nexaai 1.0.16rc10__cp310-cp310-macosx_14_0_universal2.whl → 1.0.16rc12__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (29) hide show
  1. nexaai/__init__.py +7 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +1 -1
  4. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  5. nexaai/binds/libnexa_bridge.dylib +0 -0
  6. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  7. nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
  8. nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/ml.py +60 -14
  10. nexaai/log.py +92 -0
  11. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  12. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  13. nexaai/mlx_backend/image_gen/interface.py +82 -0
  14. nexaai/mlx_backend/image_gen/main.py +281 -0
  15. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  16. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  17. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  18. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  19. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  20. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  21. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  22. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  23. nexaai/mlx_backend/ml.py +60 -14
  24. nexaai/mlx_backend/sd/modeling/model_io.py +72 -17
  25. nexaai/runtime.py +4 -0
  26. {nexaai-1.0.16rc10.dist-info → nexaai-1.0.16rc12.dist-info}/METADATA +1 -1
  27. {nexaai-1.0.16rc10.dist-info → nexaai-1.0.16rc12.dist-info}/RECORD +29 -16
  28. {nexaai-1.0.16rc10.dist-info → nexaai-1.0.16rc12.dist-info}/WHEEL +0 -0
  29. {nexaai-1.0.16rc10.dist-info → nexaai-1.0.16rc12.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,460 @@
1
+ # Copyright © 2023 Apple Inc.
2
+
3
+ import math
4
+ from typing import Optional
5
+
6
+ import mlx.core as mx
7
+ import mlx.nn as nn
8
+
9
+ from .config import UNetConfig
10
+
11
+
12
+ def upsample_nearest(x, scale: int = 2):
13
+ B, H, W, C = x.shape
14
+ x = mx.broadcast_to(x[:, :, None, :, None, :], (B, H, scale, W, scale, C))
15
+ x = x.reshape(B, H * scale, W * scale, C)
16
+
17
+ return x
18
+
19
+
20
+ class TimestepEmbedding(nn.Module):
21
+ def __init__(self, in_channels: int, time_embed_dim: int):
22
+ super().__init__()
23
+
24
+ self.linear_1 = nn.Linear(in_channels, time_embed_dim)
25
+ self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
26
+
27
+ def __call__(self, x):
28
+ x = self.linear_1(x)
29
+ x = nn.silu(x)
30
+ x = self.linear_2(x)
31
+
32
+ return x
33
+
34
+
35
+ class TransformerBlock(nn.Module):
36
+ def __init__(
37
+ self,
38
+ model_dims: int,
39
+ num_heads: int,
40
+ hidden_dims: Optional[int] = None,
41
+ memory_dims: Optional[int] = None,
42
+ ):
43
+ super().__init__()
44
+
45
+ self.norm1 = nn.LayerNorm(model_dims)
46
+ self.attn1 = nn.MultiHeadAttention(model_dims, num_heads)
47
+ self.attn1.out_proj.bias = mx.zeros(model_dims)
48
+
49
+ memory_dims = memory_dims or model_dims
50
+ self.norm2 = nn.LayerNorm(model_dims)
51
+ self.attn2 = nn.MultiHeadAttention(
52
+ model_dims, num_heads, key_input_dims=memory_dims
53
+ )
54
+ self.attn2.out_proj.bias = mx.zeros(model_dims)
55
+
56
+ hidden_dims = hidden_dims or 4 * model_dims
57
+ self.norm3 = nn.LayerNorm(model_dims)
58
+ self.linear1 = nn.Linear(model_dims, hidden_dims)
59
+ self.linear2 = nn.Linear(model_dims, hidden_dims)
60
+ self.linear3 = nn.Linear(hidden_dims, model_dims)
61
+
62
+ def __call__(self, x, memory, attn_mask, memory_mask):
63
+ # Self attention
64
+ y = self.norm1(x)
65
+ y = self.attn1(y, y, y, attn_mask)
66
+ x = x + y
67
+
68
+ # Cross attention
69
+ y = self.norm2(x)
70
+ y = self.attn2(y, memory, memory, memory_mask)
71
+ x = x + y
72
+
73
+ # FFN
74
+ y = self.norm3(x)
75
+ y_a = self.linear1(y)
76
+ y_b = self.linear2(y)
77
+ y = y_a * nn.gelu(y_b)
78
+ y = self.linear3(y)
79
+ x = x + y
80
+
81
+ return x
82
+
83
+
84
+ class Transformer2D(nn.Module):
85
+ """A transformer model for inputs with 2 spatial dimensions."""
86
+
87
+ def __init__(
88
+ self,
89
+ in_channels: int,
90
+ model_dims: int,
91
+ encoder_dims: int,
92
+ num_heads: int,
93
+ num_layers: int = 1,
94
+ norm_num_groups: int = 32,
95
+ ):
96
+ super().__init__()
97
+
98
+ self.norm = nn.GroupNorm(norm_num_groups, in_channels, pytorch_compatible=True)
99
+ self.proj_in = nn.Linear(in_channels, model_dims)
100
+ self.transformer_blocks = [
101
+ TransformerBlock(model_dims, num_heads, memory_dims=encoder_dims)
102
+ for i in range(num_layers)
103
+ ]
104
+ self.proj_out = nn.Linear(model_dims, in_channels)
105
+
106
+ def __call__(self, x, encoder_x, attn_mask, encoder_attn_mask):
107
+ # Save the input to add to the output
108
+ input_x = x
109
+ dtype = x.dtype
110
+
111
+ # Perform the input norm and projection
112
+ B, H, W, C = x.shape
113
+ x = self.norm(x).reshape(B, -1, C)
114
+ x = self.proj_in(x)
115
+
116
+ # Apply the transformer
117
+ for block in self.transformer_blocks:
118
+ x = block(x, encoder_x, attn_mask, encoder_attn_mask)
119
+
120
+ # Apply the output projection and reshape
121
+ x = self.proj_out(x)
122
+ x = x.reshape(B, H, W, C)
123
+
124
+ return x + input_x
125
+
126
+
127
+ class ResnetBlock2D(nn.Module):
128
+ def __init__(
129
+ self,
130
+ in_channels: int,
131
+ out_channels: Optional[int] = None,
132
+ groups: int = 32,
133
+ temb_channels: Optional[int] = None,
134
+ ):
135
+ super().__init__()
136
+
137
+ out_channels = out_channels or in_channels
138
+
139
+ self.norm1 = nn.GroupNorm(groups, in_channels, pytorch_compatible=True)
140
+ self.conv1 = nn.Conv2d(
141
+ in_channels, out_channels, kernel_size=3, stride=1, padding=1
142
+ )
143
+ if temb_channels is not None:
144
+ self.time_emb_proj = nn.Linear(temb_channels, out_channels)
145
+ self.norm2 = nn.GroupNorm(groups, out_channels, pytorch_compatible=True)
146
+ self.conv2 = nn.Conv2d(
147
+ out_channels, out_channels, kernel_size=3, stride=1, padding=1
148
+ )
149
+
150
+ if in_channels != out_channels:
151
+ self.conv_shortcut = nn.Linear(in_channels, out_channels)
152
+
153
+ def __call__(self, x, temb=None):
154
+ dtype = x.dtype
155
+
156
+ if temb is not None:
157
+ temb = self.time_emb_proj(nn.silu(temb))
158
+
159
+ y = self.norm1(x)
160
+ y = nn.silu(y)
161
+ y = self.conv1(y)
162
+ if temb is not None:
163
+ y = y + temb[:, None, None, :]
164
+ y = self.norm2(y)
165
+ y = nn.silu(y)
166
+ y = self.conv2(y)
167
+
168
+ x = y + (x if "conv_shortcut" not in self else self.conv_shortcut(x))
169
+
170
+ return x
171
+
172
+
173
+ class UNetBlock2D(nn.Module):
174
+ def __init__(
175
+ self,
176
+ in_channels: int,
177
+ out_channels: int,
178
+ temb_channels: int,
179
+ prev_out_channels: Optional[int] = None,
180
+ num_layers: int = 1,
181
+ transformer_layers_per_block: int = 1,
182
+ num_attention_heads: int = 8,
183
+ cross_attention_dim=1280,
184
+ resnet_groups: int = 32,
185
+ add_downsample=True,
186
+ add_upsample=True,
187
+ add_cross_attention=True,
188
+ ):
189
+ super().__init__()
190
+
191
+ # Prepare the in channels list for the resnets
192
+ if prev_out_channels is None:
193
+ in_channels_list = [in_channels] + [out_channels] * (num_layers - 1)
194
+ else:
195
+ in_channels_list = [prev_out_channels] + [out_channels] * (num_layers - 1)
196
+ res_channels_list = [out_channels] * (num_layers - 1) + [in_channels]
197
+ in_channels_list = [
198
+ a + b for a, b in zip(in_channels_list, res_channels_list)
199
+ ]
200
+
201
+ # Add resnet blocks that also process the time embedding
202
+ self.resnets = [
203
+ ResnetBlock2D(
204
+ in_channels=ic,
205
+ out_channels=out_channels,
206
+ temb_channels=temb_channels,
207
+ groups=resnet_groups,
208
+ )
209
+ for ic in in_channels_list
210
+ ]
211
+
212
+ # Add optional cross attention layers
213
+ if add_cross_attention:
214
+ self.attentions = [
215
+ Transformer2D(
216
+ in_channels=out_channels,
217
+ model_dims=out_channels,
218
+ num_heads=num_attention_heads,
219
+ num_layers=transformer_layers_per_block,
220
+ encoder_dims=cross_attention_dim,
221
+ )
222
+ for i in range(num_layers)
223
+ ]
224
+
225
+ # Add an optional downsampling layer
226
+ if add_downsample:
227
+ self.downsample = nn.Conv2d(
228
+ out_channels, out_channels, kernel_size=3, stride=2, padding=1
229
+ )
230
+
231
+ # or upsampling layer
232
+ if add_upsample:
233
+ self.upsample = nn.Conv2d(
234
+ out_channels, out_channels, kernel_size=3, stride=1, padding=1
235
+ )
236
+
237
+ def __call__(
238
+ self,
239
+ x,
240
+ encoder_x=None,
241
+ temb=None,
242
+ attn_mask=None,
243
+ encoder_attn_mask=None,
244
+ residual_hidden_states=None,
245
+ ):
246
+ output_states = []
247
+
248
+ for i in range(len(self.resnets)):
249
+ if residual_hidden_states is not None:
250
+ x = mx.concatenate([x, residual_hidden_states.pop()], axis=-1)
251
+
252
+ x = self.resnets[i](x, temb)
253
+
254
+ if "attentions" in self:
255
+ x = self.attentions[i](x, encoder_x, attn_mask, encoder_attn_mask)
256
+
257
+ output_states.append(x)
258
+
259
+ if "downsample" in self:
260
+ x = self.downsample(x)
261
+ output_states.append(x)
262
+
263
+ if "upsample" in self:
264
+ x = self.upsample(upsample_nearest(x))
265
+ output_states.append(x)
266
+
267
+ return x, output_states
268
+
269
+
270
+ class UNetModel(nn.Module):
271
+ """The conditional 2D UNet model that actually performs the denoising."""
272
+
273
+ def __init__(self, config: UNetConfig):
274
+ super().__init__()
275
+
276
+ self.conv_in = nn.Conv2d(
277
+ config.in_channels,
278
+ config.block_out_channels[0],
279
+ config.conv_in_kernel,
280
+ padding=(config.conv_in_kernel - 1) // 2,
281
+ )
282
+
283
+ self.timesteps = nn.SinusoidalPositionalEncoding(
284
+ config.block_out_channels[0],
285
+ max_freq=1,
286
+ min_freq=math.exp(
287
+ -math.log(10000) + 2 * math.log(10000) / config.block_out_channels[0]
288
+ ),
289
+ scale=1.0,
290
+ cos_first=True,
291
+ full_turns=False,
292
+ )
293
+ self.time_embedding = TimestepEmbedding(
294
+ config.block_out_channels[0],
295
+ config.block_out_channels[0] * 4,
296
+ )
297
+
298
+ if config.addition_embed_type == "text_time":
299
+ self.add_time_proj = nn.SinusoidalPositionalEncoding(
300
+ config.addition_time_embed_dim,
301
+ max_freq=1,
302
+ min_freq=math.exp(
303
+ -math.log(10000)
304
+ + 2 * math.log(10000) / config.addition_time_embed_dim
305
+ ),
306
+ scale=1.0,
307
+ cos_first=True,
308
+ full_turns=False,
309
+ )
310
+ self.add_embedding = TimestepEmbedding(
311
+ config.projection_class_embeddings_input_dim,
312
+ config.block_out_channels[0] * 4,
313
+ )
314
+
315
+ # Make the downsampling blocks
316
+ block_channels = [config.block_out_channels[0]] + list(
317
+ config.block_out_channels
318
+ )
319
+ self.down_blocks = [
320
+ UNetBlock2D(
321
+ in_channels=in_channels,
322
+ out_channels=out_channels,
323
+ temb_channels=config.block_out_channels[0] * 4,
324
+ num_layers=config.layers_per_block[i],
325
+ transformer_layers_per_block=config.transformer_layers_per_block[i],
326
+ num_attention_heads=config.num_attention_heads[i],
327
+ cross_attention_dim=config.cross_attention_dim[i],
328
+ resnet_groups=config.norm_num_groups,
329
+ add_downsample=(i < len(config.block_out_channels) - 1),
330
+ add_upsample=False,
331
+ add_cross_attention="CrossAttn" in config.down_block_types[i],
332
+ )
333
+ for i, (in_channels, out_channels) in enumerate(
334
+ zip(block_channels, block_channels[1:])
335
+ )
336
+ ]
337
+
338
+ # Make the middle block
339
+ self.mid_blocks = [
340
+ ResnetBlock2D(
341
+ in_channels=config.block_out_channels[-1],
342
+ out_channels=config.block_out_channels[-1],
343
+ temb_channels=config.block_out_channels[0] * 4,
344
+ groups=config.norm_num_groups,
345
+ ),
346
+ Transformer2D(
347
+ in_channels=config.block_out_channels[-1],
348
+ model_dims=config.block_out_channels[-1],
349
+ num_heads=config.num_attention_heads[-1],
350
+ num_layers=config.transformer_layers_per_block[-1],
351
+ encoder_dims=config.cross_attention_dim[-1],
352
+ ),
353
+ ResnetBlock2D(
354
+ in_channels=config.block_out_channels[-1],
355
+ out_channels=config.block_out_channels[-1],
356
+ temb_channels=config.block_out_channels[0] * 4,
357
+ groups=config.norm_num_groups,
358
+ ),
359
+ ]
360
+
361
+ # Make the upsampling blocks
362
+ block_channels = (
363
+ [config.block_out_channels[0]]
364
+ + list(config.block_out_channels)
365
+ + [config.block_out_channels[-1]]
366
+ )
367
+ self.up_blocks = [
368
+ UNetBlock2D(
369
+ in_channels=in_channels,
370
+ out_channels=out_channels,
371
+ temb_channels=config.block_out_channels[0] * 4,
372
+ prev_out_channels=prev_out_channels,
373
+ num_layers=config.layers_per_block[i] + 1,
374
+ transformer_layers_per_block=config.transformer_layers_per_block[i],
375
+ num_attention_heads=config.num_attention_heads[i],
376
+ cross_attention_dim=config.cross_attention_dim[i],
377
+ resnet_groups=config.norm_num_groups,
378
+ add_downsample=False,
379
+ add_upsample=(i > 0),
380
+ add_cross_attention="CrossAttn" in config.up_block_types[i],
381
+ )
382
+ for i, (in_channels, out_channels, prev_out_channels) in reversed(
383
+ list(
384
+ enumerate(
385
+ zip(block_channels, block_channels[1:], block_channels[2:])
386
+ )
387
+ )
388
+ )
389
+ ]
390
+
391
+ self.conv_norm_out = nn.GroupNorm(
392
+ config.norm_num_groups,
393
+ config.block_out_channels[0],
394
+ pytorch_compatible=True,
395
+ )
396
+ self.conv_out = nn.Conv2d(
397
+ config.block_out_channels[0],
398
+ config.out_channels,
399
+ config.conv_out_kernel,
400
+ padding=(config.conv_out_kernel - 1) // 2,
401
+ )
402
+
403
+ def __call__(
404
+ self,
405
+ x,
406
+ timestep,
407
+ encoder_x,
408
+ attn_mask=None,
409
+ encoder_attn_mask=None,
410
+ text_time=None,
411
+ ):
412
+ # Compute the time embeddings
413
+ temb = self.timesteps(timestep).astype(x.dtype)
414
+ temb = self.time_embedding(temb)
415
+
416
+ # Add the extra text_time conditioning
417
+ if text_time is not None:
418
+ text_emb, time_ids = text_time
419
+ emb = self.add_time_proj(time_ids).flatten(1).astype(x.dtype)
420
+ emb = mx.concatenate([text_emb, emb], axis=-1)
421
+ emb = self.add_embedding(emb)
422
+ temb = temb + emb
423
+
424
+ # Preprocess the input
425
+ x = self.conv_in(x)
426
+
427
+ # Run the downsampling part of the unet
428
+ residuals = [x]
429
+ for block in self.down_blocks:
430
+ x, res = block(
431
+ x,
432
+ encoder_x=encoder_x,
433
+ temb=temb,
434
+ attn_mask=attn_mask,
435
+ encoder_attn_mask=encoder_attn_mask,
436
+ )
437
+ residuals.extend(res)
438
+
439
+ # Run the middle part of the unet
440
+ x = self.mid_blocks[0](x, temb)
441
+ x = self.mid_blocks[1](x, encoder_x, attn_mask, encoder_attn_mask)
442
+ x = self.mid_blocks[2](x, temb)
443
+
444
+ # Run the upsampling part of the unet
445
+ for block in self.up_blocks:
446
+ x, _ = block(
447
+ x,
448
+ encoder_x=encoder_x,
449
+ temb=temb,
450
+ attn_mask=attn_mask,
451
+ encoder_attn_mask=encoder_attn_mask,
452
+ residual_hidden_states=residuals,
453
+ )
454
+
455
+ # Postprocess the output
456
+ x = self.conv_norm_out(x)
457
+ x = nn.silu(x)
458
+ x = self.conv_out(x)
459
+
460
+ return x