nexaai 1.0.4rc13__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/__init__.py +71 -0
- nexaai/_stub.cp310-win_amd64.pyd +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +60 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +91 -0
- nexaai/asr_impl/pybind_asr_impl.py +43 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +3 -0
- nexaai/binds/common_bind.cp310-win_amd64.pyd +0 -0
- nexaai/binds/embedder_bind.cp310-win_amd64.pyd +0 -0
- nexaai/binds/llm_bind.cp310-win_amd64.pyd +0 -0
- nexaai/binds/nexa_bridge.dll +0 -0
- nexaai/binds/nexa_llama_cpp/ggml-base.dll +0 -0
- nexaai/binds/nexa_llama_cpp/ggml-cpu.dll +0 -0
- nexaai/binds/nexa_llama_cpp/ggml-cuda.dll +0 -0
- nexaai/binds/nexa_llama_cpp/ggml-vulkan.dll +0 -0
- nexaai/binds/nexa_llama_cpp/ggml.dll +0 -0
- nexaai/binds/nexa_llama_cpp/llama.dll +0 -0
- nexaai/binds/nexa_llama_cpp/mtmd.dll +0 -0
- nexaai/binds/nexa_llama_cpp/nexa_plugin.dll +0 -0
- nexaai/common.py +61 -0
- nexaai/cv.py +87 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +88 -0
- nexaai/cv_impl/pybind_cv_impl.py +31 -0
- nexaai/embedder.py +68 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +114 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +91 -0
- nexaai/image_gen.py +136 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +291 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +84 -0
- nexaai/llm.py +89 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +249 -0
- nexaai/llm_impl/pybind_llm_impl.py +207 -0
- nexaai/rerank.py +51 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +91 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +42 -0
- nexaai/runtime.py +64 -0
- nexaai/tts.py +70 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +93 -0
- nexaai/tts_impl/pybind_tts_impl.py +42 -0
- nexaai/utils/avatar_fetcher.py +104 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/model_manager.py +1195 -0
- nexaai/utils/progress_tracker.py +372 -0
- nexaai/vlm.py +120 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +205 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +228 -0
- nexaai-1.0.4rc13.dist-info/METADATA +26 -0
- nexaai-1.0.4rc13.dist-info/RECORD +59 -0
- nexaai-1.0.4rc13.dist-info/WHEEL +5 -0
- nexaai-1.0.4rc13.dist-info/top_level.txt +1 -0
nexaai/embedder.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
from typing import List, Union
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from abc import abstractmethod
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from nexaai.base import BaseModel
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@dataclass
|
|
10
|
+
class EmbeddingConfig:
|
|
11
|
+
batch_size: int = 32
|
|
12
|
+
normalize: bool = True
|
|
13
|
+
normalize_method: str = "l2"
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class Embedder(BaseModel):
|
|
17
|
+
def __init__(self):
|
|
18
|
+
"""
|
|
19
|
+
Internal initializer
|
|
20
|
+
"""
|
|
21
|
+
pass
|
|
22
|
+
|
|
23
|
+
@classmethod
|
|
24
|
+
def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: str = "llama_cpp"):
|
|
25
|
+
"""
|
|
26
|
+
Load an embedder from model files, routing to appropriate implementation.
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
model_path: Path to the model file
|
|
30
|
+
tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
|
|
31
|
+
plugin_id: Plugin ID to use for the model (default: "llama_cpp")
|
|
32
|
+
|
|
33
|
+
Returns:
|
|
34
|
+
Embedder instance
|
|
35
|
+
"""
|
|
36
|
+
if plugin_id == "mlx":
|
|
37
|
+
from nexaai.embedder_impl.mlx_embedder_impl import MLXEmbedderImpl
|
|
38
|
+
return MLXEmbedderImpl._load_from(model_path, tokenizer_file, plugin_id)
|
|
39
|
+
else:
|
|
40
|
+
from nexaai.embedder_impl.pybind_embedder_impl import PyBindEmbedderImpl
|
|
41
|
+
return PyBindEmbedderImpl._load_from(model_path, tokenizer_file, plugin_id)
|
|
42
|
+
|
|
43
|
+
@abstractmethod
|
|
44
|
+
def generate(self, texts: Union[List[str], str] = None, config: EmbeddingConfig = EmbeddingConfig(), input_ids: Union[List[int], List[List[int]]] = None) -> np.ndarray:
|
|
45
|
+
"""
|
|
46
|
+
Generate embeddings for the given texts or input_ids.
|
|
47
|
+
|
|
48
|
+
Args:
|
|
49
|
+
texts: List of strings or single string to embed
|
|
50
|
+
input_ids: Pre-tokenized input as:
|
|
51
|
+
- Single sequence: list of integers [1, 2, 3, 4]
|
|
52
|
+
- Multiple sequences: list of lists [[1, 2, 3], [4, 5, 6]]
|
|
53
|
+
config: Configuration for embedding generation
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
numpy array of embeddings with shape (num_sequences, embedding_dim)
|
|
57
|
+
"""
|
|
58
|
+
pass
|
|
59
|
+
|
|
60
|
+
@abstractmethod
|
|
61
|
+
def get_embedding_dim(self) -> int:
|
|
62
|
+
"""
|
|
63
|
+
Get the embedding dimension of the model
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
The embedding dimension in int
|
|
67
|
+
"""
|
|
68
|
+
pass
|
|
File without changes
|
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
from typing import List, Union
|
|
2
|
+
import numpy as np
|
|
3
|
+
|
|
4
|
+
from nexaai.embedder import Embedder, EmbeddingConfig
|
|
5
|
+
from nexaai.mlx_backend.embedding.interface import Embedder as MLXEmbedderInterface
|
|
6
|
+
from nexaai.mlx_backend.ml import ModelConfig as MLXModelConfig, SamplerConfig as MLXSamplerConfig, GenerationConfig as MLXGenerationConfig, EmbeddingConfig
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class MLXEmbedderImpl(Embedder):
|
|
10
|
+
def __init__(self):
|
|
11
|
+
"""Initialize MLX Embedder implementation."""
|
|
12
|
+
super().__init__()
|
|
13
|
+
self._mlx_embedder = None
|
|
14
|
+
|
|
15
|
+
@classmethod
|
|
16
|
+
def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: str = "mlx"):
|
|
17
|
+
"""
|
|
18
|
+
Load an embedder from model files using MLX backend.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
model_path: Path to the model file
|
|
22
|
+
tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
|
|
23
|
+
plugin_id: Plugin ID to use for the model (default: "mlx")
|
|
24
|
+
|
|
25
|
+
Returns:
|
|
26
|
+
MLXEmbedderImpl instance
|
|
27
|
+
"""
|
|
28
|
+
try:
|
|
29
|
+
# MLX interface is already imported
|
|
30
|
+
|
|
31
|
+
# Create instance and load MLX embedder
|
|
32
|
+
instance = cls()
|
|
33
|
+
instance._mlx_embedder = MLXEmbedderInterface(
|
|
34
|
+
model_path=model_path,
|
|
35
|
+
tokenizer_path=tokenizer_file
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
# Load the model
|
|
39
|
+
success = instance._mlx_embedder.load_model(model_path)
|
|
40
|
+
if not success:
|
|
41
|
+
raise RuntimeError("Failed to load MLX embedder model")
|
|
42
|
+
|
|
43
|
+
return instance
|
|
44
|
+
except Exception as e:
|
|
45
|
+
raise RuntimeError(f"Failed to load MLX Embedder: {str(e)}")
|
|
46
|
+
|
|
47
|
+
def eject(self):
|
|
48
|
+
"""
|
|
49
|
+
Clean up resources and destroy the embedder
|
|
50
|
+
"""
|
|
51
|
+
if self._mlx_embedder:
|
|
52
|
+
self._mlx_embedder.destroy()
|
|
53
|
+
self._mlx_embedder = None
|
|
54
|
+
|
|
55
|
+
def generate(self, texts: Union[List[str], str] = None, config: EmbeddingConfig = EmbeddingConfig(), input_ids: Union[List[int], List[List[int]]] = None) -> np.ndarray:
|
|
56
|
+
"""
|
|
57
|
+
Generate embeddings for the given texts or input_ids.
|
|
58
|
+
|
|
59
|
+
Args:
|
|
60
|
+
texts: List of strings or single string to embed
|
|
61
|
+
input_ids: Pre-tokenized input as:
|
|
62
|
+
- Single sequence: list of integers [1, 2, 3, 4]
|
|
63
|
+
- Multiple sequences: list of lists [[1, 2, 3], [4, 5, 6]]
|
|
64
|
+
config: Configuration for embedding generation
|
|
65
|
+
|
|
66
|
+
Returns:
|
|
67
|
+
numpy array of embeddings with shape (num_sequences, embedding_dim)
|
|
68
|
+
"""
|
|
69
|
+
if not self._mlx_embedder:
|
|
70
|
+
raise RuntimeError("MLX Embedder not loaded")
|
|
71
|
+
|
|
72
|
+
if texts is None and input_ids is None:
|
|
73
|
+
raise ValueError("Either texts or input_ids must be provided")
|
|
74
|
+
|
|
75
|
+
# MLX embedder currently only supports text input, not pre-tokenized input_ids
|
|
76
|
+
if input_ids is not None:
|
|
77
|
+
raise NotImplementedError("MLX embedder does not support input_ids, only text input")
|
|
78
|
+
|
|
79
|
+
try:
|
|
80
|
+
# Convert single string to list if needed
|
|
81
|
+
if isinstance(texts, str):
|
|
82
|
+
texts = [texts]
|
|
83
|
+
|
|
84
|
+
# MLX config classes are already imported
|
|
85
|
+
|
|
86
|
+
# Convert our config to MLX config
|
|
87
|
+
mlx_config = EmbeddingConfig()
|
|
88
|
+
mlx_config.batch_size = config.batch_size
|
|
89
|
+
mlx_config.normalize = config.normalize
|
|
90
|
+
mlx_config.normalize_method = config.normalize_method
|
|
91
|
+
|
|
92
|
+
# Generate embeddings using MLX
|
|
93
|
+
embeddings = self._mlx_embedder.embed(texts, mlx_config)
|
|
94
|
+
|
|
95
|
+
# Convert to numpy array
|
|
96
|
+
return np.array(embeddings, dtype=np.float32)
|
|
97
|
+
|
|
98
|
+
except Exception as e:
|
|
99
|
+
raise RuntimeError(f"Failed to generate embeddings: {str(e)}")
|
|
100
|
+
|
|
101
|
+
def get_embedding_dim(self) -> int:
|
|
102
|
+
"""
|
|
103
|
+
Get the embedding dimension of the model
|
|
104
|
+
|
|
105
|
+
Returns:
|
|
106
|
+
The embedding dimension in int
|
|
107
|
+
"""
|
|
108
|
+
if not self._mlx_embedder:
|
|
109
|
+
raise RuntimeError("MLX Embedder not loaded")
|
|
110
|
+
|
|
111
|
+
try:
|
|
112
|
+
return self._mlx_embedder.embedding_dim()
|
|
113
|
+
except Exception as e:
|
|
114
|
+
raise RuntimeError(f"Failed to get embedding dimension: {str(e)}")
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
from typing import List, Union
|
|
2
|
+
import numpy as np
|
|
3
|
+
|
|
4
|
+
from nexaai.embedder import Embedder, EmbeddingConfig
|
|
5
|
+
from nexaai.binds import embedder_bind
|
|
6
|
+
from nexaai.runtime import _ensure_runtime
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class PyBindEmbedderImpl(Embedder):
|
|
10
|
+
def __init__(self, _handle_ptr):
|
|
11
|
+
"""
|
|
12
|
+
Internal initializer
|
|
13
|
+
"""
|
|
14
|
+
super().__init__()
|
|
15
|
+
self._handle = _handle_ptr
|
|
16
|
+
|
|
17
|
+
@classmethod
|
|
18
|
+
def _load_from(cls, model_path: str, tokenizer_file: str = "tokenizer.json", plugin_id: str = "llama_cpp"):
|
|
19
|
+
"""
|
|
20
|
+
Load an embedder from model files
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
model_path: Path to the model file
|
|
24
|
+
tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
|
|
25
|
+
plugin_id: Plugin ID to use for the model (default: "llama_cpp")
|
|
26
|
+
|
|
27
|
+
Returns:
|
|
28
|
+
PyBindEmbedderImpl instance
|
|
29
|
+
"""
|
|
30
|
+
_ensure_runtime()
|
|
31
|
+
handle = embedder_bind.ml_embedder_create(model_path, tokenizer_file, plugin_id)
|
|
32
|
+
return cls(handle)
|
|
33
|
+
|
|
34
|
+
def eject(self):
|
|
35
|
+
"""
|
|
36
|
+
Clean up resources and destroy the embedder
|
|
37
|
+
"""
|
|
38
|
+
# Destructor of the handle will unload the model correctly
|
|
39
|
+
del self._handle
|
|
40
|
+
self._handle = None
|
|
41
|
+
|
|
42
|
+
def generate(self, texts: Union[List[str], str] = None, config: EmbeddingConfig = EmbeddingConfig(), input_ids: Union[List[int], List[List[int]]] = None) -> np.ndarray:
|
|
43
|
+
"""
|
|
44
|
+
Generate embeddings for the given texts or input_ids.
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
texts: List of strings or single string to embed
|
|
48
|
+
input_ids: Pre-tokenized input as:
|
|
49
|
+
- Single sequence: list of integers [1, 2, 3, 4]
|
|
50
|
+
- Multiple sequences: list of lists [[1, 2, 3], [4, 5, 6]]
|
|
51
|
+
config: Configuration for embedding generation
|
|
52
|
+
|
|
53
|
+
Returns:
|
|
54
|
+
numpy array of embeddings with shape (num_sequences, embedding_dim)
|
|
55
|
+
"""
|
|
56
|
+
if texts is None and input_ids is None:
|
|
57
|
+
raise ValueError("Either texts or input_ids must be provided")
|
|
58
|
+
|
|
59
|
+
# Create bind config
|
|
60
|
+
bind_config = embedder_bind.EmbeddingConfig()
|
|
61
|
+
bind_config.batch_size = config.batch_size
|
|
62
|
+
bind_config.normalize = config.normalize
|
|
63
|
+
bind_config.normalize_method = config.normalize_method
|
|
64
|
+
|
|
65
|
+
# Convert single string to list if needed
|
|
66
|
+
if isinstance(texts, str):
|
|
67
|
+
texts = [texts]
|
|
68
|
+
|
|
69
|
+
# Convert input_ids to 2D format if needed
|
|
70
|
+
processed_input_ids = None
|
|
71
|
+
if input_ids is not None:
|
|
72
|
+
if len(input_ids) > 0 and isinstance(input_ids[0], int):
|
|
73
|
+
# Single sequence: convert [1, 2, 3] to [[1, 2, 3]]
|
|
74
|
+
processed_input_ids = [input_ids]
|
|
75
|
+
else:
|
|
76
|
+
# Multiple sequences: already in correct format [[1, 2], [3, 4]]
|
|
77
|
+
processed_input_ids = input_ids
|
|
78
|
+
|
|
79
|
+
# Pass both parameters, let the ABI handle validation
|
|
80
|
+
embeddings = embedder_bind.ml_embedder_embed(self._handle, bind_config, texts, processed_input_ids)
|
|
81
|
+
|
|
82
|
+
return embeddings
|
|
83
|
+
|
|
84
|
+
def get_embedding_dim(self) -> int:
|
|
85
|
+
"""
|
|
86
|
+
Get the embedding dimension of the model
|
|
87
|
+
|
|
88
|
+
Returns:
|
|
89
|
+
The embedding dimension in int
|
|
90
|
+
"""
|
|
91
|
+
return embedder_bind.ml_embedder_embedding_dim(self._handle)
|
nexaai/image_gen.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
from typing import List, Optional, Union
|
|
2
|
+
from abc import abstractmethod
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
|
|
5
|
+
from nexaai.base import BaseModel
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@dataclass
|
|
9
|
+
class Image:
|
|
10
|
+
"""Image data structure."""
|
|
11
|
+
data: List[float] # width × height × channels
|
|
12
|
+
width: int
|
|
13
|
+
height: int
|
|
14
|
+
channels: int # 3 = RGB, 4 = RGBA
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@dataclass
|
|
18
|
+
class ImageSamplerConfig:
|
|
19
|
+
"""Configuration for image sampling."""
|
|
20
|
+
method: str = "ddim"
|
|
21
|
+
steps: int = 20
|
|
22
|
+
guidance_scale: float = 7.5
|
|
23
|
+
eta: float = 0.0
|
|
24
|
+
seed: int = -1 # –1 for random
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@dataclass
|
|
28
|
+
class ImageGenerationConfig:
|
|
29
|
+
"""Configuration for image generation."""
|
|
30
|
+
prompts: Union[str, List[str]]
|
|
31
|
+
negative_prompts: Optional[Union[str, List[str]]] = None
|
|
32
|
+
height: int = 512
|
|
33
|
+
width: int = 512
|
|
34
|
+
sampler_config: Optional[ImageSamplerConfig] = None
|
|
35
|
+
lora_id: int = -1 # –1 for none
|
|
36
|
+
init_image: Optional[Image] = None
|
|
37
|
+
strength: float = 1.0
|
|
38
|
+
n_images: int = 1
|
|
39
|
+
n_rows: int = 1
|
|
40
|
+
decoding_batch_size: int = 1
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@dataclass
|
|
44
|
+
class SchedulerConfig:
|
|
45
|
+
"""Configuration for diffusion scheduler."""
|
|
46
|
+
type: str = "ddim"
|
|
47
|
+
num_train_timesteps: int = 1000
|
|
48
|
+
steps_offset: int = 0 # An offset added to the inference steps
|
|
49
|
+
beta_start: float = 0.00085
|
|
50
|
+
beta_end: float = 0.012
|
|
51
|
+
beta_schedule: str = "scaled_linear"
|
|
52
|
+
prediction_type: str = "epsilon"
|
|
53
|
+
timestep_type: str = "discrete"
|
|
54
|
+
timestep_spacing: str = "linspace"
|
|
55
|
+
interpolation_type: str = "linear"
|
|
56
|
+
config_path: Optional[str] = None
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
class ImageGen(BaseModel):
|
|
60
|
+
"""Abstract base class for image generation models."""
|
|
61
|
+
|
|
62
|
+
def __init__(self):
|
|
63
|
+
"""Initialize base image generation class."""
|
|
64
|
+
pass
|
|
65
|
+
|
|
66
|
+
@classmethod
|
|
67
|
+
def _load_from(cls,
|
|
68
|
+
model_path: str,
|
|
69
|
+
scheduler_config_path: str = "",
|
|
70
|
+
plugin_id: str = "llama_cpp",
|
|
71
|
+
device_id: Optional[str] = None,
|
|
72
|
+
float16: bool = True,
|
|
73
|
+
quantize: bool = False
|
|
74
|
+
) -> 'ImageGen':
|
|
75
|
+
"""Load image generation model from local path, routing to appropriate implementation."""
|
|
76
|
+
if plugin_id == "mlx":
|
|
77
|
+
from nexaai.image_gen_impl.mlx_image_gen_impl import MLXImageGenImpl
|
|
78
|
+
return MLXImageGenImpl._load_from(model_path, scheduler_config_path, plugin_id, device_id, float16, quantize)
|
|
79
|
+
else:
|
|
80
|
+
from nexaai.image_gen_impl.pybind_image_gen_impl import PyBindImageGenImpl
|
|
81
|
+
return PyBindImageGenImpl._load_from(model_path, scheduler_config_path, plugin_id, device_id, float16, quantize)
|
|
82
|
+
|
|
83
|
+
@abstractmethod
|
|
84
|
+
def load_model(self, model_path: str, extra_data: Optional[str] = None) -> bool:
|
|
85
|
+
"""Load model from path."""
|
|
86
|
+
pass
|
|
87
|
+
|
|
88
|
+
@abstractmethod
|
|
89
|
+
def set_scheduler(self, config: SchedulerConfig) -> None:
|
|
90
|
+
"""Set scheduler configuration."""
|
|
91
|
+
pass
|
|
92
|
+
|
|
93
|
+
@abstractmethod
|
|
94
|
+
def set_sampler(self, config: ImageSamplerConfig) -> None:
|
|
95
|
+
"""Set sampler configuration."""
|
|
96
|
+
pass
|
|
97
|
+
|
|
98
|
+
@abstractmethod
|
|
99
|
+
def reset_sampler(self) -> None:
|
|
100
|
+
"""Reset sampler to default configuration."""
|
|
101
|
+
pass
|
|
102
|
+
|
|
103
|
+
@abstractmethod
|
|
104
|
+
def txt2img(self, prompt: str, config: ImageGenerationConfig) -> Image:
|
|
105
|
+
"""Generate image from text prompt."""
|
|
106
|
+
pass
|
|
107
|
+
|
|
108
|
+
@abstractmethod
|
|
109
|
+
def img2img(self, init_image: Image, prompt: str, config: ImageGenerationConfig) -> Image:
|
|
110
|
+
"""Generate image from initial image and text prompt."""
|
|
111
|
+
pass
|
|
112
|
+
|
|
113
|
+
@abstractmethod
|
|
114
|
+
def generate(self, config: ImageGenerationConfig) -> Image:
|
|
115
|
+
"""Generate image from configuration."""
|
|
116
|
+
pass
|
|
117
|
+
|
|
118
|
+
@abstractmethod
|
|
119
|
+
def set_lora(self, lora_id: int) -> None:
|
|
120
|
+
"""Set active LoRA adapter."""
|
|
121
|
+
pass
|
|
122
|
+
|
|
123
|
+
@abstractmethod
|
|
124
|
+
def add_lora(self, lora_path: str) -> int:
|
|
125
|
+
"""Add LoRA adapter and return its ID."""
|
|
126
|
+
pass
|
|
127
|
+
|
|
128
|
+
@abstractmethod
|
|
129
|
+
def remove_lora(self, lora_id: int) -> None:
|
|
130
|
+
"""Remove LoRA adapter."""
|
|
131
|
+
pass
|
|
132
|
+
|
|
133
|
+
@abstractmethod
|
|
134
|
+
def list_loras(self) -> List[int]:
|
|
135
|
+
"""List available LoRA adapters."""
|
|
136
|
+
pass
|
|
File without changes
|