nexaai 1.0.21__cp313-cp313-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (154) hide show
  1. nexaai/__init__.py +95 -0
  2. nexaai/_stub.cp313-win_arm64.pyd +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +92 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +6 -0
  10. nexaai/binds/asr_bind.cp313-win_arm64.pyd +0 -0
  11. nexaai/binds/common_bind.cp313-win_arm64.pyd +0 -0
  12. nexaai/binds/cpu_gpu/ggml-base.dll +0 -0
  13. nexaai/binds/cpu_gpu/ggml-cpu.dll +0 -0
  14. nexaai/binds/cpu_gpu/ggml-opencl.dll +0 -0
  15. nexaai/binds/cpu_gpu/ggml.dll +0 -0
  16. nexaai/binds/cpu_gpu/libomp140.aarch64.dll +0 -0
  17. nexaai/binds/cpu_gpu/mtmd.dll +0 -0
  18. nexaai/binds/cpu_gpu/nexa_cpu_gpu.dll +0 -0
  19. nexaai/binds/cpu_gpu/nexa_plugin.dll +0 -0
  20. nexaai/binds/embedder_bind.cp313-win_arm64.pyd +0 -0
  21. nexaai/binds/libcrypto-3-arm64.dll +0 -0
  22. nexaai/binds/libssl-3-arm64.dll +0 -0
  23. nexaai/binds/llm_bind.cp313-win_arm64.pyd +0 -0
  24. nexaai/binds/nexa_bridge.dll +0 -0
  25. nexaai/binds/npu/FLAC.dll +0 -0
  26. nexaai/binds/npu/convnext-sdk.dll +0 -0
  27. nexaai/binds/npu/embed-gemma-sdk.dll +0 -0
  28. nexaai/binds/npu/fftw3.dll +0 -0
  29. nexaai/binds/npu/fftw3f.dll +0 -0
  30. nexaai/binds/npu/ggml-base.dll +0 -0
  31. nexaai/binds/npu/ggml-cpu.dll +0 -0
  32. nexaai/binds/npu/ggml-opencl.dll +0 -0
  33. nexaai/binds/npu/ggml.dll +0 -0
  34. nexaai/binds/npu/granite-nano-sdk.dll +0 -0
  35. nexaai/binds/npu/granite4-sdk.dll +0 -0
  36. nexaai/binds/npu/htp-files/Genie.dll +0 -0
  37. nexaai/binds/npu/htp-files/PlatformValidatorShared.dll +0 -0
  38. nexaai/binds/npu/htp-files/QnnChrometraceProfilingReader.dll +0 -0
  39. nexaai/binds/npu/htp-files/QnnCpu.dll +0 -0
  40. nexaai/binds/npu/htp-files/QnnCpuNetRunExtensions.dll +0 -0
  41. nexaai/binds/npu/htp-files/QnnDsp.dll +0 -0
  42. nexaai/binds/npu/htp-files/QnnDspNetRunExtensions.dll +0 -0
  43. nexaai/binds/npu/htp-files/QnnDspV66CalculatorStub.dll +0 -0
  44. nexaai/binds/npu/htp-files/QnnDspV66Stub.dll +0 -0
  45. nexaai/binds/npu/htp-files/QnnGenAiTransformer.dll +0 -0
  46. nexaai/binds/npu/htp-files/QnnGenAiTransformerCpuOpPkg.dll +0 -0
  47. nexaai/binds/npu/htp-files/QnnGenAiTransformerModel.dll +0 -0
  48. nexaai/binds/npu/htp-files/QnnGpu.dll +0 -0
  49. nexaai/binds/npu/htp-files/QnnGpuNetRunExtensions.dll +0 -0
  50. nexaai/binds/npu/htp-files/QnnGpuProfilingReader.dll +0 -0
  51. nexaai/binds/npu/htp-files/QnnHtp.dll +0 -0
  52. nexaai/binds/npu/htp-files/QnnHtpNetRunExtensions.dll +0 -0
  53. nexaai/binds/npu/htp-files/QnnHtpOptraceProfilingReader.dll +0 -0
  54. nexaai/binds/npu/htp-files/QnnHtpPrepare.dll +0 -0
  55. nexaai/binds/npu/htp-files/QnnHtpProfilingReader.dll +0 -0
  56. nexaai/binds/npu/htp-files/QnnHtpV68CalculatorStub.dll +0 -0
  57. nexaai/binds/npu/htp-files/QnnHtpV68Stub.dll +0 -0
  58. nexaai/binds/npu/htp-files/QnnHtpV73CalculatorStub.dll +0 -0
  59. nexaai/binds/npu/htp-files/QnnHtpV73Stub.dll +0 -0
  60. nexaai/binds/npu/htp-files/QnnIr.dll +0 -0
  61. nexaai/binds/npu/htp-files/QnnJsonProfilingReader.dll +0 -0
  62. nexaai/binds/npu/htp-files/QnnModelDlc.dll +0 -0
  63. nexaai/binds/npu/htp-files/QnnSaver.dll +0 -0
  64. nexaai/binds/npu/htp-files/QnnSystem.dll +0 -0
  65. nexaai/binds/npu/htp-files/SNPE.dll +0 -0
  66. nexaai/binds/npu/htp-files/SnpeDspV66Stub.dll +0 -0
  67. nexaai/binds/npu/htp-files/SnpeHtpPrepare.dll +0 -0
  68. nexaai/binds/npu/htp-files/SnpeHtpV68Stub.dll +0 -0
  69. nexaai/binds/npu/htp-files/SnpeHtpV73Stub.dll +0 -0
  70. nexaai/binds/npu/htp-files/calculator.dll +0 -0
  71. nexaai/binds/npu/htp-files/calculator_htp.dll +0 -0
  72. nexaai/binds/npu/htp-files/libCalculator_skel.so +0 -0
  73. nexaai/binds/npu/htp-files/libQnnHtpV73.so +0 -0
  74. nexaai/binds/npu/htp-files/libQnnHtpV73QemuDriver.so +0 -0
  75. nexaai/binds/npu/htp-files/libQnnHtpV73Skel.so +0 -0
  76. nexaai/binds/npu/htp-files/libQnnSaver.so +0 -0
  77. nexaai/binds/npu/htp-files/libQnnSystem.so +0 -0
  78. nexaai/binds/npu/htp-files/libSnpeHtpV73Skel.so +0 -0
  79. nexaai/binds/npu/htp-files/libqnnhtpv73.cat +0 -0
  80. nexaai/binds/npu/htp-files/libsnpehtpv73.cat +0 -0
  81. nexaai/binds/npu/jina-rerank-sdk.dll +0 -0
  82. nexaai/binds/npu/libcrypto-3-arm64.dll +0 -0
  83. nexaai/binds/npu/libmp3lame.DLL +0 -0
  84. nexaai/binds/npu/libomp140.aarch64.dll +0 -0
  85. nexaai/binds/npu/libssl-3-arm64.dll +0 -0
  86. nexaai/binds/npu/liquid-sdk.dll +0 -0
  87. nexaai/binds/npu/llama3-3b-sdk.dll +0 -0
  88. nexaai/binds/npu/mpg123.dll +0 -0
  89. nexaai/binds/npu/nexa-mm-process.dll +0 -0
  90. nexaai/binds/npu/nexa-sampling.dll +0 -0
  91. nexaai/binds/npu/nexa_plugin.dll +0 -0
  92. nexaai/binds/npu/nexaproc.dll +0 -0
  93. nexaai/binds/npu/ogg.dll +0 -0
  94. nexaai/binds/npu/omni-neural-sdk.dll +0 -0
  95. nexaai/binds/npu/openblas.dll +0 -0
  96. nexaai/binds/npu/opus.dll +0 -0
  97. nexaai/binds/npu/paddle-ocr-proc-lib.dll +0 -0
  98. nexaai/binds/npu/paddleocr-sdk.dll +0 -0
  99. nexaai/binds/npu/parakeet-sdk.dll +0 -0
  100. nexaai/binds/npu/phi3-5-sdk.dll +0 -0
  101. nexaai/binds/npu/phi4-sdk.dll +0 -0
  102. nexaai/binds/npu/pyannote-sdk.dll +0 -0
  103. nexaai/binds/npu/qwen3-4b-sdk.dll +0 -0
  104. nexaai/binds/npu/qwen3vl-sdk.dll +0 -0
  105. nexaai/binds/npu/qwen3vl-vision.dll +0 -0
  106. nexaai/binds/npu/rtaudio.dll +0 -0
  107. nexaai/binds/npu/vorbis.dll +0 -0
  108. nexaai/binds/npu/vorbisenc.dll +0 -0
  109. nexaai/binds/npu/yolov12-sdk.dll +0 -0
  110. nexaai/binds/npu/zlib1.dll +0 -0
  111. nexaai/binds/rerank_bind.cp313-win_arm64.pyd +0 -0
  112. nexaai/binds/vlm_bind.cp313-win_arm64.pyd +0 -0
  113. nexaai/common.py +105 -0
  114. nexaai/cv.py +93 -0
  115. nexaai/cv_impl/__init__.py +0 -0
  116. nexaai/cv_impl/mlx_cv_impl.py +89 -0
  117. nexaai/cv_impl/pybind_cv_impl.py +32 -0
  118. nexaai/embedder.py +73 -0
  119. nexaai/embedder_impl/__init__.py +0 -0
  120. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  121. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  122. nexaai/image_gen.py +141 -0
  123. nexaai/image_gen_impl/__init__.py +0 -0
  124. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  125. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  126. nexaai/llm.py +98 -0
  127. nexaai/llm_impl/__init__.py +0 -0
  128. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  129. nexaai/llm_impl/pybind_llm_impl.py +220 -0
  130. nexaai/log.py +92 -0
  131. nexaai/rerank.py +57 -0
  132. nexaai/rerank_impl/__init__.py +0 -0
  133. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  134. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  135. nexaai/runtime.py +68 -0
  136. nexaai/runtime_error.py +24 -0
  137. nexaai/tts.py +75 -0
  138. nexaai/tts_impl/__init__.py +0 -0
  139. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  140. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  141. nexaai/utils/decode.py +18 -0
  142. nexaai/utils/manifest_utils.py +531 -0
  143. nexaai/utils/model_manager.py +1562 -0
  144. nexaai/utils/model_types.py +49 -0
  145. nexaai/utils/progress_tracker.py +385 -0
  146. nexaai/utils/quantization_utils.py +245 -0
  147. nexaai/vlm.py +130 -0
  148. nexaai/vlm_impl/__init__.py +0 -0
  149. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  150. nexaai/vlm_impl/pybind_vlm_impl.py +256 -0
  151. nexaai-1.0.21.dist-info/METADATA +31 -0
  152. nexaai-1.0.21.dist-info/RECORD +154 -0
  153. nexaai-1.0.21.dist-info/WHEEL +5 -0
  154. nexaai-1.0.21.dist-info/top_level.txt +1 -0
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
nexaai/common.py ADDED
@@ -0,0 +1,105 @@
1
+ from dataclasses import dataclass
2
+ from typing import TypedDict, Literal, Optional, List
3
+ from enum import Enum
4
+
5
+
6
+ class PluginID(str, Enum):
7
+ """Enum for plugin identifiers."""
8
+ MLX = "mlx"
9
+ LLAMA_CPP = "llama_cpp"
10
+ NEXAML = "nexaml"
11
+ NPU = "npu"
12
+
13
+
14
+ class ChatMessage(TypedDict):
15
+ role: Literal["user", "assistant", "system"]
16
+ content: str
17
+
18
+ class MultiModalMessageContent(TypedDict):
19
+ type: Literal["text", "image", "audio", "video"]
20
+ text: Optional[str]
21
+ url: Optional[str]
22
+ path: Optional[str]
23
+
24
+ class MultiModalMessage(TypedDict):
25
+ role: Literal["user", "assistant", "system"]
26
+ content: List[MultiModalMessageContent]
27
+
28
+
29
+ @dataclass
30
+ class SamplerConfig:
31
+ temperature: float = 0.8
32
+ top_p: float = 0.95
33
+ top_k: int = 40
34
+ repetition_penalty: float = 1.0
35
+ presence_penalty: float = 0.0
36
+ frequency_penalty: float = 0.0
37
+ seed: int = -1
38
+ grammar_path: str = None
39
+ grammar_string: str = None
40
+
41
+ @dataclass
42
+ class GenerationConfig:
43
+ max_tokens: int = 1024
44
+ stop_words: list[str] = None
45
+ sampler_config: SamplerConfig = None
46
+ image_paths: list[str] = None
47
+ audio_paths: list[str] = None
48
+
49
+ @dataclass
50
+ class ModelConfig:
51
+ n_ctx: int = 4096
52
+ n_threads: int = None
53
+ n_threads_batch: int = None
54
+ n_batch: int = 512
55
+ n_ubatch: int = 512
56
+ n_seq_max: int = 1
57
+ n_gpu_layers: int = 999
58
+ chat_template_path: str = None
59
+ chat_template_content: str = None
60
+
61
+
62
+ @dataclass(frozen=True) # Read-only
63
+ class ProfilingData:
64
+ """Profiling data structure for LLM/VLM performance metrics."""
65
+ ttft: int = 0 # Time to first token (us)
66
+ prompt_time: int = 0 # Prompt processing time (us)
67
+ decode_time: int = 0 # Token generation time (us)
68
+ prompt_tokens: int = 0 # Number of prompt tokens
69
+ generated_tokens: int = 0 # Number of generated tokens
70
+ audio_duration: int = 0 # Audio duration (us)
71
+ prefill_speed: float = 0.0 # Prefill speed (tokens/sec)
72
+ decoding_speed: float = 0.0 # Decoding speed (tokens/sec)
73
+ real_time_factor: float = 0.0 # Real-Time Factor (RTF)
74
+ stop_reason: str = "" # Stop reason: "eos", "length", "user", "stop_sequence"
75
+
76
+ @classmethod
77
+ def from_dict(cls, data: dict) -> "ProfilingData":
78
+ """Create ProfilingData from dictionary."""
79
+ return cls(
80
+ ttft=data.get("ttft", 0),
81
+ prompt_time=data.get("prompt_time", 0),
82
+ decode_time=data.get("decode_time", 0),
83
+ prompt_tokens=data.get("prompt_tokens", 0),
84
+ generated_tokens=data.get("generated_tokens", 0),
85
+ audio_duration=data.get("audio_duration", 0),
86
+ prefill_speed=data.get("prefill_speed", 0.0),
87
+ decoding_speed=data.get("decoding_speed", 0.0),
88
+ real_time_factor=data.get("real_time_factor", 0.0),
89
+ stop_reason=data.get("stop_reason", "")
90
+ )
91
+
92
+ def to_dict(self) -> dict:
93
+ """Convert to dictionary."""
94
+ return {
95
+ "ttft": self.ttft,
96
+ "prompt_time": self.prompt_time,
97
+ "decode_time": self.decode_time,
98
+ "prompt_tokens": self.prompt_tokens,
99
+ "generated_tokens": self.generated_tokens,
100
+ "audio_duration": self.audio_duration,
101
+ "prefill_speed": self.prefill_speed,
102
+ "decoding_speed": self.decoding_speed,
103
+ "real_time_factor": self.real_time_factor,
104
+ "stop_reason": self.stop_reason
105
+ }
nexaai/cv.py ADDED
@@ -0,0 +1,93 @@
1
+ from typing import List, Optional, Union
2
+ from abc import abstractmethod
3
+ from dataclasses import dataclass
4
+
5
+ from nexaai.base import BaseModel
6
+ from nexaai.common import PluginID
7
+
8
+
9
+ @dataclass
10
+ class BoundingBox:
11
+ """Generic bounding box structure."""
12
+ x: float # X coordinate (normalized or pixel, depends on model)
13
+ y: float # Y coordinate (normalized or pixel, depends on model)
14
+ width: float # Width
15
+ height: float # Height
16
+
17
+
18
+ @dataclass
19
+ class CVResult:
20
+ """Generic detection/classification result."""
21
+ image_paths: Optional[List[str]] = None # Output image paths
22
+ image_count: int = 0 # Number of output images
23
+ class_id: int = 0 # Class ID (example: ConvNext)
24
+ confidence: float = 0.0 # Confidence score [0.0-1.0]
25
+ bbox: Optional[BoundingBox] = None # Bounding box (example: YOLO)
26
+ text: Optional[str] = None # Text result (example: OCR)
27
+ embedding: Optional[List[float]] = None # Feature embedding (example: CLIP embedding)
28
+ embedding_dim: int = 0 # Embedding dimension
29
+
30
+
31
+ @dataclass
32
+ class CVResults:
33
+ """Generic CV inference result."""
34
+ results: List[CVResult] # Array of CV results
35
+ result_count: int # Number of CV results
36
+
37
+
38
+ class CVCapabilities:
39
+ """CV capabilities enum."""
40
+ OCR = 0 # OCR
41
+ CLASSIFICATION = 1 # Classification
42
+ SEGMENTATION = 2 # Segmentation
43
+ CUSTOM = 3 # Custom task
44
+
45
+
46
+ @dataclass
47
+ class CVModelConfig:
48
+ """CV model preprocessing configuration."""
49
+ capabilities: int # CVCapabilities
50
+
51
+ # MLX-OCR
52
+ det_model_path: Optional[str] = None # Detection model path
53
+ rec_model_path: Optional[str] = None # Recognition model path
54
+
55
+ # QNN
56
+ model_path: Optional[str] = None # Model path
57
+ system_library_path: Optional[str] = None # System library path
58
+ backend_library_path: Optional[str] = None # Backend library path
59
+ extension_library_path: Optional[str] = None # Extension library path
60
+ config_file_path: Optional[str] = None # Config file path
61
+ char_dict_path: Optional[str] = None # Character dictionary path
62
+
63
+
64
+ class CVModel(BaseModel):
65
+ """Abstract base class for generic computer vision models."""
66
+
67
+ def __init__(self):
68
+ """Initialize base CV model class."""
69
+ pass
70
+
71
+ @classmethod
72
+ def _load_from(cls,
73
+ _: str, # TODO: remove this argument, this is a hack to make api design happy
74
+ config: CVModelConfig,
75
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
76
+ device_id: Optional[str] = None,
77
+ **kwargs
78
+ ) -> 'CVModel':
79
+ """Load CV model from configuration, routing to appropriate implementation."""
80
+ # Check plugin_id value for routing - handle both enum and string
81
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
82
+
83
+ if plugin_value == "mlx":
84
+ from nexaai.cv_impl.mlx_cv_impl import MLXCVImpl
85
+ return MLXCVImpl._load_from(config, plugin_id, device_id)
86
+ else:
87
+ from nexaai.cv_impl.pybind_cv_impl import PyBindCVImpl
88
+ return PyBindCVImpl._load_from(config, plugin_id, device_id)
89
+
90
+ @abstractmethod
91
+ def infer(self, input_image_path: str) -> CVResults:
92
+ """Perform inference on image."""
93
+ pass
File without changes
@@ -0,0 +1,89 @@
1
+ # Note: This code is generated by Cursor, not tested yet.
2
+
3
+ from typing import Optional, Union
4
+ import os
5
+
6
+ from nexaai.common import PluginID
7
+ from nexaai.cv import CVModel, CVModelConfig, CVResults
8
+ from nexaai.mlx_backend.cv.interface import CVModel as MLXCVInterface, create_cv_model
9
+
10
+
11
+ class MLXCVImpl(CVModel):
12
+ def __init__(self):
13
+ """Initialize MLX CV implementation."""
14
+ super().__init__()
15
+ self._mlx_cv = None
16
+
17
+ @classmethod
18
+ def _load_from(cls,
19
+ config: CVModelConfig,
20
+ plugin_id: Union[PluginID, str] = PluginID.MLX,
21
+ device_id: Optional[str] = None
22
+ ) -> 'MLXCVImpl':
23
+ """Load CV model from configuration using MLX backend."""
24
+ try:
25
+ # Get MLX config class
26
+ from nexaai.mlx_backend.ml import CVModelConfig as MLXCVModelConfig
27
+
28
+ # Convert our config to MLX format
29
+ mlx_config = MLXCVModelConfig(
30
+ capabilities=config.capabilities,
31
+ det_model_path=config.det_model_path,
32
+ rec_model_path=config.rec_model_path,
33
+ model_path=config.model_path,
34
+ system_library_path=config.system_library_path,
35
+ backend_library_path=config.backend_library_path,
36
+ extension_library_path=config.extension_library_path,
37
+ config_file_path=config.config_file_path,
38
+ char_dict_path=config.char_dict_path
39
+ )
40
+
41
+ # Create instance and load MLX CV model
42
+ instance = cls()
43
+ instance._mlx_cv = create_cv_model(mlx_config, device_id)
44
+
45
+ return instance
46
+ except Exception as e:
47
+ raise RuntimeError(f"Failed to load MLX CV: {str(e)}")
48
+
49
+ def eject(self):
50
+ """Destroy the model and free resources."""
51
+ if self._mlx_cv:
52
+ self._mlx_cv.destroy()
53
+ self._mlx_cv = None
54
+
55
+ def infer(self, input_image_path: str) -> CVResults:
56
+ """Perform inference on image."""
57
+ if not self._mlx_cv:
58
+ raise RuntimeError("MLX CV not loaded")
59
+
60
+ try:
61
+ # Use MLX CV inference
62
+ result = self._mlx_cv.infer(input_image_path)
63
+
64
+ # Convert MLX result to our format
65
+ from nexaai.cv import CVResult
66
+
67
+ our_results = []
68
+ for mlx_result in result.results:
69
+ our_result = CVResult(
70
+ image_paths=mlx_result.image_paths,
71
+ image_count=mlx_result.image_count,
72
+ class_id=mlx_result.class_id,
73
+ confidence=mlx_result.confidence,
74
+ bbox=mlx_result.bbox,
75
+ text=mlx_result.text,
76
+ embedding=mlx_result.embedding,
77
+ embedding_dim=mlx_result.embedding_dim
78
+ )
79
+ our_results.append(our_result)
80
+
81
+ return CVResults(
82
+ results=our_results,
83
+ result_count=result.result_count
84
+ )
85
+
86
+ except Exception as e:
87
+ raise RuntimeError(f"Failed to perform CV inference: {str(e)}")
88
+
89
+
@@ -0,0 +1,32 @@
1
+ from typing import Optional, Union
2
+
3
+ from nexaai.common import PluginID
4
+ from nexaai.cv import CVModel, CVModelConfig, CVResults
5
+
6
+
7
+ class PyBindCVImpl(CVModel):
8
+ def __init__(self):
9
+ """Initialize PyBind CV implementation."""
10
+ super().__init__()
11
+ # TODO: Add PyBind-specific initialization
12
+
13
+ @classmethod
14
+ def _load_from(cls,
15
+ config: CVModelConfig,
16
+ plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP,
17
+ device_id: Optional[str] = None
18
+ ) -> 'PyBindCVImpl':
19
+ """Load CV model from configuration using PyBind backend."""
20
+ # TODO: Implement PyBind CV loading
21
+ instance = cls()
22
+ return instance
23
+
24
+ def eject(self):
25
+ """Destroy the model and free resources."""
26
+ # TODO: Implement PyBind CV cleanup
27
+ pass
28
+
29
+ def infer(self, input_image_path: str) -> CVResults:
30
+ """Perform inference on image."""
31
+ # TODO: Implement PyBind CV inference
32
+ raise NotImplementedError("PyBind CV inference not yet implemented")
nexaai/embedder.py ADDED
@@ -0,0 +1,73 @@
1
+ from typing import List, Union
2
+ from dataclasses import dataclass
3
+ from abc import abstractmethod
4
+ import numpy as np
5
+
6
+ from nexaai.base import BaseModel
7
+ from nexaai.common import PluginID
8
+
9
+
10
+ @dataclass
11
+ class EmbeddingConfig:
12
+ batch_size: int = 32
13
+ normalize: bool = True
14
+ normalize_method: str = "l2"
15
+
16
+
17
+ class Embedder(BaseModel):
18
+ def __init__(self):
19
+ """
20
+ Internal initializer
21
+ """
22
+ pass
23
+
24
+ @classmethod
25
+ def _load_from(cls, model_path: str, model_name: str = None, tokenizer_file: str = "tokenizer.json", plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP, **kwargs):
26
+ """
27
+ Load an embedder from model files, routing to appropriate implementation.
28
+
29
+ Args:
30
+ model_path: Path to the model file
31
+ model_name: Name of the model
32
+ tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
33
+ plugin_id: Plugin ID to use for the model (default: PluginID.LLAMA_CPP)
34
+
35
+ Returns:
36
+ Embedder instance
37
+ """
38
+ # Check plugin_id value for routing - handle both enum and string
39
+ plugin_value = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
40
+
41
+ if plugin_value == "mlx":
42
+ from nexaai.embedder_impl.mlx_embedder_impl import MLXEmbedderImpl
43
+ return MLXEmbedderImpl._load_from(model_path, model_name, tokenizer_file, plugin_id)
44
+ else:
45
+ from nexaai.embedder_impl.pybind_embedder_impl import PyBindEmbedderImpl
46
+ return PyBindEmbedderImpl._load_from(model_path, model_name, tokenizer_file, plugin_id)
47
+
48
+ @abstractmethod
49
+ def generate(self, texts: Union[List[str], str] = None, config: EmbeddingConfig = EmbeddingConfig(), input_ids: Union[List[int], List[List[int]]] = None) -> np.ndarray:
50
+ """
51
+ Generate embeddings for the given texts or input_ids.
52
+
53
+ Args:
54
+ texts: List of strings or single string to embed
55
+ input_ids: Pre-tokenized input as:
56
+ - Single sequence: list of integers [1, 2, 3, 4]
57
+ - Multiple sequences: list of lists [[1, 2, 3], [4, 5, 6]]
58
+ config: Configuration for embedding generation
59
+
60
+ Returns:
61
+ numpy array of embeddings with shape (num_sequences, embedding_dim)
62
+ """
63
+ pass
64
+
65
+ @abstractmethod
66
+ def get_embedding_dim(self) -> int:
67
+ """
68
+ Get the embedding dimension of the model
69
+
70
+ Returns:
71
+ The embedding dimension in int
72
+ """
73
+ pass
File without changes
@@ -0,0 +1,118 @@
1
+ from typing import List, Union
2
+ import numpy as np
3
+
4
+ from nexaai.common import PluginID
5
+ from nexaai.embedder import Embedder, EmbeddingConfig
6
+ from nexaai.mlx_backend.embedding.interface import create_embedder
7
+ from nexaai.mlx_backend.ml import ModelConfig as MLXModelConfig, SamplerConfig as MLXSamplerConfig, GenerationConfig as MLXGenerationConfig, EmbeddingConfig
8
+
9
+
10
+ class MLXEmbedderImpl(Embedder):
11
+ def __init__(self):
12
+ """Initialize MLX Embedder implementation."""
13
+ super().__init__()
14
+ self._mlx_embedder = None
15
+
16
+ @classmethod
17
+ def _load_from(cls, model_path: str, model_name: str = None, tokenizer_file: str = "tokenizer.json", plugin_id: Union[PluginID, str] = PluginID.MLX):
18
+ """
19
+ Load an embedder from model files using MLX backend.
20
+
21
+ Args:
22
+ model_path: Path to the model file
23
+ model_name: Name of the model
24
+ tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
25
+ plugin_id: Plugin ID to use for the model (default: PluginID.MLX)
26
+
27
+ Returns:
28
+ MLXEmbedderImpl instance
29
+ """
30
+ try:
31
+ # Create instance
32
+ instance = cls()
33
+
34
+ # Use the factory function to create the appropriate embedder based on model type
35
+ # This will automatically detect if it's JinaV2 or generic model and route correctly
36
+ instance._mlx_embedder = create_embedder(
37
+ model_path=model_path,
38
+ # model_name=model_name, # FIXME: For MLX Embedder, model_name is not used
39
+ tokenizer_path=tokenizer_file
40
+ )
41
+
42
+ # Load the model
43
+ success = instance._mlx_embedder.load_model(model_path)
44
+ if not success:
45
+ raise RuntimeError("Failed to load MLX embedder model")
46
+
47
+ return instance
48
+ except Exception as e:
49
+ raise RuntimeError(f"Failed to load MLX Embedder: {str(e)}")
50
+
51
+ def eject(self):
52
+ """
53
+ Clean up resources and destroy the embedder
54
+ """
55
+ if self._mlx_embedder:
56
+ self._mlx_embedder.destroy()
57
+ self._mlx_embedder = None
58
+
59
+ def generate(self, texts: Union[List[str], str] = None, config: EmbeddingConfig = EmbeddingConfig(), input_ids: Union[List[int], List[List[int]]] = None) -> np.ndarray:
60
+ """
61
+ Generate embeddings for the given texts or input_ids.
62
+
63
+ Args:
64
+ texts: List of strings or single string to embed
65
+ input_ids: Pre-tokenized input as:
66
+ - Single sequence: list of integers [1, 2, 3, 4]
67
+ - Multiple sequences: list of lists [[1, 2, 3], [4, 5, 6]]
68
+ config: Configuration for embedding generation
69
+
70
+ Returns:
71
+ numpy array of embeddings with shape (num_sequences, embedding_dim)
72
+ """
73
+ if not self._mlx_embedder:
74
+ raise RuntimeError("MLX Embedder not loaded")
75
+
76
+ if texts is None and input_ids is None:
77
+ raise ValueError("Either texts or input_ids must be provided")
78
+
79
+ # MLX embedder currently only supports text input, not pre-tokenized input_ids
80
+ if input_ids is not None:
81
+ raise NotImplementedError("MLX embedder does not support input_ids, only text input")
82
+
83
+ try:
84
+ # Convert single string to list if needed
85
+ if isinstance(texts, str):
86
+ texts = [texts]
87
+
88
+ # MLX config classes are already imported
89
+
90
+ # Convert our config to MLX config
91
+ mlx_config = EmbeddingConfig()
92
+ mlx_config.batch_size = config.batch_size
93
+ mlx_config.normalize = config.normalize
94
+ mlx_config.normalize_method = config.normalize_method
95
+
96
+ # Generate embeddings using MLX
97
+ embeddings = self._mlx_embedder.embed(texts, mlx_config)
98
+
99
+ # Convert to numpy array
100
+ return np.array(embeddings, dtype=np.float32)
101
+
102
+ except Exception as e:
103
+ raise RuntimeError(f"Failed to generate embeddings: {str(e)}")
104
+
105
+ def get_embedding_dim(self) -> int:
106
+ """
107
+ Get the embedding dimension of the model
108
+
109
+ Returns:
110
+ The embedding dimension in int
111
+ """
112
+ if not self._mlx_embedder:
113
+ raise RuntimeError("MLX Embedder not loaded")
114
+
115
+ try:
116
+ return self._mlx_embedder.embedding_dim()
117
+ except Exception as e:
118
+ raise RuntimeError(f"Failed to get embedding dimension: {str(e)}")
@@ -0,0 +1,96 @@
1
+ from typing import List, Union
2
+ import numpy as np
3
+
4
+ from nexaai.common import PluginID
5
+ from nexaai.embedder import Embedder, EmbeddingConfig
6
+ from nexaai.binds import embedder_bind
7
+ from nexaai.runtime import _ensure_runtime
8
+
9
+
10
+ class PyBindEmbedderImpl(Embedder):
11
+ def __init__(self, _handle_ptr):
12
+ """
13
+ Internal initializer
14
+ """
15
+ super().__init__()
16
+ self._handle = _handle_ptr
17
+
18
+ @classmethod
19
+ def _load_from(cls, model_path: str, model_name: str = None, tokenizer_file: str = "tokenizer.json", plugin_id: Union[PluginID, str] = PluginID.LLAMA_CPP):
20
+ """
21
+ Load an embedder from model files
22
+
23
+ Args:
24
+ model_path: Path to the model file
25
+ model_name: Name of the model
26
+ tokenizer_file: Path to the tokenizer file (default: "tokenizer.json")
27
+ plugin_id: Plugin ID to use for the model (default: PluginID.LLAMA_CPP)
28
+
29
+ Returns:
30
+ PyBindEmbedderImpl instance
31
+ """
32
+ _ensure_runtime()
33
+ # Convert enum to string for C++ binding
34
+ plugin_id_str = plugin_id.value if isinstance(plugin_id, PluginID) else plugin_id
35
+ # New parameter order: model_path, plugin_id, tokenizer_path (optional)
36
+ handle = embedder_bind.ml_embedder_create(model_path, model_name, plugin_id_str, tokenizer_file)
37
+ return cls(handle)
38
+
39
+ def eject(self):
40
+ """
41
+ Clean up resources and destroy the embedder
42
+ """
43
+ # Destructor of the handle will unload the model correctly
44
+ del self._handle
45
+ self._handle = None
46
+
47
+ def generate(self, texts: Union[List[str], str] = None, config: EmbeddingConfig = EmbeddingConfig(), input_ids: Union[List[int], List[List[int]]] = None) -> np.ndarray:
48
+ """
49
+ Generate embeddings for the given texts or input_ids.
50
+
51
+ Args:
52
+ texts: List of strings or single string to embed
53
+ input_ids: Pre-tokenized input as:
54
+ - Single sequence: list of integers [1, 2, 3, 4]
55
+ - Multiple sequences: list of lists [[1, 2, 3], [4, 5, 6]]
56
+ config: Configuration for embedding generation
57
+
58
+ Returns:
59
+ numpy array of embeddings with shape (num_sequences, embedding_dim)
60
+ """
61
+ if texts is None and input_ids is None:
62
+ raise ValueError("Either texts or input_ids must be provided")
63
+
64
+ # Create bind config
65
+ bind_config = embedder_bind.EmbeddingConfig()
66
+ bind_config.batch_size = config.batch_size
67
+ bind_config.normalize = config.normalize
68
+ bind_config.normalize_method = config.normalize_method
69
+
70
+ # Convert single string to list if needed
71
+ if isinstance(texts, str):
72
+ texts = [texts]
73
+
74
+ # Convert input_ids to 2D format if needed
75
+ processed_input_ids = None
76
+ if input_ids is not None:
77
+ if len(input_ids) > 0 and isinstance(input_ids[0], int):
78
+ # Single sequence: convert [1, 2, 3] to [[1, 2, 3]]
79
+ processed_input_ids = [input_ids]
80
+ else:
81
+ # Multiple sequences: already in correct format [[1, 2], [3, 4]]
82
+ processed_input_ids = input_ids
83
+
84
+ # Pass both parameters, let the ABI handle validation
85
+ embeddings = embedder_bind.ml_embedder_embed(self._handle, bind_config, texts, processed_input_ids)
86
+
87
+ return embeddings
88
+
89
+ def get_embedding_dim(self) -> int:
90
+ """
91
+ Get the embedding dimension of the model
92
+
93
+ Returns:
94
+ The embedding dimension in int
95
+ """
96
+ return embedder_bind.ml_embedder_embedding_dim(self._handle)