. nexaai/embedder_impl/mlx_embedder_impl.py +3 -2
  18. nexaai/embedder_impl/pybind_embedder_impl.py +6 -3
  19. nexaai/image_gen.py +6 -2
  20. nexaai/image_gen_impl/mlx_image_gen_impl.py +3 -2
  21. nexaai/image_gen_impl/pybind_image_gen_impl.py +3 -2
  22. nexaai/llm.py +8 -5
  23. nexaai/llm_impl/mlx_llm_impl.py +19 -6
  24. nexaai/llm_impl/pybind_llm_impl.py +7 -5
  25. nexaai/mlx_backend/llm/interface.py +2 -2
  26. nexaai/rerank.py +7 -3
  27. nexaai/rerank_impl/mlx_rerank_impl.py +3 -2
  28. nexaai/rerank_impl/pybind_rerank_impl.py +3 -2
  29. nexaai/tts.py +7 -3
  30. nexaai/tts_impl/mlx_tts_impl.py +3 -2
  31. nexaai/tts_impl/pybind_tts_impl.py +3 -2
  32. nexaai/vlm.py +6 -3
  33. nexaai/vlm_impl/mlx_vlm_impl.py +3 -3
  34. nexaai/vlm_impl/pybind_vlm_impl.py +5 -3
  35. {nexaai-1.0.4rc15.dist-info → nexaai-1.0.4rc16.dist-info}/METADATA +1 -1
  36. {nexaai-1.0.4rc15.dist-info → nexaai-1.0.4rc16.dist-info}/RECORD +38 -36
  37. {nexaai-1.0.4rc15.dist-info → nexaai-1.0.4rc16.dist-info}/WHEEL +0 -0
  38. {nexaai-1.0.4rc15.dist-info → nexaai-1.0.4rc16.dist-info}/top_level.txt +0 -0
nexaai/__init__.py CHANGED
@@ -19,7 +19,10 @@ except ImportError:
19
19
  __version__ = "0.0.1"
20
20
 
21
21
  # Import common configuration classes first (no external dependencies)
22
- from .common import ModelConfig, GenerationConfig, ChatMessage, SamplerConfig
22
+ from .common import ModelConfig, GenerationConfig, ChatMessage, SamplerConfig, PluginID
23
+
24
+ # Create alias for PluginID to be accessible as plugin_id
25
+ plugin_id = PluginID
23
26
 
24
27
  # Import new feature classes (no external dependencies in base classes)
25
28
  from .llm import LLM
@@ -40,6 +43,8 @@ __all__ = [
40
43
  "ChatMessage",
41
44
  "SamplerConfig",
42
45
  "EmbeddingConfig",
46
+ "PluginID",
47
+ "plugin_id",
43
48
 
44
49
  "LLM",
45
50
  "Embedder",
Binary file
nexaai/_version.py CHANGED
@@ -1,4 +1,4 @@
1
1
  # This file is generated by CMake from _version.py.in
2
2
  # Do not modify this file manually - it will be overwritten
3
3
 
4
- __version__ = "1.0.4-rc15"
4
+ __version__ = "1.0.4-rc16"
nexaai/asr.py CHANGED
@@ -1,8 +1,9 @@
1
- from typing import List, Optional, Sequence, Tuple
1
+ from typing import List, Optional, Sequence, Tuple, Union
2
2
  from abc import abstractmethod
3
3
  from dataclasses import dataclass
4
4
 
5
5
  from nexaai.base import BaseModel
6
+ from nexaai.common import PluginID
6
7
 
7
8
 
8
9
  @dataclass
@@ -33,11 +34,14 @@ class ASR(BaseModel):
33
34
  model_path: str,
34
35
  tokenizer_path: Optional[str] = None,
35
36
  language: Optional[str] = None,
36
- plugin_id: str = "llama_cpp",
37
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
37
38
  device_id: Optional[str] = None
38
39
  ) -> 'ASR':
39
40
  """Load ASR model from local path, routing to appropriate implementation."""
40
- if plugin_id == "mlx":
41
+ # Check plugin_id value for routing - handle both enum and string
42
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
43
+
44
+ if plugin_value == "mlx":
41
45
  from nexaai.asr_impl.mlx_asr_impl import MLXASRImpl
42
46
  return MLXASRImpl._load_from(model_path, tokenizer_path, language, plugin_id, device_id)
43
47
  else:
@@ -1,7 +1,8 @@
1
1
  # Note: This code is generated by Cursor, not tested yet.
2
2
 
3
- from typing import List, Optional
3
+ from typing import List, Optional, Union
4
4
 
5
+ from nexaai.common import PluginID
5
6
  from nexaai.asr import ASR, ASRConfig, ASRResult
6
7
  from nexaai.mlx_backend.asr.interface import MlxAsr as MLXASRInterface
7
8
  from nexaai.mlx_backend.ml import ModelConfig as MLXModelConfig, SamplerConfig as MLXSamplerConfig, GenerationConfig as MLXGenerationConfig, EmbeddingConfig
@@ -18,7 +19,7 @@ class MLXASRImpl(ASR):
18
19
  model_path: str,
19
20
  tokenizer_path: Optional[str] = None,
20
21
  language: Optional[str] = None,
21
- plugin_id: str = "mlx",
22
+ plugin_id: Union[PluginID, str] = PluginID.MLX,
22
23
  device_id: Optional[str] = None
23
24
  ) -> 'MLXASRImpl':
24
25
  """Load ASR model from local path using MLX backend."""
@@ -1,5 +1,6 @@
1
- from typing import List, Optional
1
+ from typing import List, Optional, Union
2
2
 
3
+ from nexaai.common import PluginID
3
4
  from nexaai.asr import ASR, ASRConfig, ASRResult
4
5
 
5
6
 
@@ -14,7 +15,7 @@ class PyBindASRImpl(ASR):
14
15
  model_path: str,
15
16
  tokenizer_path: Optional[str] = None,
16
17
  language: Optional[str] = None,
17
- plugin_id: str = "llama_cpp",
18
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
18
19
  device_id: Optional[str] = None
19
20
  ) -> 'PyBindASRImpl':
20
21
  """Load ASR model from local path using PyBind backend."""
Binary file
Binary file
Binary file
nexaai/common.py CHANGED
@@ -1,5 +1,12 @@
1
1
  from dataclasses import dataclass
2
2
  from typing import TypedDict, Literal, Optional, List
3
+ from enum import Enum
4
+
5
+
6
+ class PluginID(str, Enum):
7
+ """Enum for plugin identifiers."""
8
+ MLX = "mlx"
9
+ LLAMA_CPP = "llama_cpp"
3
10
 
4
11
 
5
12
  class ChatMessage(TypedDict):
nexaai/cv.py CHANGED
@@ -1,8 +1,9 @@
1
- from typing import List, Optional
1
+ from typing import List, Optional, Union
2
2
  from abc import abstractmethod
3
3
  from dataclasses import dataclass
4
4
 
5
5
  from nexaai.base import BaseModel
6
+ from nexaai.common import PluginID
6
7
 
7
8
 
8
9
  @dataclass
@@ -71,11 +72,14 @@ class CVModel(BaseModel):
71
72
  def _load_from(cls,
72
73
  _: str, # TODO: remove this argument, this is a hack to make api design happy
73
74
  config: CVModelConfig,
74
- plugin_id: str = "llama_cpp",
75
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
75
76
  device_id: Optional[str] = None
76
77
  ) -> 'CVModel':
77
78
  """Load CV model from configuration, routing to appropriate implementation."""
78
- if plugin_id == "mlx":
79
+ # Check plugin_id value for routing - handle both enum and string
80
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
81
+
82
+ if plugin_value == "mlx":
79
83
  from nexaai.cv_impl.mlx_cv_impl import MLXCVImpl
80
84
  return MLXCVImpl._load_from(config, plugin_id, device_id)
81
85
  else:
@@ -1,8 +1,9 @@
1
1
  # Note: This code is generated by Cursor, not tested yet.
2
2
 
3
- from typing import Optional
3
+ from typing import Optional, Union
4
4
  import os
5
5
 
6
+ from nexaai.common import PluginID
6
7
  from nexaai.cv import CVModel, CVModelConfig, CVResults
7
8
  from nexaai.mlx_backend.cv.interface import CVModel as MLXCVInterface, create_cv_model
8
9
 
@@ -16,7 +17,7 @@ class MLXCVImpl(CVModel):
16
17
  @classmethod
17
18
  def _load_from(cls,
18
19
  config: CVModelConfig,
19
- plugin_id: str = "mlx",
20
+ plugin_id: Union[PluginID, str] = PluginID.MLX,
20
21
  device_id: Optional[str] = None
21
22
  ) -> 'MLXCVImpl':
22
23
  """Load CV model from configuration using MLX backend."""
@@ -1,5 +1,6 @@
1
- from typing import Optional
1
+ from typing import Optional, Union
2
2
 
3
+ from nexaai.common import PluginID
3
4
  from nexaai.cv import CVModel, CVModelConfig, CVResults
4
5
 
5
6
 
@@ -12,7 +13,7 @@ class PyBindCVImpl(CVModel):
12
13
  @classmethod
13
14
  def _load_from(cls,
14
15
  config: CVModelConfig,
15
- plugin_id: str = "llama_cpp",
16
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
16
17
  device_id: Optional[str] = None
17
18
  ) -> 'PyBindCVImpl':
18
19
  """Load CV model from configuration using PyBind backend."""
nexaai/embedder.py CHANGED
@@ -4,6 +4,7 @@ from abc import abstractmethod
4
4
  import numpy as np
5
5
 
6
6
  from nexaai.base import BaseModel
7
+ from nexaai.common import PluginID
7
8
 
8
9
 
9
10
  @dataclass
@@ -21,19 +22,22 @@ class Embedder(BaseModel):
21
22
  pass
22
23
 
23
24
  @classmethod
24
- def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: str = "llama_cpp"):
25
+ def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP):
25
26
  """
26
27
  Load an embedder from model files, routing to appropriate implementation.
27
28
 
28
29
  Args:
29
30
  model_path: Path to the model file
30
31
  tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
31
- plugin_id: Plugin ID to use for the model (default: "llama_cpp")
32
+ plugin_id: Plugin ID to use for the model (default: PluginID.LLAMA_CPP)
32
33
 
33
34
  Returns:
34
35
  Embedder instance
35
36
  """
36
- if plugin_id == "mlx":
37
+ # Check plugin_id value for routing - handle both enum and string
38
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
39
+
40
+ if plugin_value == "mlx":
37
41
  from nexaai.embedder_impl.mlx_embedder_impl import MLXEmbedderImpl
38
42
  return MLXEmbedderImpl._load_from(model_path, tokenizer_file, plugin_id)
39
43
  else:
@@ -1,6 +1,7 @@
1
1
  from typing import List, Union
2
2
  import numpy as np
3
3
 
4
+ from nexaai.common import PluginID
4
5
  from nexaai.embedder import Embedder, EmbeddingConfig
5
6
  from nexaai.mlx_backend.embedding.interface import Embedder as MLXEmbedderInterface
6
7
  from nexaai.mlx_backend.ml import ModelConfig as MLXModelConfig, SamplerConfig as MLXSamplerConfig, GenerationConfig as MLXGenerationConfig, EmbeddingConfig
@@ -13,14 +14,14 @@ class MLXEmbedderImpl(Embedder):
13
14
  self._mlx_embedder = None
14
15
 
15
16
  @classmethod
16
- def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: str = "mlx"):
17
+ def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: Union[PluginID, str] = PluginID.MLX):
17
18
  """
18
19
  Load an embedder from model files using MLX backend.
19
20
 
20
21
  Args:
21
22
  model_path: Path to the model file
22
23
  tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
23
- plugin_id: Plugin ID to use for the model (default: "mlx")
24
+ plugin_id: Plugin ID to use for the model (default: PluginID.MLX)
24
25
 
25
26
  Returns:
26
27
  MLXEmbedderImpl instance
@@ -1,6 +1,7 @@
1
1
  from typing import List, Union
2
2
  import numpy as np
3
3
 
4
+ from nexaai.common import PluginID
4
5
  from nexaai.embedder import Embedder, EmbeddingConfig
5
6
  from nexaai.binds import embedder_bind
6
7
  from nexaai.runtime import _ensure_runtime
@@ -15,20 +16,22 @@ class PyBindEmbedderImpl(Embedder):
15
16
  self._handle = _handle_ptr
16
17
 
17
18
  @classmethod
18
- def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: str = "llama_cpp"):
19
+ def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP):
19
20
  """
20
21
  Load an embedder from model files
21
22
 
22
23
  Args:
23
24
  model_path: Path to the model file
24
25
  tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
25
- plugin_id: Plugin ID to use for the model (default: "llama_cpp")
26
+ plugin_id: Plugin ID to use for the model (default: PluginID.LLAMA_CPP)
26
27
 
27
28
  Returns:
28
29
  PyBindEmbedderImpl instance
29
30
  """
30
31
  _ensure_runtime()
31
- handle = embedder_bind.ml_embedder_create(model_path, tokenizer_file, plugin_id)
32
+ # Convert enum to string for C++ binding
33
+ plugin_id_str = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
34
+ handle = embedder_bind.ml_embedder_create(model_path, tokenizer_file, plugin_id_str)
32
35
  return cls(handle)
33
36
 
34
37
  def eject(self):
nexaai/image_gen.py CHANGED
@@ -3,6 +3,7 @@ from abc import abstractmethod
3
3
  from dataclasses import dataclass
4
4
 
5
5
  from nexaai.base import BaseModel
6
+ from nexaai.common import PluginID
6
7
 
7
8
 
8
9
  @dataclass
@@ -67,13 +68,16 @@ class ImageGen(BaseModel):
67
68
  def _load_from(cls,
68
69
  model_path: str,
69
70
  scheduler_config_path: str = "",
70
- plugin_id: str = "llama_cpp",
71
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
71
72
  device_id: Optional[str] = None,
72
73
  float16: bool = True,
73
74
  quantize: bool = False
74
75
  ) -> 'ImageGen':
75
76
  """Load image generation model from local path, routing to appropriate implementation."""
76
- if plugin_id == "mlx":
77
+ # Check plugin_id value for routing - handle both enum and string
78
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
79
+
80
+ if plugin_value == "mlx":
77
81
  from nexaai.image_gen_impl.mlx_image_gen_impl import MLXImageGenImpl
78
82
  return MLXImageGenImpl._load_from(model_path, scheduler_config_path, plugin_id, device_id, float16, quantize)
79
83
  else:
@@ -1,8 +1,9 @@
1
1
  # Note: This code is generated by Cursor, not tested yet.
2
2
 
3
- from typing import List, Optional
3
+ from typing import List, Optional, Union
4
4
  import os
5
5
 
6
+ from nexaai.common import PluginID
6
7
  from nexaai.image_gen import ImageGen, ImageGenerationConfig, ImageSamplerConfig, SchedulerConfig, Image
7
8
  from nexaai.mlx_backend.sd.interface import ImageGen as MLXImageGenInterface
8
9
 
@@ -17,7 +18,7 @@ class MLXImageGenImpl(ImageGen):
17
18
  def _load_from(cls,
18
19
  model_path: str,
19
20
  scheduler_config_path: str = "",
20
- plugin_id: str = "mlx",
21
+ plugin_id: Union[PluginID, str] = PluginID.MLX,
21
22
  device_id: Optional[str] = None,
22
23
  float16: bool = True,
23
24
  quantize: bool = False
@@ -1,5 +1,6 @@
1
- from typing import List, Optional
1
+ from typing import List, Optional, Union
2
2
 
3
+ from nexaai.common import PluginID
3
4
  from nexaai.image_gen import ImageGen, ImageGenerationConfig, ImageSamplerConfig, SchedulerConfig, Image
4
5
 
5
6
 
@@ -13,7 +14,7 @@ class PyBindImageGenImpl(ImageGen):
13
14
  def _load_from(cls,
14
15
  model_path: str,
15
16
  scheduler_config_path: str = "",
16
- plugin_id: str = "llama_cpp",
17
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
17
18
  device_id: Optional[str] = None,
18
19
  float16: bool = True,
19
20
  quantize: bool = False
nexaai/llm.py CHANGED
@@ -1,9 +1,9 @@
1
- from typing import Generator, Optional
1
+ from typing import Generator, Optional, Union
2
2
  from abc import abstractmethod
3
3
  import queue
4
4
  import threading
5
5
 
6
- from nexaai.common import ModelConfig, GenerationConfig, ChatMessage
6
+ from nexaai.common import ModelConfig, GenerationConfig, ChatMessage, PluginID
7
7
  from nexaai.base import BaseModel
8
8
 
9
9
  class LLM(BaseModel):
@@ -17,11 +17,14 @@ class LLM(BaseModel):
17
17
  local_path: str,
18
18
  tokenizer_path: Optional[str] = None,
19
19
  m_cfg: ModelConfig = ModelConfig(),
20
- plugin_id: str = "llama_cpp",
20
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
21
21
  device_id: Optional[str] = None
22
22
  ) -> 'LLM':
23
23
  """Load model from local path, routing to appropriate implementation."""
24
- if plugin_id == "mlx":
24
+ # Check plugin_id value for routing - handle both enum and string
25
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
26
+
27
+ if plugin_value == "mlx":
25
28
  from nexaai.llm_impl.mlx_llm_impl import MLXLLMImpl
26
29
  return MLXLLMImpl._load_from(local_path, tokenizer_path, m_cfg, plugin_id, device_id)
27
30
  else:
@@ -37,7 +40,7 @@ class LLM(BaseModel):
37
40
  self._cancel_event.clear()
38
41
 
39
42
  @abstractmethod
40
- def apply_chat_template(self, messages: list[ChatMessage]) -> str:
43
+ def apply_chat_template(self, messages: list[ChatMessage], tools: Optional[str] = None, enable_thinking: bool = True, add_generation_prompt: bool = True) -> str:
41
44
  """Apply the chat template to messages."""
42
45
  pass
43
46
 
@@ -1,6 +1,6 @@
1
- from typing import Generator, Optional, Any
1
+ from typing import Generator, Optional, Any, Sequence, Union
2
2
 
3
- from nexaai.common import ModelConfig, GenerationConfig, ChatMessage
3
+ from nexaai.common import ModelConfig, GenerationConfig, ChatMessage, PluginID
4
4
  from nexaai.llm import LLM
5
5
  from nexaai.mlx_backend.llm.interface import LLM as MLXLLMInterface
6
6
  from nexaai.mlx_backend.ml import ModelConfig as MLXModelConfig, SamplerConfig as MLXSamplerConfig, GenerationConfig as MLXGenerationConfig, EmbeddingConfig
@@ -17,7 +17,7 @@ class MLXLLMImpl(LLM):
17
17
  local_path: str,
18
18
  tokenizer_path: Optional[str] = None,
19
19
  m_cfg: ModelConfig = ModelConfig(),
20
- plugin_id: str = "mlx",
20
+ plugin_id: Union[PluginID, str] = PluginID.MLX,
21
21
  device_id: Optional[str] = None
22
22
  ) -> 'MLXLLMImpl':
23
23
  """Load model from local path using MLX backend."""
@@ -54,7 +54,13 @@ class MLXLLMImpl(LLM):
54
54
  self._mlx_llm.destroy()
55
55
  self._mlx_llm = None
56
56
 
57
- def apply_chat_template(self, messages: list[ChatMessage]) -> str:
57
+ def apply_chat_template(
58
+ self,
59
+ messages: Sequence[ChatMessage],
60
+ tools: Optional[str] = None,
61
+ enable_thinking: bool = True,
62
+ add_generation_prompt: bool = True
63
+ ) -> str:
58
64
  """Apply the chat template to messages."""
59
65
  if not self._mlx_llm:
60
66
  raise RuntimeError("MLX LLM not loaded")
@@ -68,9 +74,16 @@ class MLXLLMImpl(LLM):
68
74
  def __init__(self, role, content):
69
75
  self.role = role
70
76
  self.content = content
71
- mlx_messages.append(MLXChatMessage(msg["role"], msg["content"]))
77
+
78
+ # Handle both dict-style and attribute-style access
79
+ if hasattr(msg, 'role') and hasattr(msg, 'content'):
80
+ # Message is already an object with attributes
81
+ mlx_messages.append(MLXChatMessage(msg.role, msg.content))
82
+ else:
83
+ # Message is a dict
84
+ mlx_messages.append(MLXChatMessage(msg["role"], msg["content"]))
72
85
 
73
- return self._mlx_llm.apply_chat_template(mlx_messages)
86
+ return self._mlx_llm.apply_chat_template(mlx_messages, tools=tools, enable_thinking=enable_thinking, add_generation_prompt=add_generation_prompt)
74
87
  except Exception as e:
75
88
  raise RuntimeError(f"Failed to apply chat template: {str(e)}")
76
89
 
@@ -1,8 +1,8 @@
1
- from typing import Generator, Optional
1
+ from typing import Generator, Optional, Union
2
2
  import queue
3
3
  import threading
4
4
 
5
- from nexaai.common import ModelConfig, GenerationConfig, ChatMessage
5
+ from nexaai.common import ModelConfig, GenerationConfig, ChatMessage, PluginID
6
6
  from nexaai.binds import llm_bind, common_bind
7
7
  from nexaai.runtime import _ensure_runtime
8
8
  from nexaai.llm import LLM
@@ -19,7 +19,7 @@ class PyBindLLMImpl(LLM):
19
19
  local_path: str,
20
20
  tokenizer_path: Optional[str] = None,
21
21
  m_cfg: ModelConfig = ModelConfig(),
22
- plugin_id: str = "llama_cpp",
22
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
23
23
  device_id: Optional[str] = None
24
24
  ) -> 'PyBindLLMImpl':
25
25
  """Load model from local path."""
@@ -49,11 +49,13 @@ class PyBindLLMImpl(LLM):
49
49
  config.chat_template_content = m_cfg.chat_template_content
50
50
 
51
51
  # Create handle : returns py::capsule with automatic cleanup
52
+ # Convert enum to string for C++ binding
53
+ plugin_id_str = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
52
54
  handle = llm_bind.ml_llm_create(
53
55
  model_path=local_path,
54
56
  tokenizer_path=tokenizer_path,
55
57
  model_config=config,
56
- plugin_id=plugin_id,
58
+ plugin_id=plugin_id_str,
57
59
  device_id=device_id
58
60
  )
59
61
  return cls(handle, m_cfg)
@@ -64,7 +66,7 @@ class PyBindLLMImpl(LLM):
64
66
  del self._handle
65
67
  self._handle = None
66
68
 
67
- def apply_chat_template(self, messages: list[ChatMessage]) -> str:
69
+ def apply_chat_template(self, messages: list[ChatMessage], tools: Optional[str] = None, enable_thinking: bool = True, add_generation_prompt: bool = True) -> str:
68
70
  """Apply the chat template to messages."""
69
71
  # Convert TypedDict to list of dicts for binding
70
72
  message_dicts = [
@@ -467,7 +467,7 @@ class LLM(BaseLLM, ProfilingMixin):
467
467
  # We'll ignore the argument for now.
468
468
  return self.tokenizer.chat_template
469
469
 
470
- def apply_chat_template(self, messages: Sequence[ChatMessage], tools: Optional[str] = None, enable_thinking: bool = True) -> str:
470
+ def apply_chat_template(self, messages: Sequence[ChatMessage], tools: Optional[str] = None, enable_thinking: bool = True, add_generation_prompt: bool = True) -> str:
471
471
  """
472
472
  Apply chat template to messages with incremental prompt support and optional tools.
473
473
 
@@ -526,7 +526,7 @@ class LLM(BaseLLM, ProfilingMixin):
526
526
  incremental_messages,
527
527
  tokenize=False,
528
528
  enable_thinking=enable_thinking,
529
- add_generation_prompt=True,
529
+ add_generation_prompt=add_generation_prompt,
530
530
  tools=parsed_tools
531
531
  )
532
532
  except Exception as e:
nexaai/rerank.py CHANGED
@@ -1,8 +1,9 @@
1
- from typing import List, Optional, Sequence
1
+ from typing import List, Optional, Sequence, Union
2
2
  from abc import abstractmethod
3
3
  from dataclasses import dataclass
4
4
 
5
5
  from nexaai.base import BaseModel
6
+ from nexaai.common import PluginID
6
7
 
7
8
 
8
9
  @dataclass
@@ -24,11 +25,14 @@ class Reranker(BaseModel):
24
25
  def _load_from(cls,
25
26
  model_path: str,
26
27
  tokenizer_file: str = "tokenizer.json",
27
- plugin_id: str = "llama_cpp",
28
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
28
29
  device_id: Optional[str] = None
29
30
  ) -> 'Reranker':
30
31
  """Load reranker model from local path, routing to appropriate implementation."""
31
- if plugin_id == "mlx":
32
+ # Check plugin_id value for routing - handle both enum and string
33
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
34
+
35
+ if plugin_value == "mlx":
32
36
  from nexaai.rerank_impl.mlx_rerank_impl import MLXRerankImpl
33
37
  return MLXRerankImpl._load_from(model_path, tokenizer_file, plugin_id, device_id)
34
38
  else:
@@ -1,8 +1,9 @@
1
1
  # Note: This code is generated by Cursor, not tested yet.
2
2
 
3
- from typing import List, Optional, Sequence
3
+ from typing import List, Optional, Sequence, Union
4
4
  import os
5
5
 
6
+ from nexaai.common import PluginID
6
7
  from nexaai.rerank import Reranker, RerankConfig
7
8
  from nexaai.mlx_backend.rerank.interface import Reranker as MLXRerankInterface, create_reranker
8
9
 
@@ -17,7 +18,7 @@ class MLXRerankImpl(Reranker):
17
18
  def _load_from(cls,
18
19
  model_path: str,
19
20
  tokenizer_file: str = "tokenizer.json",
20
- plugin_id: str = "mlx",
21
+ plugin_id: Union[PluginID, str] = PluginID.MLX,
21
22
  device_id: Optional[str] = None
22
23
  ) -> 'MLXRerankImpl':
23
24
  """Load reranker model from local path using MLX backend."""
@@ -1,5 +1,6 @@
1
- from typing import List, Optional, Sequence
1
+ from typing import List, Optional, Sequence, Union
2
2
 
3
+ from nexaai.common import PluginID
3
4
  from nexaai.rerank import Reranker, RerankConfig
4
5
 
5
6
 
@@ -13,7 +14,7 @@ class PyBindRerankImpl(Reranker):
13
14
  def _load_from(cls,
14
15
  model_path: str,
15
16
  tokenizer_file: str = "tokenizer.json",
16
- plugin_id: str = "llama_cpp",
17
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
17
18
  device_id: Optional[str] = None
18
19
  ) -> 'PyBindRerankImpl':
19
20
  """Load reranker model from local path using PyBind backend."""
nexaai/tts.py CHANGED
@@ -1,8 +1,9 @@
1
- from typing import List, Optional
1
+ from typing import List, Optional, Union
2
2
  from abc import abstractmethod
3
3
  from dataclasses import dataclass
4
4
 
5
5
  from nexaai.base import BaseModel
6
+ from nexaai.common import PluginID
6
7
 
7
8
 
8
9
  @dataclass
@@ -43,11 +44,14 @@ class TTS(BaseModel):
43
44
  def _load_from(cls,
44
45
  model_path: str,
45
46
  vocoder_path: str,
46
- plugin_id: str = "llama_cpp",
47
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
47
48
  device_id: Optional[str] = None
48
49
  ) -> 'TTS':
49
50
  """Load TTS model from local path, routing to appropriate implementation."""
50
- if plugin_id == "mlx":
51
+ # Check plugin_id value for routing - handle both enum and string
52
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
53
+
54
+ if plugin_value == "mlx":
51
55
  from nexaai.tts_impl.mlx_tts_impl import MLXTTSImpl
52
56
  return MLXTTSImpl._load_from(model_path, vocoder_path, plugin_id, device_id)
53
57
  else:
@@ -1,8 +1,9 @@
1
1
  # Note: This code is generated by Cursor, not tested yet.
2
2
 
3
- from typing import List, Optional
3
+ from typing import List, Optional, Union
4
4
  import os
5
5
 
6
+ from nexaai.common import PluginID
6
7
  from nexaai.tts import TTS, TTSConfig, TTSResult
7
8
  from nexaai.mlx_backend.tts.interface import MlxTts as MLXTTSInterface
8
9
 
@@ -17,7 +18,7 @@ class MLXTTSImpl(TTS):
17
18
  def _load_from(cls,
18
19
  model_path: str,
19
20
  vocoder_path: str,
20
- plugin_id: str = "mlx",
21
+ plugin_id: Union[PluginID, str] = PluginID.MLX,
21
22
  device_id: Optional[str] = None
22
23
  ) -> 'MLXTTSImpl':
23
24
  """Load TTS model from local path using MLX backend."""
@@ -1,5 +1,6 @@
1
- from typing import List, Optional
1
+ from typing import List, Optional, Union
2
2
 
3
+ from nexaai.common import PluginID
3
4
  from nexaai.tts import TTS, TTSConfig, TTSResult
4
5
 
5
6
 
@@ -13,7 +14,7 @@ class PyBindTTSImpl(TTS):
13
14
  def _load_from(cls,
14
15
  model_path: str,
15
16
  vocoder_path: str,
16
- plugin_id: str = "llama_cpp",
17
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
17
18
  device_id: Optional[str] = None
18
19
  ) -> 'PyBindTTSImpl':
19
20
  """Load TTS model from local path using PyBind backend."""
nexaai/vlm.py CHANGED
@@ -5,7 +5,7 @@ import threading
5
5
  import base64
6
6
  from pathlib import Path
7
7
 
8
- from nexaai.common import ModelConfig, GenerationConfig, MultiModalMessage
8
+ from nexaai.common import ModelConfig, GenerationConfig, MultiModalMessage, PluginID
9
9
  from nexaai.base import BaseModel
10
10
 
11
11
 
@@ -20,7 +20,7 @@ class VLM(BaseModel):
20
20
  local_path: str,
21
21
  mmproj_path: str,
22
22
  m_cfg: ModelConfig = ModelConfig(),
23
- plugin_id: str = "llama_cpp",
23
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
24
24
  device_id: Optional[str] = None
25
25
  ) -> 'VLM':
26
26
  """Load VLM model from local path, routing to appropriate implementation.
@@ -35,7 +35,10 @@ class VLM(BaseModel):
35
35
  Returns:
36
36
  VLM instance
37
37
  """
38
- if plugin_id == "mlx":
38
+ # Check plugin_id value for routing - handle both enum and string
39
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
40
+
41
+ if plugin_value == "mlx":
39
42
  from nexaai.vlm_impl.mlx_vlm_impl import MlxVlmImpl
40
43
  return MlxVlmImpl._load_from(local_path, mmproj_path, m_cfg, plugin_id, device_id)
41
44
  else:
@@ -1,6 +1,6 @@
1
- from typing import Generator, Optional, List, Dict, Any
1
+ from typing import Generator, Optional, List, Dict, Any, Union
2
2
 
3
- from nexaai.common import ModelConfig, GenerationConfig, MultiModalMessage
3
+ from nexaai.common import ModelConfig, GenerationConfig, MultiModalMessage, PluginID
4
4
  from nexaai.vlm import VLM
5
5
  from nexaai.mlx_backend.vlm.interface import VLM as MLXVLMInterface
6
6
  from nexaai.mlx_backend.ml import ModelConfig as MLXModelConfig, SamplerConfig as MLXSamplerConfig, GenerationConfig as MLXGenerationConfig, EmbeddingConfig
@@ -17,7 +17,7 @@ class MlxVlmImpl(VLM):
17
17
  local_path: str,
18
18
  mmproj_path: str,
19
19
  m_cfg: ModelConfig = ModelConfig(),
20
- plugin_id: str = "mlx",
20
+ plugin_id: Union[PluginID, str] = PluginID.MLX,
21
21
  device_id: Optional[str] = None
22
22
  ) -> 'MlxVlmImpl':
23
23
  """Load VLM model from local path using MLX backend.
@@ -4,7 +4,7 @@ import threading
4
4
  import base64
5
5
  from pathlib import Path
6
6
 
7
- from nexaai.common import ModelConfig, GenerationConfig, MultiModalMessage
7
+ from nexaai.common import ModelConfig, GenerationConfig, MultiModalMessage, PluginID
8
8
  from nexaai.binds import vlm_bind, common_bind
9
9
  from nexaai.runtime import _ensure_runtime
10
10
  from nexaai.vlm import VLM
@@ -21,7 +21,7 @@ class PyBindVLMImpl(VLM):
21
21
  local_path: str,
22
22
  mmproj_path: str,
23
23
  m_cfg: ModelConfig = ModelConfig(),
24
- plugin_id: str = "llama_cpp",
24
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
25
25
  device_id: Optional[str] = None
26
26
  ) -> 'PyBindVLMImpl':
27
27
  """Load VLM model from local path.
@@ -61,11 +61,13 @@ class PyBindVLMImpl(VLM):
61
61
  config.chat_template_content = m_cfg.chat_template_content
62
62
 
63
63
  # Create handle : returns py::capsule with automatic cleanup
64
+ # Convert enum to string for C++ binding
65
+ plugin_id_str = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
64
66
  handle = vlm_bind.create_vlm(
65
67
  model_path=local_path,
66
68
  mmproj_path=mmproj_path,
67
69
  model_config=config,
68
- plugin_id=plugin_id,
70
+ plugin_id=plugin_id_str,
69
71
  device_id=device_id
70
72
  )
71
73
  return cls(handle, m_cfg)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nexaai
3
- Version: 1.0.4rc15
3
+ Version: 1.0.4rc16
4
4
  Summary: Python bindings for NexaSDK C-lib backend
5
5
  Author-email: "Nexa AI, Inc." <dev@nexa.ai>
6
6
  Project-URL: Homepage, https://github.com/NexaAI/nexasdk-bridge
@@ -1,44 +1,46 @@
1
- nexaai/__init__.py,sha256=JTjJWdiBXHZyc_91Oe-GNOcODFp9gbUQM43bzNY7S8Q,1906
2
- nexaai/_stub.cpython-310-darwin.so,sha256=MRAMJWn_Q8vlb3hLqnErfRjyFDWnIWp7yclvY6-tyJY,49832
3
- nexaai/_version.py,sha256=UxLv07_TC8sCUMr5KTEXolBn9DNXJx2RUjkBcGewdXw,143
4
- nexaai/asr.py,sha256=Yg8Yml_nklzJYl3C_lwvEApTdNjY2czAurDaoEjkiIU,1813
1
+ nexaai/__init__.py,sha256=jXdC4vv6DBK1fVewYTYSUhOOYfvf_Mk81UIeMGGIKUg,2029
2
+ nexaai/_stub.cpython-310-darwin.so,sha256=7KDZERgfp9KR_dpQvZ7SMrGjlJpPyezLP7v-rYCdqFA,49832
3
+ nexaai/_version.py,sha256=NGCgH5JHTkWsbmkVT9FhcM7m4cxgmEZiw51TUG210EA,143
4
+ nexaai/asr.py,sha256=NljMXDErwPNMOPaRkJZMEDka9Nk8xyur7L8i924TStY,2054
5
5
  nexaai/base.py,sha256=N8PRgDFA-XPku2vWnQIofQ7ipz3pPlO6f8YZGnuhquE,982
6
- nexaai/common.py,sha256=VPM7NaUNaLTT7quW-u4D2uOeNrQqPjvfcgJlYGS3Qy8,1525
7
- nexaai/cv.py,sha256=KOaiRouiQ-YFP8FL20QuiieJfHN7DzASEi5_0m6H-E0,3032
8
- nexaai/embedder.py,sha256=VheiZEYBuuBjhQcvLawCz26jX0I169Xk4b9VP-ERjqU,2211
9
- nexaai/image_gen.py,sha256=IhLQLpmPkK9KcHteUdaQdxrnTIjk6xdyekRqeJtHfWw,4122
10
- nexaai/llm.py,sha256=egHa6YafNWyZy5qrmZRNZlFHO8LRUejc_gkOpK0nbnw,3105
11
- nexaai/rerank.py,sha256=7EEm96gpvd6kXO_Q8xSrQDlLZdAYTk0MODeNWDq70WA,1631
6
+ nexaai/common.py,sha256=5ElYo4uDP2CT3Kqxoo7XzqcJtDBuwwbIi_Wr14aT9Z4,1659
7
+ nexaai/cv.py,sha256=RHCDo8gvBH8BkGZx7qVyp-OKxqi7E1GG9XzyaXehCNA,3273
8
+ nexaai/embedder.py,sha256=Cw0tSHkPgd-RI62afCqQAcTHMnQhaI2CvfTMO-1JKOg,2452
9
+ nexaai/image_gen.py,sha256=0C_5Tjj4BYmxLbmMmvwajp-yy2mmEEOKwBFnDQNPzx4,4356
10
+ nexaai/llm.py,sha256=QQDRg8zlu-xHmWjtSOsK1vhQBHaqRIdL3T9I4cVX7W4,3416
11
+ nexaai/rerank.py,sha256=vWaBucoQ1wz-2iYnZqyFIcEjm-4Xcs1KDbFN5X8zzDQ,1872
12
12
  nexaai/runtime.py,sha256=mxxHYsb5iBUAm2K_u-XJWr_U-spJ9S4eApc8kf9myjw,1957
13
- nexaai/tts.py,sha256=4EbC0BfFh5TLrm_3Q5vx1sXdug5gvOi-owNeX7ekbdA,1926
14
- nexaai/vlm.py,sha256=g65S8ChMnp_wsz_O4szjR3Z8sD_46NHaxDlfdoZoQ0c,4291
13
+ nexaai/tts.py,sha256=ZnBpWUxIfHhh7KfEjddtH7hHOTa91zg7ogGLakMIALo,2167
14
+ nexaai/vlm.py,sha256=pZcMWkF2Ml9liVNbHxLqBJxwm2bxVNM1dkoelwWMyIE,4500
15
15
  nexaai/asr_impl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
- nexaai/asr_impl/mlx_asr_impl.py,sha256=JuyxFzFbbgclK5_2Rq5pT278h0q8LztJX7Tggz0zkbM,3191
17
- nexaai/asr_impl/pybind_asr_impl.py,sha256=ybvthYgtVbH_JgpSsl0nxjZYvXyk8KGRSKdsJ-hLfZE,1450
16
+ nexaai/asr_impl/mlx_asr_impl.py,sha256=eosd8-TIWAOwV0HltmoFrLwzXHcU4jyxtncvuZE9pgA,3257
17
+ nexaai/asr_impl/pybind_asr_impl.py,sha256=pE9Hb_hMi5yAc4MF83bLVOb8zDtreCkB3_u7XED9YpA,1516
18
18
  nexaai/binds/__init__.py,sha256=T9Ua7SzHNglSeEqXlfH5ymYXRyXhNKkC9z_y_bWCNMo,80
19
19
  nexaai/binds/common_bind.cpython-310-darwin.so,sha256=FF5WuJj0fNCim_HjseBQu38vL-1M5zI_7EVTD7Bs-Bc,233960
20
20
  nexaai/binds/embedder_bind.cpython-310-darwin.so,sha256=mU6hP0SyH8vcmPpC2GIr7ioK7539dsg_YbmrBdmj7l0,202032
21
- nexaai/binds/libnexa_bridge.dylib,sha256=TOKCHtBLiuo0-ck48D9x4mHKyxU2Ij52Alxwc6qsl5Y,250488
21
+ nexaai/binds/libcrypto.dylib,sha256=ysW8ydmDPnnNRy3AHESjJwMTFfmGDKU9eLIaiR37ca0,5091432
22
+ nexaai/binds/libnexa_bridge.dylib,sha256=8wjwefnWZLAzEqLlnFdjEWXNmTlRD9y9ogO0_ArRUB4,250712
23
+ nexaai/binds/libssl.dylib,sha256=JHPTSbRFnImmoWDO9rFdiKb0lJMT3q78VEsx-5-S0sk,889520
22
24
  nexaai/binds/llm_bind.cpython-310-darwin.so,sha256=g4erKCUm2qdMZk1WUrr3IAXixRNp78ViUEkbE5jDOfE,182872
23
- nexaai/binds/nexa_llama_cpp/libggml-base.dylib,sha256=tL8IaPurFjiLfShbnpCA1HuYw2jBI_jhDm_xSBMuMMo,626992
25
+ nexaai/binds/nexa_llama_cpp/libggml-base.dylib,sha256=ChIX99NoLhsYVXJvv8iGMIpx-5Rst2gYwux-bEektB4,626992
24
26
  nexaai/binds/nexa_llama_cpp/libggml-cpu.so,sha256=tZcQGr6aWSQmTN12ieC2nIJ0lID5-mTkqoGjxJh07b4,1039744
25
27
  nexaai/binds/nexa_llama_cpp/libggml-metal.so,sha256=eDWuZ4ui8LsahlU05sNEMZ7lTtZfswKtcGcGvWTB0ro,713680
26
28
  nexaai/binds/nexa_llama_cpp/libggml.dylib,sha256=Z2ZvkyEEpPtHhMYap-44p9Q0M6TXJbLcMy-smR2X5sk,58336
27
29
  nexaai/binds/nexa_llama_cpp/libllama.dylib,sha256=9pJFMHFlKHiQgLzi8YXextf5dPCYylQkpDv0EvCEssM,1958384
28
30
  nexaai/binds/nexa_llama_cpp/libmtmd.dylib,sha256=Etc0ZuYVNo9l1OTQRjZY4cTkgH2S2EL84DpxpWJeoJ4,682480
29
- nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib,sha256=naintrxbd9gDg7xXWE3vb7C8gQi2LCU8D5lcXw2h_YU,1969016
31
+ nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib,sha256=GzhOq5vFIQAii3zh4oRN_TjcpqNLYEstsBiUAa96fUA,2589576
30
32
  nexaai/cv_impl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- nexaai/cv_impl/mlx_cv_impl.py,sha256=mdK4DEffPe96AgDGDXtQeHlG958hf8FO1fBZ1qjZMEE,3162
32
- nexaai/cv_impl/pybind_cv_impl.py,sha256=yS4JKfRSaIjjVP7hJ-CizG76pIX85bpmGLk9B9cnL24,998
33
+ nexaai/cv_impl/mlx_cv_impl.py,sha256=gKECQOv8iaWwG3bl7xeqVy2NN_9K7tYerIFzfn4eLo4,3228
34
+ nexaai/cv_impl/pybind_cv_impl.py,sha256=uSmwBste4cT7c8DQmXzRLmzwDf773PAbXNYWW1UzVls,1064
33
35
  nexaai/embedder_impl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
- nexaai/embedder_impl/mlx_embedder_impl.py,sha256=dTOz34WGDnhsI9L7Ctv6fGPngvMAUc4FwEwRgBp_M9I,4317
35
- nexaai/embedder_impl/pybind_embedder_impl.py,sha256=AGGrOq4z0mDpQZInOvJsOIlQWflByhDjsihMu_Wjtbk,3286
36
+ nexaai/embedder_impl/mlx_embedder_impl.py,sha256=OsDzsc_2wZkSoWu6yCOZadMkaYdBW3uyjF11hDKTaX8,4383
37
+ nexaai/embedder_impl/pybind_embedder_impl.py,sha256=Ga1JYauVkRq6jwAGL7Xx5HDaIx483_v9gZVoTyd3xNU,3495
36
38
  nexaai/image_gen_impl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
- nexaai/image_gen_impl/mlx_image_gen_impl.py,sha256=OxSbk9zIDj7tTvsdM8bMJQDBhpn-mygBNktewd_wgtE,11153
38
- nexaai/image_gen_impl/pybind_image_gen_impl.py,sha256=XoSdWG5ID_g93WT9QB0qCP64a4rX-Rva0u4fQ8xpoqg,3626
39
+ nexaai/image_gen_impl/mlx_image_gen_impl.py,sha256=BuDkksvXyb4J02GsdnbGAmYckfUU0Eah6BimoMD3QqY,11219
40
+ nexaai/image_gen_impl/pybind_image_gen_impl.py,sha256=ms34VYoD5AxZFG6cIG0QAJDjCtfphaZ1bHzKzey1xF8,3692
39
41
  nexaai/llm_impl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
- nexaai/llm_impl/mlx_llm_impl.py,sha256=HCi1uQBjccDDi64LbAgyH85lWx7qDZIW8i43dojGfF0,10210
41
- nexaai/llm_impl/pybind_llm_impl.py,sha256=8Us4N5KF6oi-0-K_5Dpf2rYe9smd89ZfWFrP_fWBsM4,7374
42
+ nexaai/llm_impl/mlx_llm_impl.py,sha256=2Ifc_mfTHDX64BWVHLjOhFCIMqM_Z-Cn4RfExlMtq0s,10865
43
+ nexaai/llm_impl/pybind_llm_impl.py,sha256=DpO38rlGcvf0Zpe4bPKsbPD3EguBf0dDS9Ve64bgdvo,7653
42
44
  nexaai/mlx_backend/ml.py,sha256=LafDM_TeXmuQkld2tdQxUBGgooT0JPMXngLam2TADqU,23179
43
45
  nexaai/mlx_backend/profiling.py,sha256=Dc-mybFwBdCIKFWL7CbSHjkOJGAoYHG7r_e_XPhzwBU,9361
44
46
  nexaai/mlx_backend/asr/__init__.py,sha256=fuT_9_xpYJ28m4yjly5L2jChUrzlSQz-b_S7nujxkSM,451
@@ -58,7 +60,7 @@ nexaai/mlx_backend/embedding/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCe
58
60
  nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py,sha256=F9Z_9r-Dh0wNThiMp5W5hqE2dt5bf4ps5_c6h4BuWGw,15218
59
61
  nexaai/mlx_backend/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
60
62
  nexaai/mlx_backend/llm/generate.py,sha256=Phes0tzxbbEWA2hDylQvD0LjorMaPwvcfZq9RKCAOt0,4399
61
- nexaai/mlx_backend/llm/interface.py,sha256=Fx28O2jCDPaEfr0xLffWnqGIU5Gspggxr-o54-fBWj4,29257
63
+ nexaai/mlx_backend/llm/interface.py,sha256=YBLAdz_5gQ1VF9o98Tuj6xB_M2nUB9kX9VkM-Mp6ryc,29310
62
64
  nexaai/mlx_backend/llm/main.py,sha256=gFDE4VZv_CLKMCTn0N521OfCKH_Ys26bHDh6g9VEFNc,1982
63
65
  nexaai/mlx_backend/mlx_audio/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
66
  nexaai/mlx_backend/mlx_audio/server.py,sha256=Pqy13Fafq4WX_cTuvRFz1jq89beQm2QQGpXmhK4b9jc,17547
@@ -349,19 +351,19 @@ nexaai/mlx_backend/vlm/modeling/trainer/lora.py,sha256=tGjvenjEQ8_1Az8Nz3smz5Mgv
349
351
  nexaai/mlx_backend/vlm/modeling/trainer/trainer.py,sha256=h16SaHt76JzFruXuidgXDx7_2evx4L0SecvzqLmhyZw,9081
350
352
  nexaai/mlx_backend/vlm/modeling/trainer/utils.py,sha256=29oHf_7946YeJKP_-Dt-NPeN4xJq8Fj7Yv4jZKO9RWA,4909
351
353
  nexaai/rerank_impl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
352
- nexaai/rerank_impl/mlx_rerank_impl.py,sha256=I-jumShLm1jAmKunRcDNUU4yjfWLoWClFMFONd88-Es,3177
353
- nexaai/rerank_impl/pybind_rerank_impl.py,sha256=FIIN96zCxXopqpqZdBd7OjuqqviFBY8HMZek1bCeoJw,1447
354
+ nexaai/rerank_impl/mlx_rerank_impl.py,sha256=h37PKSIRBY8mwzVeLeP4ix9ui3waIsg4gorzelYLJbM,3243
355
+ nexaai/rerank_impl/pybind_rerank_impl.py,sha256=CtwkG7YrW58GPMDERJSnISGTVCXWNju5__R2W837t7c,1513
354
356
  nexaai/tts_impl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
355
- nexaai/tts_impl/mlx_tts_impl.py,sha256=D71IFtIYWzrVdBS2y5vDBWjZ4ZAzRRjFHC0KO0pA5BU,3035
356
- nexaai/tts_impl/pybind_tts_impl.py,sha256=Be5QiXzDz6h1LTIQzUBd0ZyBs7rUpNA-pULCXFtt2Is,1378
357
+ nexaai/tts_impl/mlx_tts_impl.py,sha256=i_uNPdvlXYtL3e01oKjDlP9jgkWCRt1bBHsExaaiJi8,3101
358
+ nexaai/tts_impl/pybind_tts_impl.py,sha256=mpn44r6pfYLIl-NrEy2dXHjGtWtNCmM7HRyxiANxUI4,1444
357
359
  nexaai/utils/avatar_fetcher.py,sha256=bWy8ujgbOiTHFCjFxTwkn3uXbZ84PgEGUkXkR3MH4bI,3821
358
360
  nexaai/utils/decode.py,sha256=61n4Zf6c5QLyqGoctEitlI9BX3tPlP2a5aaKNHbw3T4,404
359
361
  nexaai/utils/model_manager.py,sha256=c07ocxxw1IHCQw6esbmYK0dX2R2OajfEIGsC_2teHXo,48572
360
362
  nexaai/utils/progress_tracker.py,sha256=76HlPkyN41IMHSsH56-qdlN_aY_oBfJz50J16Cx67R0,15102
361
363
  nexaai/vlm_impl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
362
- nexaai/vlm_impl/mlx_vlm_impl.py,sha256=7gm_tFNox3LC78DQEtlMQ-eBK55zDY0xWlJghUAOP5Y,10402
363
- nexaai/vlm_impl/pybind_vlm_impl.py,sha256=C-3fa0AIypI33OAGuGfVxo1V7zN0wjQMgruKlDIlW4Q,8333
364
- nexaai-1.0.4rc15.dist-info/METADATA,sha256=izOUOhvRNpO73EELnKolgU0Kn_PK79tsJkJr3RMWBzA,883
365
- nexaai-1.0.4rc15.dist-info/WHEEL,sha256=0KYp5feZ1CMUhsfFXKpSQTbSmQbXy4mv6yPPVBXg2EM,110
366
- nexaai-1.0.4rc15.dist-info/top_level.txt,sha256=LRE2YERlrZk2vfuygnSzsEeqSknnZbz3Z1MHyNmBU4w,7
367
- nexaai-1.0.4rc15.dist-info/RECORD,,
364
+ nexaai/vlm_impl/mlx_vlm_impl.py,sha256=Dm-N38wqK3Cjdk3n7wfVGKC7hwxHvaM8pz37VzvJC-Y,10443
365
+ nexaai/vlm_impl/pybind_vlm_impl.py,sha256=mvydHMHNWtkmyqouLIj1XSYZgsro3tcp3s_aqkjljE0,8510
366
+ nexaai-1.0.4rc16.dist-info/METADATA,sha256=NuLsDWtJssKVjTNP4oo-tFItIBxIbiq-0hTq1rv706s,883
367
+ nexaai-1.0.4rc16.dist-info/WHEEL,sha256=0KYp5feZ1CMUhsfFXKpSQTbSmQbXy4mv6yPPVBXg2EM,110
368
+ nexaai-1.0.4rc16.dist-info/top_level.txt,sha256=LRE2YERlrZk2vfuygnSzsEeqSknnZbz3Z1MHyNmBU4w,7
369
+ nexaai-1.0.4rc16.dist-info/RECORD,,