nexaai 1.0.21rc5__cp313-cp313-win_arm64.whl → 1.0.21rc16__cp313-cp313-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (104) hide show
  1. nexaai/__init__.py +95 -95
  2. nexaai/_stub.cp313-win_arm64.pyd +0 -0
  3. nexaai/_version.py +4 -1
  4. nexaai/asr.py +68 -65
  5. nexaai/asr_impl/mlx_asr_impl.py +92 -92
  6. nexaai/asr_impl/pybind_asr_impl.py +127 -44
  7. nexaai/base.py +39 -39
  8. nexaai/binds/__init__.py +6 -5
  9. nexaai/binds/asr_bind.cp313-win_arm64.pyd +0 -0
  10. nexaai/binds/common_bind.cp313-win_arm64.pyd +0 -0
  11. nexaai/binds/cpu_gpu/ggml-base.dll +0 -0
  12. nexaai/binds/cpu_gpu/ggml-cpu.dll +0 -0
  13. nexaai/binds/cpu_gpu/ggml-opencl.dll +0 -0
  14. nexaai/binds/cpu_gpu/ggml.dll +0 -0
  15. nexaai/binds/cpu_gpu/mtmd.dll +0 -0
  16. nexaai/binds/cpu_gpu/nexa_cpu_gpu.dll +0 -0
  17. nexaai/binds/cpu_gpu/nexa_plugin.dll +0 -0
  18. nexaai/binds/embedder_bind.cp313-win_arm64.pyd +0 -0
  19. nexaai/binds/libcrypto-3-arm64.dll +0 -0
  20. nexaai/binds/libssl-3-arm64.dll +0 -0
  21. nexaai/binds/llm_bind.cp313-win_arm64.pyd +0 -0
  22. nexaai/binds/nexa_bridge.dll +0 -0
  23. nexaai/binds/npu/convnext-sdk.dll +0 -0
  24. nexaai/binds/npu/embed-gemma-sdk.dll +0 -0
  25. nexaai/binds/npu/ggml-base.dll +0 -0
  26. nexaai/binds/npu/ggml-cpu.dll +0 -0
  27. nexaai/binds/{nexaml → npu}/ggml-opencl.dll +0 -0
  28. nexaai/binds/npu/ggml.dll +0 -0
  29. nexaai/binds/npu/granite-nano-sdk.dll +0 -0
  30. nexaai/binds/npu/granite4-sdk.dll +0 -0
  31. nexaai/binds/npu/jina-rerank-sdk.dll +0 -0
  32. nexaai/binds/npu/liquid-sdk.dll +0 -0
  33. nexaai/binds/npu/llama3-3b-sdk.dll +0 -0
  34. nexaai/binds/npu/nexa-mm-process.dll +0 -0
  35. nexaai/binds/npu/nexa-sampling.dll +0 -0
  36. nexaai/binds/npu/nexa_plugin.dll +0 -0
  37. nexaai/binds/npu/omni-neural-sdk.dll +0 -0
  38. nexaai/binds/npu/openblas.dll +0 -0
  39. nexaai/binds/npu/paddleocr-sdk.dll +0 -0
  40. nexaai/binds/npu/parakeet-sdk.dll +0 -0
  41. nexaai/binds/npu/phi3-5-sdk.dll +0 -0
  42. nexaai/binds/npu/phi4-sdk.dll +0 -0
  43. nexaai/binds/npu/pyannote-sdk.dll +0 -0
  44. nexaai/binds/npu/qwen3-4b-sdk.dll +0 -0
  45. nexaai/binds/npu/qwen3vl-sdk.dll +0 -0
  46. nexaai/binds/npu/qwen3vl-vision.dll +0 -0
  47. nexaai/binds/npu/yolov12-sdk.dll +0 -0
  48. nexaai/binds/npu/zlib1.dll +0 -0
  49. nexaai/binds/rerank_bind.cp313-win_arm64.pyd +0 -0
  50. nexaai/binds/vlm_bind.cp313-win_arm64.pyd +0 -0
  51. nexaai/common.py +105 -105
  52. nexaai/cv.py +93 -93
  53. nexaai/cv_impl/mlx_cv_impl.py +89 -89
  54. nexaai/cv_impl/pybind_cv_impl.py +32 -32
  55. nexaai/embedder.py +73 -73
  56. nexaai/embedder_impl/mlx_embedder_impl.py +118 -118
  57. nexaai/embedder_impl/pybind_embedder_impl.py +96 -96
  58. nexaai/image_gen.py +141 -141
  59. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -292
  60. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -85
  61. nexaai/llm.py +98 -98
  62. nexaai/llm_impl/mlx_llm_impl.py +271 -271
  63. nexaai/llm_impl/pybind_llm_impl.py +220 -220
  64. nexaai/log.py +92 -92
  65. nexaai/rerank.py +57 -57
  66. nexaai/rerank_impl/mlx_rerank_impl.py +94 -94
  67. nexaai/rerank_impl/pybind_rerank_impl.py +136 -136
  68. nexaai/runtime.py +68 -68
  69. nexaai/runtime_error.py +24 -24
  70. nexaai/tts.py +75 -75
  71. nexaai/tts_impl/mlx_tts_impl.py +94 -94
  72. nexaai/tts_impl/pybind_tts_impl.py +43 -43
  73. nexaai/utils/decode.py +17 -17
  74. nexaai/utils/manifest_utils.py +531 -531
  75. nexaai/utils/model_manager.py +1562 -1562
  76. nexaai/utils/model_types.py +49 -49
  77. nexaai/utils/progress_tracker.py +384 -384
  78. nexaai/utils/quantization_utils.py +245 -245
  79. nexaai/vlm.py +129 -129
  80. nexaai/vlm_impl/mlx_vlm_impl.py +258 -258
  81. nexaai/vlm_impl/pybind_vlm_impl.py +256 -256
  82. {nexaai-1.0.21rc5.dist-info → nexaai-1.0.21rc16.dist-info}/METADATA +1 -1
  83. nexaai-1.0.21rc16.dist-info/RECORD +154 -0
  84. nexaai/binds/nexaml/FLAC.dll +0 -0
  85. nexaai/binds/nexaml/fftw3.dll +0 -0
  86. nexaai/binds/nexaml/fftw3f.dll +0 -0
  87. nexaai/binds/nexaml/ggml-base.dll +0 -0
  88. nexaai/binds/nexaml/ggml-cpu.dll +0 -0
  89. nexaai/binds/nexaml/ggml.dll +0 -0
  90. nexaai/binds/nexaml/libmp3lame.DLL +0 -0
  91. nexaai/binds/nexaml/mpg123.dll +0 -0
  92. nexaai/binds/nexaml/nexa-mm-process.dll +0 -0
  93. nexaai/binds/nexaml/nexa-sampling.dll +0 -0
  94. nexaai/binds/nexaml/nexa_plugin.dll +0 -0
  95. nexaai/binds/nexaml/nexaproc.dll +0 -0
  96. nexaai/binds/nexaml/ogg.dll +0 -0
  97. nexaai/binds/nexaml/opus.dll +0 -0
  98. nexaai/binds/nexaml/qwen3-vl.dll +0 -0
  99. nexaai/binds/nexaml/qwen3vl-vision.dll +0 -0
  100. nexaai/binds/nexaml/vorbis.dll +0 -0
  101. nexaai/binds/nexaml/vorbisenc.dll +0 -0
  102. nexaai-1.0.21rc5.dist-info/RECORD +0 -162
  103. {nexaai-1.0.21rc5.dist-info → nexaai-1.0.21rc16.dist-info}/WHEEL +0 -0
  104. {nexaai-1.0.21rc5.dist-info → nexaai-1.0.21rc16.dist-info}/top_level.txt +0 -0
@@ -1,220 +1,220 @@
1
- from typing import Generator, Optional, Union
2
- import queue
3
- import threading
4
-
5
- from nexaai.base import ProfilingData
6
- from nexaai.common import ModelConfig, GenerationConfig, ChatMessage, PluginID
7
- from nexaai.binds import llm_bind, common_bind
8
- from nexaai.runtime import _ensure_runtime
9
- from nexaai.llm import LLM
10
-
11
-
12
- class PyBindLLMImpl(LLM):
13
- def __init__(self, handle: any, m_cfg: ModelConfig = ModelConfig()):
14
- """Private constructor, should not be called directly."""
15
- super().__init__(m_cfg)
16
- self._handle = handle # This is a py::capsule
17
- self._profiling_data = None
18
-
19
- @classmethod
20
- def _load_from(cls,
21
- local_path: str,
22
- model_name: Optional[str] = None,
23
- tokenizer_path: Optional[str] = None,
24
- m_cfg: ModelConfig = ModelConfig(),
25
- plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
26
- device_id: Optional[str] = None
27
- ) -> 'PyBindLLMImpl':
28
- """Load model from local path."""
29
- _ensure_runtime()
30
-
31
- config = common_bind.ModelConfig()
32
-
33
- config.n_ctx = m_cfg.n_ctx
34
- if m_cfg.n_threads is not None:
35
- config.n_threads = m_cfg.n_threads
36
- if m_cfg.n_threads_batch is not None:
37
- config.n_threads_batch = m_cfg.n_threads_batch
38
- if m_cfg.n_batch is not None:
39
- config.n_batch = m_cfg.n_batch
40
- if m_cfg.n_ubatch is not None:
41
- config.n_ubatch = m_cfg.n_ubatch
42
- if m_cfg.n_seq_max is not None:
43
- config.n_seq_max = m_cfg.n_seq_max
44
- if m_cfg.n_gpu_layers is not None:
45
- config.n_gpu_layers = m_cfg.n_gpu_layers
46
-
47
- # handle chat template strings
48
- if m_cfg.chat_template_path:
49
- config.chat_template_path = m_cfg.chat_template_path
50
-
51
- if m_cfg.chat_template_content:
52
- config.chat_template_content = m_cfg.chat_template_content
53
-
54
- # Create handle : returns py::capsule with automatic cleanup
55
- # Convert enum to string for C++ binding
56
- plugin_id_str = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
57
- handle = llm_bind.ml_llm_create(
58
- model_path=local_path,
59
- model_name=model_name,
60
- tokenizer_path=tokenizer_path,
61
- model_config=config,
62
- plugin_id=plugin_id_str,
63
- device_id=device_id
64
- )
65
- return cls(handle, m_cfg)
66
-
67
- def eject(self):
68
- """Release the model from memory."""
69
- # py::capsule handles cleanup automatically
70
- del self._handle
71
- self._handle = None
72
-
73
- def apply_chat_template(self, messages: list[ChatMessage], tools: Optional[str] = None, enable_thinking: bool = True, add_generation_prompt: bool = True) -> str:
74
- """Apply the chat template to messages."""
75
- # Convert TypedDict to list of dicts for binding
76
- message_dicts = [
77
- {"role": m["role"], "content": m["content"]}
78
- for m in messages
79
- ]
80
- return llm_bind.ml_llm_apply_chat_template(self._handle, message_dicts)
81
-
82
- def generate_stream(self, prompt: str, g_cfg: GenerationConfig = GenerationConfig()) -> Generator[str, None, None]:
83
- """Generate text with streaming."""
84
- token_queue = queue.Queue()
85
- exception_container = [None]
86
- self.reset_cancel() # Reset cancel flag before generation
87
-
88
- def on_token(token: str, user_data) -> bool:
89
- if self._cancel_event.is_set():
90
- token_queue.put(('end', None))
91
- return False # Stop generation
92
- try:
93
- token_queue.put(('token', token))
94
- return True # Continue generation
95
- except Exception as e:
96
- exception_container[0] = e
97
- return False # Stop generation
98
-
99
- config = self._convert_generation_config(g_cfg)
100
-
101
- # Run generation in thread
102
- def generate():
103
- try:
104
- result = llm_bind.ml_llm_generate(
105
- handle=self._handle,
106
- prompt=prompt,
107
- config=config,
108
- on_token=on_token,
109
- user_data=None
110
- )
111
- self._profiling_data = ProfilingData.from_dict(result.get("profile_data", {}))
112
- except Exception as e:
113
- exception_container[0] = e
114
- finally:
115
- token_queue.put(('end', None))
116
-
117
- thread = threading.Thread(target=generate)
118
- thread.start()
119
-
120
- # Yield tokens as they come
121
- try:
122
- while True:
123
- msg_type, token = token_queue.get()
124
- if msg_type == 'token':
125
- yield token
126
- elif msg_type in ('error', 'end'):
127
- break
128
- finally:
129
- thread.join()
130
-
131
- if exception_container[0]:
132
- raise exception_container[0]
133
-
134
- def generate(self, prompt: str, g_cfg: GenerationConfig = GenerationConfig()) -> str:
135
- """
136
- Generate text without streaming.
137
-
138
- Args:
139
- prompt (str): The prompt to generate text from. For chat models, this is the chat messages after chat template is applied.
140
- g_cfg (GenerationConfig): Generation configuration.
141
-
142
- Returns:
143
- str: The generated text.
144
- """
145
- config = self._convert_generation_config(g_cfg)
146
- result = llm_bind.ml_llm_generate(
147
- handle=self._handle,
148
- prompt=prompt,
149
- config=config,
150
- on_token=None, # No callback for non-streaming
151
- user_data=None
152
- )
153
-
154
- self._profiling_data = ProfilingData.from_dict(result.get("profile_data", {}))
155
- return result.get("text", "")
156
-
157
- def get_profiling_data(self) -> Optional[ProfilingData]:
158
- """Get profiling data."""
159
- return self._profiling_data
160
-
161
- def save_kv_cache(self, path: str):
162
- """
163
- Save the key-value cache to the file.
164
-
165
- Args:
166
- path (str): The path to the file.
167
- """
168
- llm_bind.ml_llm_save_kv_cache(self._handle, path)
169
-
170
- def load_kv_cache(self, path: str):
171
- """
172
- Load the key-value cache from the file.
173
-
174
- Args:
175
- path (str): The path to the file.
176
- """
177
- llm_bind.ml_llm_load_kv_cache(self._handle, path)
178
-
179
- def reset(self):
180
- """
181
- Reset the LLM model context and KV cache. If not reset, the model will skip the number of evaluated tokens and treat tokens after those as the new incremental tokens.
182
- If your past chat history changed, or you are starting a new chat, you should always reset the model before running generate.
183
- """
184
- llm_bind.ml_llm_reset(self._handle)
185
-
186
- def _convert_generation_config(self, g_cfg: GenerationConfig):
187
- """Convert GenerationConfig to binding format."""
188
- config = common_bind.GenerationConfig()
189
-
190
- # Set basic generation parameters
191
- config.max_tokens = g_cfg.max_tokens
192
-
193
- if g_cfg.stop_words:
194
- config.stop = g_cfg.stop_words
195
-
196
- if g_cfg.image_paths:
197
- config.image_paths = g_cfg.image_paths
198
-
199
- if g_cfg.audio_paths:
200
- config.audio_paths = g_cfg.audio_paths
201
-
202
- if g_cfg.sampler_config:
203
- sampler = common_bind.SamplerConfig()
204
- sampler.temperature = g_cfg.sampler_config.temperature
205
- sampler.top_p = g_cfg.sampler_config.top_p
206
- sampler.top_k = g_cfg.sampler_config.top_k
207
- sampler.repetition_penalty = g_cfg.sampler_config.repetition_penalty
208
- sampler.presence_penalty = g_cfg.sampler_config.presence_penalty
209
- sampler.frequency_penalty = g_cfg.sampler_config.frequency_penalty
210
- sampler.seed = g_cfg.sampler_config.seed
211
-
212
- if g_cfg.sampler_config.grammar_path:
213
- sampler.grammar_path = g_cfg.sampler_config.grammar_path
214
-
215
- if g_cfg.sampler_config.grammar_string:
216
- sampler.grammar_string = g_cfg.sampler_config.grammar_string
217
-
218
- config.sampler_config = sampler
219
-
220
- return config
1
+ from typing import Generator, Optional, Union
2
+ import queue
3
+ import threading
4
+
5
+ from nexaai.base import ProfilingData
6
+ from nexaai.common import ModelConfig, GenerationConfig, ChatMessage, PluginID
7
+ from nexaai.binds import llm_bind, common_bind
8
+ from nexaai.runtime import _ensure_runtime
9
+ from nexaai.llm import LLM
10
+
11
+
12
+ class PyBindLLMImpl(LLM):
13
+ def __init__(self, handle: any, m_cfg: ModelConfig = ModelConfig()):
14
+ """Private constructor, should not be called directly."""
15
+ super().__init__(m_cfg)
16
+ self._handle = handle # This is a py::capsule
17
+ self._profiling_data = None
18
+
19
+ @classmethod
20
+ def _load_from(cls,
21
+ local_path: str,
22
+ model_name: Optional[str] = None,
23
+ tokenizer_path: Optional[str] = None,
24
+ m_cfg: ModelConfig = ModelConfig(),
25
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
26
+ device_id: Optional[str] = None
27
+ ) -> 'PyBindLLMImpl':
28
+ """Load model from local path."""
29
+ _ensure_runtime()
30
+
31
+ config = common_bind.ModelConfig()
32
+
33
+ config.n_ctx = m_cfg.n_ctx
34
+ if m_cfg.n_threads is not None:
35
+ config.n_threads = m_cfg.n_threads
36
+ if m_cfg.n_threads_batch is not None:
37
+ config.n_threads_batch = m_cfg.n_threads_batch
38
+ if m_cfg.n_batch is not None:
39
+ config.n_batch = m_cfg.n_batch
40
+ if m_cfg.n_ubatch is not None:
41
+ config.n_ubatch = m_cfg.n_ubatch
42
+ if m_cfg.n_seq_max is not None:
43
+ config.n_seq_max = m_cfg.n_seq_max
44
+ if m_cfg.n_gpu_layers is not None:
45
+ config.n_gpu_layers = m_cfg.n_gpu_layers
46
+
47
+ # handle chat template strings
48
+ if m_cfg.chat_template_path:
49
+ config.chat_template_path = m_cfg.chat_template_path
50
+
51
+ if m_cfg.chat_template_content:
52
+ config.chat_template_content = m_cfg.chat_template_content
53
+
54
+ # Create handle : returns py::capsule with automatic cleanup
55
+ # Convert enum to string for C++ binding
56
+ plugin_id_str = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
57
+ handle = llm_bind.ml_llm_create(
58
+ model_path=local_path,
59
+ model_name=model_name,
60
+ tokenizer_path=tokenizer_path,
61
+ model_config=config,
62
+ plugin_id=plugin_id_str,
63
+ device_id=device_id
64
+ )
65
+ return cls(handle, m_cfg)
66
+
67
+ def eject(self):
68
+ """Release the model from memory."""
69
+ # py::capsule handles cleanup automatically
70
+ del self._handle
71
+ self._handle = None
72
+
73
+ def apply_chat_template(self, messages: list[ChatMessage], tools: Optional[str] = None, enable_thinking: bool = True, add_generation_prompt: bool = True) -> str:
74
+ """Apply the chat template to messages."""
75
+ # Convert TypedDict to list of dicts for binding
76
+ message_dicts = [
77
+ {"role": m["role"], "content": m["content"]}
78
+ for m in messages
79
+ ]
80
+ return llm_bind.ml_llm_apply_chat_template(self._handle, message_dicts, tools, enable_thinking)
81
+
82
+ def generate_stream(self, prompt: str, g_cfg: GenerationConfig = GenerationConfig()) -> Generator[str, None, None]:
83
+ """Generate text with streaming."""
84
+ token_queue = queue.Queue()
85
+ exception_container = [None]
86
+ self.reset_cancel() # Reset cancel flag before generation
87
+
88
+ def on_token(token: str, user_data) -> bool:
89
+ if self._cancel_event.is_set():
90
+ token_queue.put(('end', None))
91
+ return False # Stop generation
92
+ try:
93
+ token_queue.put(('token', token))
94
+ return True # Continue generation
95
+ except Exception as e:
96
+ exception_container[0] = e
97
+ return False # Stop generation
98
+
99
+ config = self._convert_generation_config(g_cfg)
100
+
101
+ # Run generation in thread
102
+ def generate():
103
+ try:
104
+ result = llm_bind.ml_llm_generate(
105
+ handle=self._handle,
106
+ prompt=prompt,
107
+ config=config,
108
+ on_token=on_token,
109
+ user_data=None
110
+ )
111
+ self._profiling_data = ProfilingData.from_dict(result.get("profile_data", {}))
112
+ except Exception as e:
113
+ exception_container[0] = e
114
+ finally:
115
+ token_queue.put(('end', None))
116
+
117
+ thread = threading.Thread(target=generate)
118
+ thread.start()
119
+
120
+ # Yield tokens as they come
121
+ try:
122
+ while True:
123
+ msg_type, token = token_queue.get()
124
+ if msg_type == 'token':
125
+ yield token
126
+ elif msg_type in ('error', 'end'):
127
+ break
128
+ finally:
129
+ thread.join()
130
+
131
+ if exception_container[0]:
132
+ raise exception_container[0]
133
+
134
+ def generate(self, prompt: str, g_cfg: GenerationConfig = GenerationConfig()) -> str:
135
+ """
136
+ Generate text without streaming.
137
+
138
+ Args:
139
+ prompt (str): The prompt to generate text from. For chat models, this is the chat messages after chat template is applied.
140
+ g_cfg (GenerationConfig): Generation configuration.
141
+
142
+ Returns:
143
+ str: The generated text.
144
+ """
145
+ config = self._convert_generation_config(g_cfg)
146
+ result = llm_bind.ml_llm_generate(
147
+ handle=self._handle,
148
+ prompt=prompt,
149
+ config=config,
150
+ on_token=None, # No callback for non-streaming
151
+ user_data=None
152
+ )
153
+
154
+ self._profiling_data = ProfilingData.from_dict(result.get("profile_data", {}))
155
+ return result.get("text", "")
156
+
157
+ def get_profiling_data(self) -> Optional[ProfilingData]:
158
+ """Get profiling data."""
159
+ return self._profiling_data
160
+
161
+ def save_kv_cache(self, path: str):
162
+ """
163
+ Save the key-value cache to the file.
164
+
165
+ Args:
166
+ path (str): The path to the file.
167
+ """
168
+ llm_bind.ml_llm_save_kv_cache(self._handle, path)
169
+
170
+ def load_kv_cache(self, path: str):
171
+ """
172
+ Load the key-value cache from the file.
173
+
174
+ Args:
175
+ path (str): The path to the file.
176
+ """
177
+ llm_bind.ml_llm_load_kv_cache(self._handle, path)
178
+
179
+ def reset(self):
180
+ """
181
+ Reset the LLM model context and KV cache. If not reset, the model will skip the number of evaluated tokens and treat tokens after those as the new incremental tokens.
182
+ If your past chat history changed, or you are starting a new chat, you should always reset the model before running generate.
183
+ """
184
+ llm_bind.ml_llm_reset(self._handle)
185
+
186
+ def _convert_generation_config(self, g_cfg: GenerationConfig):
187
+ """Convert GenerationConfig to binding format."""
188
+ config = common_bind.GenerationConfig()
189
+
190
+ # Set basic generation parameters
191
+ config.max_tokens = g_cfg.max_tokens
192
+
193
+ if g_cfg.stop_words:
194
+ config.stop = g_cfg.stop_words
195
+
196
+ if g_cfg.image_paths:
197
+ config.image_paths = g_cfg.image_paths
198
+
199
+ if g_cfg.audio_paths:
200
+ config.audio_paths = g_cfg.audio_paths
201
+
202
+ if g_cfg.sampler_config:
203
+ sampler = common_bind.SamplerConfig()
204
+ sampler.temperature = g_cfg.sampler_config.temperature
205
+ sampler.top_p = g_cfg.sampler_config.top_p
206
+ sampler.top_k = g_cfg.sampler_config.top_k
207
+ sampler.repetition_penalty = g_cfg.sampler_config.repetition_penalty
208
+ sampler.presence_penalty = g_cfg.sampler_config.presence_penalty
209
+ sampler.frequency_penalty = g_cfg.sampler_config.frequency_penalty
210
+ sampler.seed = g_cfg.sampler_config.seed
211
+
212
+ if g_cfg.sampler_config.grammar_path:
213
+ sampler.grammar_path = g_cfg.sampler_config.grammar_path
214
+
215
+ if g_cfg.sampler_config.grammar_string:
216
+ sampler.grammar_string = g_cfg.sampler_config.grammar_string
217
+
218
+ config.sampler_config = sampler
219
+
220
+ return config
nexaai/log.py CHANGED
@@ -1,92 +1,92 @@
1
- """
2
- Logging configuration for NexaAI bridge.
3
-
4
- This module provides a minimal API to configure bridge-wide logging
5
- to route into Python's logging system.
6
- """
7
-
8
- import logging
9
- import threading
10
- from enum import IntEnum
11
- from typing import Optional
12
-
13
- from nexaai.binds import common_bind
14
- from nexaai.runtime import is_initialized
15
-
16
-
17
- class LogLevel(IntEnum):
18
- """Log levels matching ml_LogLevel from ml.h"""
19
- TRACE = 0
20
- DEBUG = 1
21
- INFO = 2
22
- WARN = 3
23
- ERROR = 4
24
-
25
-
26
- # Module-level state
27
- _config_lock = threading.Lock()
28
- _current_logger: Optional[logging.Logger] = None
29
-
30
-
31
- def set_logger(logger: Optional[logging.Logger] = None, *, strict: bool = True) -> None:
32
- """
33
- Set the process-wide bridge logger.
34
-
35
- Args:
36
- logger: Python logger to receive bridge logs. If None, uses "nexaai.ml" logger.
37
- strict: If True, raises if called after runtime initialization.
38
- If False, attempts to set anyway (best-effort).
39
-
40
- Raises:
41
- RuntimeError: If strict=True and runtime is already initialized.
42
- """
43
- global _current_logger
44
-
45
- with _config_lock:
46
- # Check initialization state if strict mode
47
- if strict and is_initialized():
48
- raise RuntimeError(
49
- "Cannot configure logging after runtime initialization. "
50
- "Call set_logger() before creating any models, or use strict=False for best-effort."
51
- )
52
-
53
- # Use default logger if none provided
54
- if logger is None:
55
- logger = logging.getLogger("nexaai.ml")
56
-
57
- _current_logger = logger
58
-
59
- # Set the C callback
60
- common_bind.ml_set_log(_log_callback)
61
-
62
-
63
- def _log_callback(level: int, message: str) -> None:
64
- """Internal callback that forwards bridge logs to Python logger."""
65
- if _current_logger is None:
66
- return
67
-
68
- # Map bridge log levels to Python logging levels
69
- if level == LogLevel.TRACE or level == LogLevel.DEBUG:
70
- _current_logger.debug(message)
71
- elif level == LogLevel.INFO:
72
- _current_logger.info(message)
73
- elif level == LogLevel.WARN:
74
- _current_logger.warning(message)
75
- elif level == LogLevel.ERROR:
76
- _current_logger.error(message)
77
- else:
78
- # Fallback for unknown levels
79
- _current_logger.info(f"[Level {level}] {message}")
80
-
81
-
82
- def get_error_message(error_code: int) -> str:
83
- """
84
- Get error message string for error code.
85
-
86
- Args:
87
- error_code: ML error code (typically negative)
88
-
89
- Returns:
90
- Human-readable error message
91
- """
92
- return common_bind.ml_get_error_message(error_code)
1
+ """
2
+ Logging configuration for NexaAI bridge.
3
+
4
+ This module provides a minimal API to configure bridge-wide logging
5
+ to route into Python's logging system.
6
+ """
7
+
8
+ import logging
9
+ import threading
10
+ from enum import IntEnum
11
+ from typing import Optional
12
+
13
+ from nexaai.binds import common_bind
14
+ from nexaai.runtime import is_initialized
15
+
16
+
17
+ class LogLevel(IntEnum):
18
+ """Log levels matching ml_LogLevel from ml.h"""
19
+ TRACE = 0
20
+ DEBUG = 1
21
+ INFO = 2
22
+ WARN = 3
23
+ ERROR = 4
24
+
25
+
26
+ # Module-level state
27
+ _config_lock = threading.Lock()
28
+ _current_logger: Optional[logging.Logger] = None
29
+
30
+
31
+ def set_logger(logger: Optional[logging.Logger] = None, *, strict: bool = True) -> None:
32
+ """
33
+ Set the process-wide bridge logger.
34
+
35
+ Args:
36
+ logger: Python logger to receive bridge logs. If None, uses "nexaai.ml" logger.
37
+ strict: If True, raises if called after runtime initialization.
38
+ If False, attempts to set anyway (best-effort).
39
+
40
+ Raises:
41
+ RuntimeError: If strict=True and runtime is already initialized.
42
+ """
43
+ global _current_logger
44
+
45
+ with _config_lock:
46
+ # Check initialization state if strict mode
47
+ if strict and is_initialized():
48
+ raise RuntimeError(
49
+ "Cannot configure logging after runtime initialization. "
50
+ "Call set_logger() before creating any models, or use strict=False for best-effort."
51
+ )
52
+
53
+ # Use default logger if none provided
54
+ if logger is None:
55
+ logger = logging.getLogger("nexaai.ml")
56
+
57
+ _current_logger = logger
58
+
59
+ # Set the C callback
60
+ common_bind.ml_set_log(_log_callback)
61
+
62
+
63
+ def _log_callback(level: int, message: str) -> None:
64
+ """Internal callback that forwards bridge logs to Python logger."""
65
+ if _current_logger is None:
66
+ return
67
+
68
+ # Map bridge log levels to Python logging levels
69
+ if level == LogLevel.TRACE or level == LogLevel.DEBUG:
70
+ _current_logger.debug(message)
71
+ elif level == LogLevel.INFO:
72
+ _current_logger.info(message)
73
+ elif level == LogLevel.WARN:
74
+ _current_logger.warning(message)
75
+ elif level == LogLevel.ERROR:
76
+ _current_logger.error(message)
77
+ else:
78
+ # Fallback for unknown levels
79
+ _current_logger.info(f"[Level {level}] {message}")
80
+
81
+
82
+ def get_error_message(error_code: int) -> str:
83
+ """
84
+ Get error message string for error code.
85
+
86
+ Args:
87
+ error_code: ML error code (typically negative)
88
+
89
+ Returns:
90
+ Human-readable error message
91
+ """
92
+ return common_bind.ml_get_error_message(error_code)